Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Mechanical Model Definition
2.2. Computational Mechanical Model Exploitation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arterburn, D.E.; Courcoulas, A.P. Bariatric surgery for obesity and metabolic conditions in adults. BMJ 2014, 349, g3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brethauer, S.A.; Aminian, A.; Rosenthal, R.J.; Kirwan, J.P.; Kashyap, S.R.; Schauer, P.R. Bariatric surgery improves the metabolic profile of morbidly obese patients with Type 1 Diabetes. Diabetes Care 2014, 37, 51–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romijn, J.A.; Corssmit, E.P.; Havekes, L.M.; Pijl, H. Gut-brain axis. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.D.; Davison, J.S. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibers in the cervical vagus. J. Physiol. 1978, 284, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Martin, C.M.; Blackshaw, L.A. Vagal Mechanoreceptors and Chemoreceptors in Mouse Stomach and Esophagus. J. Neurophysiol. 2002, 87, 2095–2103. [Google Scholar] [CrossRef] [Green Version]
- Lyte, M.; Cryan, J.F. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease; Springer: New York, NY, USA, 2014; ISBN 9781493908967. [Google Scholar]
- Berthoud, H.R. Vagal and hormonal gut-brain communication: From satiation to satisfaction. Neurogastroenterol. Motil. 2008, 20, 64–72. [Google Scholar] [CrossRef]
- Fox, E.A.; Phillips, R.J.; Martinson, F.A.; Baronowsky, E.A.; Powley, T.L. Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: Morphology and topography. J. Comp. Neurol. 2000, 428, 558–576. [Google Scholar] [CrossRef]
- Powley, T.L.; Phillips, R.J. Musings on the wanderer: What’s new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G1217–G1225. [Google Scholar] [CrossRef]
- Holtmann, G.; Talley, N.J. The stomach-brain axis. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 967–979. [Google Scholar] [CrossRef] [Green Version]
- Woods, S.C. Gastrointestinal Satiety Signals I. An overview of gastrointestinal signals that influence food intake. AJP Gastrointest. Liver Physiol. 2003, 286, 7G–13G. [Google Scholar] [CrossRef] [Green Version]
- Estimate of Bariatric Surgery Numbers, 2011–2017, American Society for Metabolic and Bariatric Surgery. Available online: https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers (accessed on 23 October 2020).
- Singh, S.; de Moura, D.T.H.; Khan, A.; Bilal, M.; Ryan, M.B.; Thompson, C.C. Safety and efficacy of endoscopic sleeve gastroplasty worldwide for treatment of obesity: A systematic review and meta-analysis. Surg. Obes. Relat. Dis. 2020, 16, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Quero, G.; Fiorillo, C.; Dallemagne, B.; Mascagni, P.; Curcic, J.; Fox, M.; Perretta, S. The Causes of Gastroesophageal Reflux after Laparoscopic Sleeve Gastrectomy: Quantitative Assessment of the Structure and Function of the Esophagogastric Junction by Magnetic Resonance Imaging and High-Resolution Manometry. Obes. Surg. 2020, 2108–2117. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, M.L.; Arterburn, D.E.; Van Scoyoc, L.; Smith, V.A.; Yancy, W.S.; Weidenbacher, H.J.; Livingston, E.H.; Olsen, M.K. Bariatric surgery and long-term durability of weight loss. JAMA Surg. 2016, 151, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Toolabi, K.; Golzarand, M.; Farid, R. Laparoscopic adjustable gastric banding: Efficacy and consequences over a 13-year period. Am. J. Surg. 2016, 212, 62–68. [Google Scholar] [CrossRef]
- Johari, Y.; Ooi, G.; Burton, P.; Laurie, C.; Dwivedi, S.; Qiu, Y.F.; Chen, R.; Loh, D.; Nottle, P.; Brown, W. Long-Term Matched Comparison of Adjustable Gastric Banding Versus Sleeve Gastrectomy: Weight Loss, Quality of Life, Hospital Resource Use and Patient-Reported Outcome Measures. Obes. Surg. 2019. [Google Scholar] [CrossRef]
- Zilberstein, B.; Santo, M.A.; Carvalho, M.H. Critical Analysis of Surgical Treatment Techniques of Morbid Obesity. Arq. Bras. Cir. Dig. 2019, 32, e1450. [Google Scholar] [CrossRef]
- Neagoe, R.; Muresan, M.; Timofte, D.; Darie, R.; Razvan, I.; Voidazan, S.; Muresan, S.; Sala, D. Long-term outcomes of laparoscopic sleeve gastrectomy—A single-center prospective observational study. Videosurgery Other Miniinvasive Tech. 2019, 14, 242–248. [Google Scholar] [CrossRef]
- Toolabi, K.; Sarkardeh, M.; Vasigh, M.; Golzarand, M.; Vezvaei, P.; Kooshki, J. Comparison of Laparoscopic Roux-en-Y Gastric Bypass and Laparoscopic Sleeve Gastrectomy on Weight Loss, Weight Regain, and Remission of Comorbidities: A 5 Years of Follow-up Study. Obes. Surg. 2019. [Google Scholar] [CrossRef]
- Abu Dayyeh, B.K.; Acosta, A.; Camilleri, M.; Mundi, M.S.; Rajan, E.; Topazian, M.D.; Gostout, C.J. Endoscopic Sleeve Gastroplasty Alters Gastric Physiology and Induces Loss of Body Weight in Obese Individuals. Clin. Gastroenterol. Hepatol. 2017, 15, 37–43.e1. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, A.; Al-Darwish, A.; Mahmoud, A.E.; Alqahtani, Y.A.; Elahmedi, M. Short-term outcomes of endoscopic sleeve gastroplasty in 1000 consecutive patients. Gastrointest. Endosc. 2019, 89, 1132–1138. [Google Scholar] [CrossRef]
- Hedjoudje, A.; Dayyeh, B.A.; Cheskin, L.J.; Adam, A.; Neto, M.G.; Badurdeen, D.; Morales, J.G.; Sartoretto, A.; Nava, G.L.; Vargas, E.; et al. Efficacy and Safety of Endoscopic Sleeve Gastroplasty: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef]
- Li, P.; Ma, B.; Gong, S.; Zhang, X.; Li, W. Efficacy and safety of endoscopic sleeve gastroplasty for obesity patients: A meta-analysis. Surg. Endosc. 2019. [Google Scholar] [CrossRef] [PubMed]
- Linder, B.J.; Rivera, M.E.; Ziegelmann, M.J.; Elliott, D.S. Long-term Outcomes Following Artificial Urinary Sphincter Placement: An Analysis of 1082 Cases at Mayo Clinic. Urology 2015, 86, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Karachalios, T.; Tsatsaronis, C.; Efraimis, G.; Papadelis, P.; Lyritis, G.; Diakoumopoulos, G. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: A 10-year, prospective, randomized study. J. Arthroplast. 2004, 19, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.J.; Powley, T.L. Tension and stretch receptors in gastrointestinal smooth muscle: Re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Rev. 2000, 34, 1–26. [Google Scholar] [CrossRef]
- Wang, G.J.; Tomasi, D.; Backus, W.; Wang, R.; Telang, F.; Geliebter, A.; Korner, J.; Bauman, A.; Fowler, J.S.; Thanos, P.K.; et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage 2008, 39, 1824–1831. [Google Scholar] [CrossRef]
- Salmaso, C.; Toniolo, I.; Fontanella, C.G.; Da Roit, P.; Albanese, A.; Polese, L.; Stefanini, C.; Foletto, M.; Carniel, E.L. Computational Tools for the Reliability Assessment and the Engineering Design of Procedures and Devices in Bariatric Surgery. Ann. Biomed. Eng. 2020. [Google Scholar] [CrossRef]
- Natali, A.N.; Fontanella, C.G.; Carniel, E.L. Biomechanical analysis of the interaction phenomena between artificial urinary sphincter and urethral duct. Int. J. Numer. Methods Biomed. Eng. 2020, 36. [Google Scholar] [CrossRef]
- Henninger, H.B.; Reese, S.P.; Anderson, A.E.; Weiss, J.A. Validation of computational models in biomechanics. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 801–812. [Google Scholar] [CrossRef]
- Carniel, E.L.; Gramigna, V.; Fontanella, C.G.; Frigo, A.; Stefanini, C.; Rubini, A.; Natali, A.N. Characterization of the anisotropic mechanical behaviour of colonic tissues: Experimental activity and constitutive formulation. Exp. Physiol. 2014, 99, 759–771. [Google Scholar] [CrossRef]
- Carniel, E.L.; Albanese, A.; Fontanella, C.G.; Giovanni, P.; Prevedello, L.; Salmaso, C.; Todros, S.; Toniolo, I.; Foletto, M. Biomechanics of stomach tissues and structure in patients with obesity. J. Mech. Behav. Biomed. Mater. 2020, 103883. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, C.G.; Salmaso, C.; Toniolo, I.; de Cesare, N.; Rubini, A.; De Benedictis, G.M.; Carniel, E.L. Computational Models for the Mechanical Investigation of Stomach Tissues and Structure. Ann. Biomed. Eng. 2019, 47, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Soybel, D.I. Anatomy and physiology of the stomach. Surg. Clin. N. Am. 2005, 85, 875–894. [Google Scholar] [CrossRef] [PubMed]
- Susmallian, S.; Goitein, D.; Barnea, R.; Raziel, A. Correct evaluation of gastric wall thickness may support a change in staplers’ size when performing sleeve gastrectomy. Isr. Med. Assoc. J. 2017, 19, 351–354. [Google Scholar]
- Carniel, E.L.; Fontanella, C.G.; Polese, L.; Merigliano, S.; Natali, A.N. Computational tools for the analysis of mechanical functionality of gastrointestinal structures. Technol. Health Care 2013, 21, 271–283. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Fontanella, C.G.; Frigo, A.; Todros, S.; Rubini, A.; De Benedictis, G.M.; Cerruto, M.A.; Artibani, W. Mechanics of the urethral duct: Tissue constitutive formulation and structural modeling for the investigation of lumen occlusion. Biomech. Model. Mechanobiol. 2017, 16, 439–447. [Google Scholar] [CrossRef]
- Zhao, J.; Liao, D.; Chen, P.; Kunwald, P.; Gregersen, H. Stomach stress and strain depend on location, direction and the layered structure. J. Biomech. 2008, 41, 3441–3447. [Google Scholar] [CrossRef]
- Carniel, E.L.; Frigo, A.; Fontanella, C.G.; De Benedictis, G.M.; Rubini, A.; Barp, L.; Pluchino, G.; Sabbadini, B.; Polese, L. A biomechanical approach to the analysis of methods and procedures of bariatric surgery. J. Biomech. 2017, 56, 32–41. [Google Scholar] [CrossRef]
- Patel, S.; Szomstein, S.; Rosenthal, R.J. Reasons and outcomes of reoperative bariatric surgery for failed and complicated procedures (excluding adjustable gastric banding). Obes. Surg. 2011, 21, 1209–1219. [Google Scholar] [CrossRef]
- Pinto-Bastos, A.; Conceição, E.M.; Machado, P.P.P. Reoperative Bariatric Surgery: A Systematic Review of the Reasons for Surgery, Medical and Weight Loss Outcomes, Relevant Behavioral Factors. Obes. Surg. 2017, 27, 2707–2715. [Google Scholar] [CrossRef]
- Altieri, M.S.; Yang, J.; Nie, L.; Blackstone, R.; Spaniolas, K.; Pryor, A. Rate of revisions or conversion after bariatric surgery over 10 years in the state of New York. Surg. Obes. Relat. Dis. 2018, 14, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Burton, P.R.; Brown, W.A. The mechanism of weight loss with laparoscopic adjustable gastric banding: Induction of satiety not restriction. Int. J. Obes. 2011, 35, S26–S30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, R. Devices for the treatment of obesity: Will understanding the physiology of satiety unravel new targets for intervention? J. Diabetes Sci. Technol. 2008, 2, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilja, O.H.; Heimdal, A.; Hausken, T.; Gregersen, H.; Matre, K.; Berstad, A.; Ødegaard, S. Strain during gastric contractions can be measured using Doppler ultrasonography. Ultrasound Med. Biol. 2002, 28, 1457–1465. [Google Scholar] [CrossRef]
- Gilja, O.H. Ultrasound of the stomach—The EUROSON Lecture 2006. Ultraschall der Medizin 2007, 28, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, H.; Gilja, O.H.; Hausken, T.; Heimdal, A.; Gao, C.; Matre, K.; Ødegaard, S.; Berstad, A. Mechanical properties in the human gastric antrum using B-mode ultrasonography and antral distension. Am. J. Physiol. Liver Physiol. 2002, 283, G368–G375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Führer, D.; Zysset, S.; Stumvoll, M. Brain activity in hunger and satiety: An exploratory visually stimulated fMRI study. Obesity 2008, 16, 945–950. [Google Scholar] [CrossRef]
- Ly, H.G.; Dupont, P.; Van Laere, K.; Depoortere, I.; Tack, J.; Van Oudenhove, L. Differential brain responses to gradual intragastric nutrient infusion and gastric balloon distension: A role for gut peptides? Neuroimage 2017, 144, 101–112. [Google Scholar] [CrossRef]
- Ophir, J.; Cespedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A method for imaging the elasticity in biological tissues. Ultrason. Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef]
- Li, G.Y.; Cao, Y. Mechanics of ultrasound elastography. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toniolo, I.; Fontanella, C.G.; Foletto, M.; Carniel, E.L. Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering 2020, 7, 159. https://doi.org/10.3390/bioengineering7040159
Toniolo I, Fontanella CG, Foletto M, Carniel EL. Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering. 2020; 7(4):159. https://doi.org/10.3390/bioengineering7040159
Chicago/Turabian StyleToniolo, Ilaria, Chiara Giulia Fontanella, Mirto Foletto, and Emanuele Luigi Carniel. 2020. "Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches" Bioengineering 7, no. 4: 159. https://doi.org/10.3390/bioengineering7040159
APA StyleToniolo, I., Fontanella, C. G., Foletto, M., & Carniel, E. L. (2020). Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering, 7(4), 159. https://doi.org/10.3390/bioengineering7040159