Control of Blood Coagulation by Hemocompatible Material Surfaces—A Review
Abstract
:1. Introduction
2. Protein Adsorption
3. Coagulation, Platelet and Complement Activation on Foreign Materials
3.1. The Coagulation Cascade
3.2. Fibrinolysis
3.3. Platelet Adhesion, and Activation
3.4. Complement Activation
4. Design of Blood-Compatible Surfaces
4.1. Passivating Surfaces
4.1.1. Inorganic Coatings
4.1.2. Organic Coatings
4.1.3. Textured Surfaces
4.2. Bioactive Surfaces
4.2.1. Anticoagulant Surfaces
4.2.2. Platelet Inhibitors
4.2.3. Fibrinolytic Agents
4.3. Endothelialization
Modification | Product | Description | Application | Ref. |
---|---|---|---|---|
Diamond-like carbon coating | VentrAssistTM, Ventracor | VAD | [1] | |
EVAHEART® | DLC coating of blood contacting surfaces of the pump | VAD | [220,221] | |
CarbofilmTM, Sorin Biomedica | Artificial heart valves | [222] | ||
Diamond FlexTM, Phytis | Stainless steel coated with DLC | Stents | [223] | |
Zwitterionic coatings based on phosphorylcholine | EVAHEART®, Sun Medical Technologies | MPC polymer coating of the pump shaft and bearing | VAD | [220,221,224] |
BiodivYsio, Biocompatible | Phosphorylcholine containing copolymer coating | Stents | [224,225] | |
TriMaxxTM, Abbott | Stainless steel coated with phosphorylcholine | Stents | [226] | |
Physio®, Sorin Biomedica | Phosphorylcholine-coated tubing | Artificial lung (oxygenator) | [227] | |
Textured surfaces | HeartMate, Thoratec Corp. | Diaphragm with integral fibrillary texture; textured titanium | VAD | [3,228] |
Heparin | DuraHeartTM, Terumo Heart | Covalently bonded heparin | VAD | [229,230] |
InCOR®, Berlin Heart | CNAS coating 1 | VAD | [6,62] | |
Trillium®, Biopassive Surface, Biointeractions Ltd. | Covalently bonded heparin | Cardiopulmonary bypass devices & hemodialysis catheters | [62] | |
BIOLINE® | Ionically and covalently bonded heparin | Extracorporeal circulation devices & vascular grafts | [62] | |
GORE®, W. L. Gore and Associates | CNAS coating 1 | Vascular grafts | [161] | |
PROPATEN®, W. L. Gore and Associates | CNAS coating 1 | Vascular grafts | [161] | |
Endothelialization | GenousTM, OrbusNeich Medical Technologies | Covalently bound anti-CD34 antibody layer | Stents | [219] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.; Wang, X.; Yang, M. Biocompatible materials of pulsatile and rotary blood pumps: A brief review. Rev. Adv. Mater. Sci. 2020, 59, 322–339. [Google Scholar] [CrossRef]
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Ufukerbulut, D.; Lazoglu, I. Biomaterials for Improving the Blood and Tissue Compatibility of Total Artificial Hearts (TAH) and Ventricular Assist Devices (VAD). In Biomaterials for Artificial Organs; Elsevier: Amsterdam, The Netherlands, 2011; pp. 207–235. [Google Scholar]
- Davidson, J.A.; Daigle, K.P.; Kovacs, P. Wear-resistant, hemocompatible Ti-Nb-Zr and Zr-Nb alloys to improve blood pump design and performance. Artif. Organs 1996, 20, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Maitz, M.; Werner, C. Coatings for Biomaterials to Improve Hemocompatibility. In Hemocompatibility of Biomaterials for Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 163–190. [Google Scholar]
- Sin, D.-C.; Kei, H.-L.; Miao, X. Surface Coatings for Ventricular Assist Devices. In Coatings for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 264–283. [Google Scholar]
- Teng, J.; Wang, X.; Xu, J.; Hu, T.; Hou, Z.; Liu, Y. Facile method for covalent-bonding coating of crosslinked silicone layer onto poly (ester-urethane) surface to improve tensile properties and hemocompatibility. Prog. Org. Coat. 2021, 152, 106111. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Gao, Y.; Gao, W.; Hou, Z.; Zhu, Y. Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly (ester-urethane) Film to Improve Surface Biocompatibility. Membranes 2021, 11, 37. [Google Scholar] [CrossRef]
- Klinkmann, H.; Vienken, J. Membranes for dialysis. Nephrol. Dial. Transplant. 1995, 10 (Suppl. S3), 39–45. [Google Scholar] [CrossRef]
- Yeager, T.; Roy, S. Evolution of gas permeable membranes for extracorporeal membrane oxygenation. Artif. Organs 2017, 41, 700–709. [Google Scholar] [CrossRef] [Green Version]
- Cossette, B.; Pelletier, M.-È.; Carrier, N.; Turgeon, M.; Leclair, C.; Charron, P.; Echenberg, D.; Fayad, T.; Farand, P. Evaluation of bleeding risk in patients exposed to therapeutic unfractionated or low-molecular weight heparin: A cohort study in the context of a quality improvement initiative. Ann. Pharmacother. 2010, 44, 994–1002. [Google Scholar] [CrossRef]
- Dhakal, P.; Rayamajhi, S.; Verma, V.; Gundabolu, K.; Bhatt, V.R. Reversal of anticoagulation and management of bleeding in patients on anticoagulants. Clin. Appl. Thromb. Hemost. 2017, 23, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Groth, T.; Klosz, K.; Campbell, E.; New, R.; Hall, B.; Goering, H. Protein adsorption, lymphocyte adhesion and platelet adhesion/activation on polyurethane ureas is related to hard segment content and composition. J. Biomater. Sci. Polym. Ed. 1995, 6, 497–510. [Google Scholar] [CrossRef]
- Bowry, S.K.; Gatti, E.; Vienken, J. Contribution of Polysulfone Membranes to the Success of Convective Dialysis Therapies. In High-Performance Membrane Dialyzers; Karger Publishers: Basel, Switzerland, 2011; Volume 173, pp. 110–118. [Google Scholar]
- Mottaghy, K.; Oedekoven, B.; Schaich-Lester, D.; Pöppel, K.; Küpper, W. Application of surfaces with end point attached heparin to extracorporeal circulation with membrane lungs. ASAIO Trans. 1989, 35, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Groth, T.; Synowitz, J.; Malsch, G.; Richau, K.; Albrecht, W.; Lange, K.P.; Paul, D. Contact activation of plasmatic coagulation on polymeric membranes measured by the activity of kallikrein in heparinized plasma. J. Biomater. Sci. Polym. Ed. 1997, 8, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Sotiri, I.; Robichaud, M.; Lee, D.; Braune, S.; Gorbet, M.; Ratner, B.D.; Brash, J.L.; Latour, R.A.; Reviakine, I. BloodSurf 2017: News from the blood-biomaterial frontier. Acta Biomater. 2019, 87, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Sarode, D.N.; Roy, S. In Vitro models for thrombogenicity testing of blood-recirculating medical devices. Expert Rev. Med. Devices 2019, 16, 603–616. [Google Scholar] [CrossRef]
- Hedayati, M.; Neufeld, M.J.; Reynolds, M.M.; Kipper, M.J. The quest for blood-compatible materials: Recent advances and future technologies. Mater. Sci. Eng. R. Rep. 2019, 138, 118–152. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Weinrauch, M. Thrombosis in ischemic heart disease. Arch. Intern. Med. 1996, 156, 1382–1394. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Wang, B.; Chen, N.; Sun, G.; Guo, X. Congenital fibrinogen disorders with repeated thrombosis. J. Thromb. Thrombolysis 2020, 49, 312–315. [Google Scholar] [CrossRef]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Kalathottukaren, M.; Kizhakkedathu, J. Mechanisms of Blood Coagulation in Response to Biomaterials: Extrinsic Factors. In Hemocompatibility of Biomaterials for Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 29–49. [Google Scholar]
- Li, J.; Huang, X.J.; Ji, J.; Lan, P.; Vienken, J.; Groth, T.; Xu, Z.K. Covalent heparin modification of a polysulfone flat sheet membrane for selective removal of low-density lipoproteins: A simple and versatile method. Macromol. Biosci. 2011, 11, 1218–1226. [Google Scholar] [CrossRef]
- Vroman, L. When blood is touched. Materials 2009, 2, 1547–1557. [Google Scholar] [CrossRef] [Green Version]
- Vroman, L.; Adams, A.; Fischer, G.; Munoz, P. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980, 55, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Norde, W.; Lyklema, J. Why proteins prefer interfaces. J. Biomater. Sci. Polym. Ed. 1991, 2, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.; Maitz, M.F.; Sperling, C. Current strategies towards hemocompatible coatings. J. Mater. Chem. 2007, 17, 3376–3384. [Google Scholar] [CrossRef]
- Servoli, E.; Maniglio, D.; Aguilar, M.R.; Motta, A.; Roman, J.S.; Belfiore, L.A.; Migliaresi, C. Quantitative analysis of protein adsorption via atomic force microscopy and surface plasmon resonance. Macromol. Biosci. 2008, 8, 1126–1134. [Google Scholar] [CrossRef]
- Dodo, C.G.; Senna, P.M.; Custodio, W.; Paes Leme, A.F.; Del Bel Cury, A.A. Proteome analysis of the plasma protein layer adsorbed to a rough titanium surface. Biofouling 2013, 29, 549–557. [Google Scholar] [CrossRef]
- Pernemalm, M.; Sandberg, A.; Zhu, Y.; Boekel, J.; Tamburro, D.; Schwenk, J.M.; Björk, A.; Wahren-Herlenius, M.; Åmark, H.; Östenson, C.-G. In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta. Elife 2019, 8, e41608. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, I.C.; Martins, M.C.L.; Barbosa, M.A.; Ratner, B.D. Protein adsorption and clotting time of pHEMA hydrogels modified with C18 ligands to adsorb albumin selectively and reversibly. Biomaterials 2009, 30, 5541–5551. [Google Scholar] [CrossRef]
- Cao, L.; Chang, M.; Lee, C.Y.; Castner, D.G.; Sukavaneshvar, S.; Ratner, B.D.; Horbett, T.A. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. J. Biomed. Mater. Res. Part A 2007, 81, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-J.; Eaton, J.W.; Ugarova, T.P.; Tang, L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001, 98, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Tunc, S.; Maitz, M.F.; Steiner, G.; Vázquez, L.; Pham, M.T.; Salzer, R. In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids Surf. B Biointerfaces 2005, 42, 219–225. [Google Scholar] [CrossRef]
- England, J.L.; Pande, V.S. Charge, hydrophobicity, and confined water: Putting past simulations into a simple theoretical framework. Biochem. Cell Biol. 2010, 88, 359–369. [Google Scholar] [CrossRef]
- Law, K.-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right; ACS Publications: Washington, DC, USA, 2014. [Google Scholar]
- Ibal, G.; Oye, B.; Joo, H.; Tsai, J. Hydrophobic Effect: The Entropic Structure of the Protein Hydration Interface. Biophys. J. 2018, 114, 49a. [Google Scholar] [CrossRef] [Green Version]
- Israelachvili, J. Solvation forces and liquid structure, as probed by direct force measurements. Acc. Chem. Res. 1987, 20, 415–421. [Google Scholar] [CrossRef]
- Xu, L.-C.; Bauer, J.W.; Siedlecki, C.A. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf. B Biointerfaces 2014, 124, 49–68. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, K.; Oshida, H.; Endo, Y.; Watanabe, A.; Ueda, T.; Nakabayashi, N. Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group. J. Biomed. Mater. Res. 1993, 27, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Hayward, J.A.; Johnston, D.S.; Chapman, D. Polymeric phospholipids as new biomaterials. Ann. N. Y. Acad. Sci. 1985, 446, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Holmlin, R.E.; Chen, X.; Chapman, R.G.; Takayama, S.; Whitesides, G.M. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, 2841–2850. [Google Scholar] [CrossRef]
- Mrksich, M.; Whitesides, G.M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55–78. [Google Scholar] [CrossRef]
- Yuan, L.; Yu, Q.; Li, D.; Chen, H. Surface modification to control protein/surface interactions. Macromol. Biosci. 2011, 11, 1031–1040. [Google Scholar] [CrossRef]
- Holland, N.B.; Qiu, Y.; Ruegsegger, M.; Marchant, R.E. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 1998, 392, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.; Hlady, V.; Wei, A. Adsorption of complex proteins at interfaces. Pure Appl. Chem. 1992, 64, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Maitz, M.F.; Huang, N. Surface modification of cardiovascular materials and implants. Surf. Coat. Technol. 2013, 233, 80–90. [Google Scholar] [CrossRef]
- Clarotti, G.; Schue, F.; Sledz, J.; Aoumar, A.A.B.; Geckeler, K.; Orsetti, A.; Paleirac, G. Modification of the biocompatible and haemocompatible properties of polymer substrates by plasma-deposited fluorocarbon coatings. Biomaterials 1992, 13, 832–840. [Google Scholar] [CrossRef]
- Tepe, G.; Schmehl, J.; Wendel, H.P.; Schaffner, S.; Heller, S.; Gianotti, M.; Claussen, C.D.; Duda, S.H. Reduced thrombogenicity of nitinol stents—in vitro evaluation of different surface modifications and coatings. Biomaterials 2006, 27, 643–650. [Google Scholar] [CrossRef]
- Hasebe, T.; Ishimaru, T.; Kamijo, A.; Yoshimoto, Y.; Yoshimura, T.; Yohena, S.; Kodama, H.; Hotta, A.; Takahashi, K.; Suzuki, T. Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films. Diam. Relat. Mater. 2007, 16, 1343–1348. [Google Scholar] [CrossRef]
- De Scheerder, I.; Verbeken, E.; Van Humbeeck, J. Metallic Surface Modification. In Seminars in Interventional Cardiology: SIIC; W. B. Saunders Ltd.: London, UK, 1998; pp. 139–144. [Google Scholar]
- Hecker, J.; Edwards, R. Effects of roughness on the thrombogenicity of a plastic. J. Biomed. Mater. Res. 1981, 15, 1–7. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Pham, V.T.; Al Kobaisi, M.; Bhadra, C.; Orlowska, A.; Ghanaati, S.; Manzi, B.M.; Baulin, V.A.; Joudkazis, S.; Kingshott, P. Adsorption of human plasma albumin and fibronectin onto nanostructured black silicon surfaces. Langmuir 2016, 32, 10744–10751. [Google Scholar] [CrossRef] [PubMed]
- Niepel, M.S.; Ekambaram, B.K.; Schmelzer, C.E.; Groth, T. Polyelectrolyte multilayers of poly (l-lysine) and hyaluronic acid on nanostructured surfaces affect stem cell response. Nanoscale 2019, 11, 2878–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalman, P.; Ward, C.; McKeown, N.; McCullough, D.; Romaschin, A. Improved biocompatability of silicone rubber by removal of surface entrapped air nuclei. J. Biomed. Mater. Res. 1991, 25, 199–211. [Google Scholar] [CrossRef]
- Gbyli, R.; Mercaldi, A.; Sundaram, H.; Amoako, K.A. Achieving totally local anticoagulation on blood contacting devices. Adv. Mater. Interfaces 2018, 5, 1700954. [Google Scholar] [CrossRef]
- Jaffer, I.; Fredenburgh, J.; Hirsh, J.; Weitz, J. Medical device-induced thrombosis: What causes it and how can we prevent it? J. Thromb. Haemost. 2015, 13, S72–S81. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Hofferbert, B.V.; Koo, G.; Malinauskas, R.A. In vitro shear stress-induced platelet activation: Sensitivity of human and bovine blood. Artif. Organs 2013, 37, 894–903. [Google Scholar] [CrossRef]
- Kidane, A.G.; Salacinski, H.; Tiwari, A.; Bruckdorfer, K.R.; Seifalian, A.M. Anticoagulant and antiplatelet agents: Their clinical and device application (s) together with usages to engineer surfaces. Biomacromolecules 2004, 5, 798–813. [Google Scholar] [CrossRef] [PubMed]
- Monroe, D.M.; Hoffman, M. What does it take to make the perfect clot? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Biran, R.; Pond, D. Heparin Coatings for Improving Blood Compatibility of Medical Devices. Adv. Drug Deliv. Rev. 2017, 112, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; Guduru, D.; Xu, Z.K.; Vienken, J.; Groth, T. Blood compatibility and permeability of heparin-modified polysulfone as potential membrane for simultaneous hemodialysis and LDL removal. Macromol. Biosci. 2011, 11, 131–140. [Google Scholar] [CrossRef]
- Ratnoff, O.D.; Colopy, J.E. A familial hemorrhagic trait associated with a deficiency of a clot-promoting fraction of plasma. J. Clin. Investig. 1955, 34, 602–613. [Google Scholar] [CrossRef] [Green Version]
- Vogler, E.A.; Graper, J.C.; Harper, G.R.; Sugg, H.W.; Lander, L.M.; Brittain, W.J. Contact activation of the plasma coagulation cascade. I. Procoagulant surface chemistry and energy. J. Biomed. Mater. Res. 1995, 29, 1005–1016. [Google Scholar] [CrossRef]
- Elödi, S.; Elödi, P. Surface-governed molecular regulation of blood coagulation. Mol. Asp. Med. 1983, 6, 291–353. [Google Scholar] [CrossRef]
- Naudin, C.; Burillo, E.; Blankenberg, S.; Butler, L.; Renné, T. Factor XII Contact Activation. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2017; pp. 814–826. [Google Scholar]
- Rangaswamy, C.; Mailer, R.K.; Englert, H.; Konrath, S.; Renné, T. The Contact System in Liver Injury. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–11. [Google Scholar]
- Bos, M.H.; van’t Veer, C.; Reitsma, P.H. Molecular Biology and Biochemistry of the Coagulation Factors and Pathways of Hemostasis. In Williams Hematology, 9th ed.; Kaushansky, K., Lichtman, M.A., Prchal, J.T., Levi, M.M., Press, O.W., Burns, L.J., Caligiuri, M., Eds.; McGraw Hill: New York, NY, USA, 2016. [Google Scholar]
- Simberg, D.; Zhang, W.M.; Merkulov, S.; McCrae, K.; Park, J.H.; Sailor, M.J.; Ruoslahti, E. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. J. Control Release 2009, 140, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Marcondes, S.; Antunes, E. The plasma and tissue kininogen-kallikrein-kinin system: Role in the cardiovascular system. Curr. Med. Chem.-Cardiovasc. Hematol. Agents 2005, 3, 33–44. [Google Scholar] [CrossRef]
- Krieter, D.H.; Grude, M.; Lemke, H.-D.; Fink, E.; Bönner, G.; Schölkens, B.A.; Schulz, E.; Müller, G.A. Anaphylactoid reactions during hemodialysis in sheep are ACE inhibitor dose-dependent and mediated by bradykinin. Kidney Int. 1998, 53, 1026–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, R.; Schaefer, L.; Hörl, W. Anaphylactoid reactions during hemodialysis. Clin. Nephrol. 1994, 42, S44–S47. [Google Scholar]
- Opsahl, J.A.; Abraham, P.A.; Keane, W.F. Angiotensin-converting enzyme inhibitors in chronic renal failure. Drugs 1990, 39, 23–32. [Google Scholar] [CrossRef]
- Tom, B.; Dendorfer, A.; Danser, A.J. Bradykinin, angiotensin-(1–7), and ACE inhibitors: How do they interact? Int. J. Biochem. Cell Biol. 2003, 35, 792–801. [Google Scholar] [CrossRef]
- Bach, R.; Nemerson, Y.; Konigsberg, W. Purification and characterization of bovine tissue factor. J. Biol. Chem. 1981, 256, 8324–8331. [Google Scholar] [CrossRef]
- Arnout, J.; Hoylaerts, M.; Lijnen, H. Haemostasis. In The Vascular Endothelium II; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–41. [Google Scholar]
- Van Der Poll, T. Tissue factor as an initiator of coagulation and inflammation in the lung. Crit. Care 2008, 12, S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furie, B.; Furie, B.C. Mechanisms of thrombus formation. N. Engl. J. Med. 2008, 359, 938–949. [Google Scholar] [CrossRef]
- Osterud, B.; Rapaport, S.I. Activation of factor IX by the reaction product of tissue factor and factor VII: Additional pathway for initiating blood coagulation. Proc. Natl. Acad. Sci. USA 1977, 74, 5260–5264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorbet, M.B.; Sefton, M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, 5681–5703. [Google Scholar] [CrossRef]
- Gailani, D.; Broze, G.J. Factor XI activation in a revised model of blood coagulation. Science 1991, 253, 909–912. [Google Scholar] [CrossRef]
- Coughlin, S.R. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 2005, 3, 1800–1814. [Google Scholar] [CrossRef] [PubMed]
- Hepner, M.; Karlaftis, V. Antithrombin. In Haemostasis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 355–364. [Google Scholar]
- Norris, L.A. Blood coagulation. Best Pract. Res. Clin. Obstet. Gynaecol. 2003, 17, 369–383. [Google Scholar] [CrossRef]
- Onishi, A.; St Ange, K.; Dordick, J.S.; Linhardt, R.J. Heparin and anticoagulation. Front. Biosci. 2016, 21, 1372–1392. [Google Scholar]
- McGee, M.P.; Foster, S.; Wang, X. Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation. J. Exp. Med. 1994, 179, 1847–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Thachil, J.; Asakura, H.; Levy, J.H.; Iba, T. Thrombomodulin in disseminated intravascular coagulation and other critical conditions—a multi-faceted anticoagulant protein with therapeutic potential. Crit. Care 2019, 23, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmon, C. Regulatory Mechanisms in Hemostasis: Natural Anticoagulants. In Hematology, Basic Principles and Practice; Hoffman, R., Benz, E.L., Jr., Shattil, S.J., Furie, B., Cohen, H.J., Silbersten, L.E., McGlave, P., Eds.; Churchill Livingstone: New York, NY, USA, 2000; pp. 1814–1824. [Google Scholar]
- Milling, T.J., Jr.; Ziebell, C.M. A review of oral anticoagulants, old and new, in major bleeding and the need for urgent surgery. Trends Cardiovasc. Med. 2020, 30, 86–90. [Google Scholar] [CrossRef]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Cesarman-Maus, G.; Hajjar, K.A. Molecular mechanisms of fibrinolysis. Br. J. Haematol. 2005, 129, 307–321. [Google Scholar] [CrossRef]
- Opatrný, K.; Zemanová, P.; Opatrná, S.; Vít, L. Fibrinolysis in chronic renal failure, dialysis and renal transplantation. Ann. Transplant. 2003, 7, 34–43. [Google Scholar]
- Lander, H.; Zammert, M.; FitzGerald, D. Anticoagulation management during cross-clamping and bypass. Best Pract. Res. Clin. Anaesthesiol. 2016, 30, 359–370. [Google Scholar] [CrossRef]
- Saad, J.; Asuka, E.; Schoenberger, L. Physiology, Platelet Activation; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Rao, G.H.; Chandy, T. Role of platelets in blood-biomaterial interactions. Bull. Mater. Sci. 1999, 22, 633–639. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, L.-C.; Vogler, E.; Siedlecki, C. Contact Activation by the Intrinsic Pathway of Blood Plasma Coagulation. In Hemocompatibility of Biomaterials for Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–28. [Google Scholar]
- Walsh, P. The effects of collagen and kaolin on the intrinsic coagulant activity of platelets. Evidence for an alternative pathway in intrinsic coagulation not requiring factor XII. Br. J. Haematol. 1972, 22, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Parise, L.V.; Smyth, S.S.; Coller, B.S. Platelet morphology, biochemistry and function. Williams Hematol. 2001, 7, 1597–1645. [Google Scholar]
- Kuharsky, A.L.; Fogelson, A.L. Surface-mediated control of blood coagulation: The role of binding site densities and platelet deposition. Biophys. J. 2001, 80, 1050–1074. [Google Scholar] [CrossRef] [Green Version]
- Brummel, K.E.; Paradis, S.G.; Butenas, S.; Mann, K.G. Thrombin functions during tissue factor–induced blood coagulation. Blood J. Am. Soc. Hematol. 2002, 100, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Goodman, S.L.; Cooper, S.L.; Albrecht, R.M. Integrin receptors and platelet adhesion to synthetic surfaces. J. Biomed. Mater. Res. 1993, 27, 683–695. [Google Scholar] [CrossRef]
- Chandy, T. Biocompatibility of Materials and its Relevance to Drug Delivery and Tissue Engineering. In Biointegration of Medical Implant Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 297–331. [Google Scholar]
- Tsai, W.B.; Grunkemeier, J.M.; McFarland, C.D.; Horbett, T.A. Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. J. Biomed. Mater. Res. 2002, 60, 348–359. [Google Scholar] [CrossRef]
- Plow, E.F.; Pierschbacher, M.D.; Ruoslahti, E.; Marguerie, G.; Ginsberg, M.H. Arginyl-glycyl-aspartic acid sequences and fibrinogen binding to platelets. Blood 1987, 70, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurden, A.T. Platelet membrane glycoproteins: A look back into the past and a view to the future. Thromb. Haemost. 2007, 98, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, J.H.; Lin, H.-B.; Cooper, S.L. Effect of protein adsorption on the blood-contacting response of sulphonated polyurethanes. Biomaterials 1993, 14, 834–844. [Google Scholar] [CrossRef]
- Tzoneva, R.; Heuchel, M.; Groth, T.; Altankov, G.; Albrecht, W.; Paul, D. Fibrinogen adsorption and platelet interactions on polymer membranes. J. Biomater. Sci. Polym. Ed. 2002, 13, 1033–1050. [Google Scholar] [CrossRef]
- Ekdahl, K.N.; Hong, J.; Hamad, O.A.; Larsson, R.; Nilsson, B. Evaluation of the Blood Compatibility of Materials, Cells, and Tissues: Basic Concepts, Test Models, and Practical Guidelines. In Complement Therapeutics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 257–270. [Google Scholar]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, J.S.; Ward, P.A. The Inflammatory Response. In Williams Hematology; McGraw Hill: New York, NY, USA, 2001; Volume 7. [Google Scholar]
- Murphy, K.; Weaver, C. Janeway Immunologie; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Nilsson, B.; Ekdahl, K.N.; Mollnes, T.E.; Lambris, J.D. The role of complement in biomaterial-induced inflammation. Mol. Immunol. 2007, 44, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Sperling, C.; Maitz, M.F.; Talkenberger, S.; Gouzy, M.-F.; Groth, T.; Werner, C. In vitro blood reactivity to hydroxylated and non-hydroxylated polymer surfaces. Biomaterials 2007, 28, 3617–3625. [Google Scholar] [CrossRef] [PubMed]
- Doorduijn, D.J.; Rooijakkers, S.H.; Heesterbeek, D.A. How the membrane attack complex damages the bacterial cell envelope and kills Gram-negative bacteria. Bioessays 2019, 41, 1900074. [Google Scholar] [CrossRef] [Green Version]
- Barcellini, W. New insights in the pathogenesis of autoimmune hemolytic anemia. Transfus. Med. Hemother. 2015, 42, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Falkenhagen, D.; Bosch, T.; Brown, G.; Schmidt, B.; Holtz, M.; Baurmeister, U.; Gurland, H.; Klinkmann, H. A clinical study on different cellulosic dialysis membranes. Nephrol. Dial. Transplant. 1987, 2, 537–545. [Google Scholar]
- Diamantoglou, M.; Platz, J.; Vienken, J. Cellulose carbamates and derivatives as hemocompatible membrane materials for hemodialysis. Artif. Organs 1999, 23, 15–22. [Google Scholar] [CrossRef]
- Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J.C. Immune responses to implants—A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709. [Google Scholar] [CrossRef]
- Ellingsen, J.E.; Lyngstadaas, S.P. Increasing Biocompatibility by Chemical Modification of Titanium Surfaces. In Bioimplant Interface; CRC: Boca Raton, FL, USA, 2003; pp. 323–340. [Google Scholar]
- Nygren, H.; Eriksson, C.; Lausmaa, J. Adhesion and activation of platelets and polymorphonuclear granulocyte cells at TiO2 surfaces. J. Lab. Clin. Med. 1997, 129, 35–46. [Google Scholar] [CrossRef]
- Nan, H.; Ping, Y.; Xuan, C.; Yongxang, L.; Xiaolan, Z.; Guangjun, C.; Zihong, Z.; Feng, Z.; Yuanru, C.; Xianghuai, L. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials 1998, 19, 771–776. [Google Scholar] [CrossRef]
- Dion, I.; Baquey, C.; Candelon, B.; Monties, J. Hemocompatibility of titanium nitride. Int. J. Artif. Organs 1992, 15, 617–621. [Google Scholar] [CrossRef]
- Wan, G.; Huang, N.; Yang, P.; Leng, Y.; Sun, H.; Chen, J.; Wang, J. Ti-O/TiN films synthesized by plasma immersion ion implantation and deposition on 316L: Study of deformation behavior and mechanical properties. Thin Solid Film. 2005, 484, 219–224. [Google Scholar] [CrossRef]
- Tsyganov, I.; Maitz, M.; Wieser, E.; Richter, E.; Reuther, H. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surf. Coat. Technol. 2005, 200, 1041–1044. [Google Scholar] [CrossRef]
- Dion, I.; Rouais, F.; Trut, L.; Baquey, C.; Monties, J.; Havlik, P. TiN coating: Surface characterization and haemocompatibility. Biomaterials 1993, 14, 169–176. [Google Scholar] [CrossRef]
- Monties, J.; Dion, I.; Havlik, P.; Rouais, F.; Trinkl, J.; Baquey, C. Cora rotary pump for implantable left ventricular assist device: Biomaterial aspects. Artif. Organs 1997, 21, 730–734. [Google Scholar] [CrossRef]
- Fedel, M.; Motta, A.; Maniglio, D.; Migliaresi, C. Surface properties and blood compatibility of commercially available diamond-like carbon coatings for cardiovascular devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 90, 338–349. [Google Scholar] [CrossRef]
- Krishnan, L.; Varghese, N.; Muraleedharan, C.; Bhuvaneshwar, G.; Derangere, F.; Sampeur, Y.; Suryanarayanan, R. Quantitation of platelet adhesion to Ti and DLC-coated Ti in vitro using 125I-labeled platelets. Biomol. Eng. 2002, 19, 251–253. [Google Scholar] [CrossRef]
- Dion, I.; Roques, X.; Baquey, H.; Baudet, E.; Basse Cathalinat, B.; More, N. Hemocompatibility of diamond-like carbon coating. Bio-Med. Mater. Eng. 1993, 3, 51–55. [Google Scholar] [CrossRef]
- Alanazi, A.; Nojiri, C.; Noguchi, T.; Kido, T.; Komatsu, Y.; Hirakuri, K.; Funakubo, A.; Sakai, K.; Fukui, Y. Improved blood compatibility of DLC coated polymeric material. Asaio J. 2000, 46, 440–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearnaley, G.; Arps, J.H. Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surf. Coat. Technol. 2005, 200, 2518–2524. [Google Scholar] [CrossRef]
- Jones, M.; McColl, I.; Grant, D.; Parker, K.; Parker, T. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J. Biomed. Mater. Res. 2000, 52, 413–421. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Fu, K.; Huang, N.; Leng, Y.; Leng, Y.; Yang, P.; Wang, J.; Wan, G.; Sun, H. Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition. Surf. Coat. Technol. 2002, 156, 289–294. [Google Scholar] [CrossRef]
- Maitz, M.; Gago, R.; Abendroth, B.; Camero, M.; Caretti, I.; Kreissig, U. Hemocompatibility of low-friction boron-carbon-nitrogen containing coatings. J. Biomed. Mater. Res. Part B 2006, 77, 179–187. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Lee, C.W.; Hong, M.-K.; Park, S.-W.; Tahk, S.-J.; Yang, J.-Y.; Saito, S.; Santoso, T.; Quan, L.; Ge, J. Randomized comparison of carbon ion–implanted stent versus bare metal stent in coronary artery disease: The Asian Pacific Multicenter Arthos Stent Study (PASS) trial. Am. Heart J. 2005, 149, 336–341. [Google Scholar] [CrossRef]
- Sick, P.B.; Brosteanu, O.; Ulrich, M.; Thiele, H.; Niebauer, J.; Busch, I.; Schuler, G. Prospective randomized comparison of early and late results of a carbonized stent versus a high-grade stainless steel stent of identical design: The Prevention of Recurrent Venous Thromboembolism (PREVENT) trial. Am. Heart J. 2005, 149, 681–688. [Google Scholar] [CrossRef]
- Chen, H.; Brook, M.A.; Sheardown, H. Silicone elastomers for reduced protein adsorption. Biomaterials 2004, 25, 2273–2282. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.; Zhang, Y.; Li, D.; Wu, Z.; Zhang, T. Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Colloids Surf. B Biointerfaces 2008, 61, 237–243. [Google Scholar] [CrossRef]
- Ye, S.-H.; Jang, Y.-S.; Yun, Y.-H.; Shankarraman, V.; Woolley, J.R.; Hong, Y.; Gamble, L.J.; Ishihara, K.; Wagner, W.R. Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance. Langmuir 2013, 29, 8320–8327. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, K.; Aragaki, R.; Ueda, T.; Watenabe, A.; Nakabayashi, N. Reduced thrombogenicity of polymers having phospholipid polar groups. J. Biomed. Mater. Res. 1990, 24, 1069–1077. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920–932. [Google Scholar] [CrossRef]
- Lowe, S.; O’Brien-Simpson, N.M.; Connal, L.A. Antibiofouling polymer interfaces: Poly (ethylene glycol) and other promising candidates. Polym. Chem. 2015, 6, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Doberenz, F.; Zeng, K.; Willems, C.; Zhang, K.; Groth, T. Thermoresponsive polymers and their biomedical application in tissue engineering—A review. J. Mater. Chem. B 2020, 8, 607–628. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cao, F.; He, C.; Ohno, K.; Ngai, T. Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. Langmuir 2018, 34, 8798–8806. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, L.D.; Sheardown, H.; Brash, J.L. Protein-resistant poly (ethylene oxide)-grafted surfaces: Chain density-dependent multiple mechanisms of action. Langmuir 2008, 24, 1924–1929. [Google Scholar] [CrossRef]
- Faulón Marruecos, D.; Kastantin, M.; Schwartz, D.K.; Kaar, J.L. Dense poly (ethylene glycol) brushes reduce adsorption and stabilize the unfolded conformation of fibronectin. Biomacromolecules 2016, 17, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Gombotz, W.R.; Guanghui, W.; Horbett, T.A.; Hoffman, A.S. Protein adsorption to poly (ethylene oxide) surfaces. J. Biomed. Mater. Res. 1991, 25, 1547–1562. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-L.; Cordero, R.; Tran, H.; Ober, C.K. 50th anniversary perspective: Polymer brushes: Novel surfaces for future materials. Macromolecules 2017, 50, 4089–4113. [Google Scholar] [CrossRef]
- Labarrere, C.A.; Dabiri, A.E.; Kassab, G.S. Thrombogenic and inflammatory reactions to biomaterials in medical devices. Front. Bioeng. Biotechnol. 2020, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Sofia, S.J.; Premnath, V.; Merrill, E.W. Poly (ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules 1998, 31, 5059–5070. [Google Scholar] [CrossRef]
- Ashcraft, M.; Douglass, M.; Chen, Y.; Handa, H. Combination strategies for antithrombotic biomaterials: An emerging trend towards hemocompatibility. Biomater. Sci. 2021, 9, 2413–2423. [Google Scholar] [CrossRef]
- Riedel, T.; Riedelova-Reicheltova, Z.; Májek, P.; Rodriguez-Emmenegger, C.; Houska, M.; Dyr, J.E.; Brynda, E. Complete identification of proteins responsible for human blood plasma fouling on poly (ethylene glycol)-based surfaces. Langmuir 2013, 29, 3388–3397. [Google Scholar] [CrossRef]
- Jordan, S.W.; Chaikof, E.L. Novel thromboresistant materials. J. Vasc. Surg. 2007, 45, A104–A115. [Google Scholar] [CrossRef] [Green Version]
- Thom, V.; Altankov, G.; Groth, T.; Jankova, K.; Jonsson, G.; Ulbricht, M. Optimizing cell− surface interactions by photografting of poly (ethylene glycol). Langmuir 2000, 16, 2756–2765. [Google Scholar] [CrossRef]
- Andersen, A.J.; Windschiegl, B.; Ilbasmis-Tamer, S.; Degim, I.T.; Hunter, A.C.; Andresen, T.L.; Moghimi, S.M. Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 469–473. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hower, J.; Chen, S.; Bernards, M.T.; Chang, Y.; Jiang, S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 2008, 24, 10358–10364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T.A.; Ratner, B.D.; Jiang, S. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29, 4285–4291. [Google Scholar] [CrossRef]
- Smith, R.S.; Zhang, Z.; Bouchard, M.; Li, J.; Lapp, H.S.; Brotske, G.R.; Lucchino, D.L.; Weaver, D.; Roth, L.A.; Coury, A. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci. Transl. Med. 2012, 4, 153ra132. [Google Scholar] [CrossRef]
- Kihara, S.I.; Yamazaki, K.; Litwak, K.N.; Litwak, P.; Kameneva, M.V.; Ushiyama, H.; Tokuno, T.; Borzelleca, D.C.; Umezu, M.; Tomioka, J. In vivo evaluation of a MPC polymer coated continuous flow left ventricular assist system. Artif. Organs 2003, 27, 188–192. [Google Scholar] [CrossRef]
- Badv, M.; Bayat, F.; Weitz, J.I.; Didar, T.F. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020, 258, 120291. [Google Scholar] [CrossRef]
- Amiji, M.; Park, K. Surface modification of polymeric biomaterials with poly (ethylene oxide), albumin, and heparin for reduced thrombogenicity. J. Biomater. Sci. Polym. Ed. 1993, 4, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Munro, M.; Quattrone, A.; Ellsworth, S.; Kulkarni, P.; Eberhart, R. Alkyl substituted polymers with enhanced albumin affinity. ASAIO J. 1981, 27, 499–503. [Google Scholar]
- Keogh, J.R.; Velander, F.F.; Eaton, J.W. Albumin-binding surfaces for implantable devices. J. Biomed. Mater. Res. 1992, 26, 441–456. [Google Scholar] [CrossRef]
- Fischer, M.; Baptista, C.P.; Gonçalves, I.C.; Ratner, B.D.; Sperling, C.; Werner, C.; Martins, C.L.; Barbosa, M.A. The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl methacrylate). Biomaterials 2012, 33, 7677–7685. [Google Scholar] [CrossRef]
- Dasse, K.A.; Chipman, S.D.; Sherman, C.N.; Levine, A.H.; Frazier, O.H. Clinical experience with textured blood contacting surfaces in ventricular assist devices. ASAIO J. 1987, 33, 418–425. [Google Scholar]
- Liotta, D.; Hall, C.W.; Akers, W.; Villanueva, A.; O’Neal, R.M.; DeBakey, M.E. A pseudoendocardium for implantable blood pumps. ASAIO J. 1966, 12, 129–134. [Google Scholar]
- Zapanta, C.M.; Griffith, J.W.; Hess, G.D.; Doxtater, B.J.; Khalapyan, T.; Pae, W.E.; Rosenberg, G. Microtextured materials for circulatory support devices: Preliminary studies. ASAIO J. 2006, 52, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Jarvik, R. Textured Conforming Shell for Stabilization of the Interface of Precision Heart Assist Device Components to Tissues. Google Patents Patent No. US20070299297A1, 27 December 2007. [Google Scholar]
- Jing, F.; Wang, L.; Fu, R.; Leng, Y.; Chen, J.; Huang, N.; Chu, P.K. Behavior of endothelial cells on micro-patterned titanium oxide fabricated by plasma immersion ion implantation and deposition and plasma etching. Surf. Coat. Technol. 2007, 201, 6874–6877. [Google Scholar] [CrossRef]
- Rose, E.A.; Levin, H.R.; Oz, M.C.; Frazier, O.H.; Macmanus, Q.; Burton, N.A.; Lefrak, E.A. Artificial circulatory support with textured interior surfaces. A counterintuitive approach to minimizing thromboembolism. Circulation 1994, 90, II87–II91. [Google Scholar]
- Fujisawa, N.; Poole-Warren, L.A.; Woodard, J.C.; Bertram, C.D.; Schindhelm, K. A novel textured surface for blood-contact. Biomaterials 1999, 20, 955–962. [Google Scholar] [CrossRef]
- Gott, V.L.; Whiffen, J.D.; Dutton, R.C. Heparin bonding on colloidal graphite surfaces. Science 1963, 142, 1297–1298. [Google Scholar] [CrossRef]
- Lavaud, S.; Canivet, E.; Wuillai, A.; Maheut, H.; Randoux, C.; Bonnet, J.-M.; Renaux, J.-L.; Chanard, J. Optimal anticoagulation strategy in haemodialysis with heparin-coated polyacrylonitrile membrane. Nephrol. Dial. Transplant. 2003, 18, 2097–2104. [Google Scholar] [CrossRef] [Green Version]
- Haude, M.; Konorza, F.; Kalnins, U.; Andrejs, E.; Kari, S.; Helmut, D. Heparin-Coated Stents in Small Coronary Arteries (COAST) Trial Investigators. Heparin-coated stent placement for the treatment of stenoses in small coronary arteries of symptomatic patients. Circulation 2003, 107, 1265–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köwitsch, A.; Zhou, G.; Groth, T. Medical application of glycosaminoglycans: A review. J. Tissue Eng. Regen. Med. 2018, 12, e23–e41. [Google Scholar] [CrossRef] [PubMed]
- De Vroege, R.; Van Oeveren, W.; Van Klarenbosch, J.; Stooker, W.; Huybregts, M.; Hack, C.; Van Barneveld, L.; Eijsman, L.; Wildevuur, C. The impact of heparin-coated cardiopulmonary bypass circuits on pulmonary function and the release of inflammatory mediators. Anesth. Analg. 2004, 98, 1586–1594. [Google Scholar] [CrossRef]
- Robinson, D.E.; Marson, A.; Short, R.D.; Buttle, D.J.; Day, A.J.; Parry, K.L.; Wiles, M.; Highfield, P.; Mistry, A.; Whittle, J.D. Surface gradient of functional heparin. Adv. Mater. 2008, 20, 1166–1169. [Google Scholar] [CrossRef]
- Linhardt, R.J.; Murugesan, S.; Xie, J. Immobilization of heparin: Approaches and applications. Curr. Top. Med. Chem. 2008, 8, 80–100. [Google Scholar] [CrossRef] [PubMed]
- Gore, S.; Andersson, J.; Biran, R.; Underwood, C.; Riesenfeld, J. Heparin surfaces: Impact of immobilization chemistry on hemocompatibility and protein adsorption. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1817–1824. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, L.; Li, D.; Tang, Z.; Wang, Y.; Chen, G.; Chen, H.; Brash, J.L. Blood compatible materials: State of the art. J. Mater. Chem. B 2014, 2, 5718–5738. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Berry, L.; O’Brodovich, H.; Klement, P.; Mitchell, L.; Baranowski, B.; Monagle, P.; Andrew, M. Covalent Antithrombin-Heparin complexes with high anticoagulant activity intravenous, subcutaneous, and Intratracheal administration. J. Biol. Chem. 1997, 272, 22111–22117. [Google Scholar] [CrossRef] [Green Version]
- Greinacher, A.; Warkentin, T.E. The direct thrombin inhibitor hirudin. Thromb. Haemost. 2008, 99, 819–829. [Google Scholar]
- Phaneuf, M.D.; Berceli, S.A.; Bide, M.J.; Quist, W.G.; LoGerfo, F.W. Covalent linkage of recombinant hirudin to polyethylene terephthalate) (Dacron): Creation of a novel antithrombin surface. Biomaterials 1997, 18, 755–765. [Google Scholar] [CrossRef]
- Wyers, M.C.; Phaneuf, M.D.; Rzucidlo, E.M.; Contreras, M.A.; LoGerfo, F.W.; Quist, W.C. In vivo assessment of a novel Dacron surface with covalently bound recombinant hirudin. Cardiovasc. Pathol. 1999, 8, 153–159. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Qin, Y.; He, J.; Xiong, Z.; Deng, G.; Li, Q. A novel natural hirudin facilitated anti-clotting polylactide membrane via hydrogen bonding interaction. J. Membr. Sci. 2017, 523, 505–514. [Google Scholar] [CrossRef]
- Seifert, B.; Romaniuk, P.; Groth, T. Covalent immobilization of hirudin improves the haemocompatibility of polylactide—polyglycolide in vitro. Biomaterials 1997, 18, 1495–1502. [Google Scholar] [CrossRef]
- Alibeik, S.; Zhu, S.; Brash, J.L. Surface modification with PEG and hirudin for protein resistance and thrombin neutralization in blood contact. Colloids Surf. B Biointerfaces 2010, 81, 389–396. [Google Scholar] [CrossRef]
- Lu, L.; Li, Q.L.; Maitz, M.F.; Chen, J.L.; Huang, N. Immobilization of the direct thrombin inhibitor-bivalirudin on 316L stainless steel via polydopamine and the resulting effects on hemocompatibility in vitro. J. Biomed. Mater. Res. Part A 2012, 100, 2421–2430. [Google Scholar] [CrossRef]
- Akashi, M.; Maruyama, I.; Fukudome, N.; Yashima, E. Immobilization of human thrombomodulin on glass beads and its anticoagulant activity. Bioconjugate Chem. 1992, 3, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Sperling, C.; Salchert, K.; Streller, U.; Werner, C. Covalently immobilized thrombomodulin inhibits coagulation and complement activation of artificial surfaces in vitro. Biomaterials 2004, 25, 5101–5113. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-S.; Yang, S.-L.; Yeh, H.-Y.; Lin, J.-C.; Wu, H.-L.; Shi, G.-Y. Studies of a novel human thrombomodulin immobilized substrate: Surface characterization and anticoagulation activity evaluation. J. Biomater. Sci. Polym. Ed. 2001, 12, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Kador, K.; Mamedov, T.; Schneider, M.; Subramanian, A. Sequential co-immobilization of thrombomodulin and endothelial protein C receptor on polyurethane: Activation of protein C. Acta Biomater. 2011, 7, 2508–2517. [Google Scholar] [CrossRef]
- Lukovic, D.; Nyolczas, N.; Hemetsberger, R.; Pavo, I.J.; Pósa, A.; Behnisch, B.; Horak, G.; Zlabinger, K.; Gyöngyösi, M. Human recombinant activated protein C-coated stent for the prevention of restenosis in porcine coronary arteries. J. Mater. Sci. Mater. Med. 2015, 26, 241. [Google Scholar] [CrossRef] [Green Version]
- Chandiwal, A.; Zaman, F.S.; Mast, A.E.; Hall, C.L. Factor Xa inhibition by immobilized recombinant tissue factor pathway inhibitor. J. Biomater. Sci. Polym. Ed. 2006, 17, 1025–1037. [Google Scholar] [CrossRef]
- Yeh, H.-Y.; Lin, J.-C. Bioactivity and platelet adhesion study of a human thrombomodulin-immobilized nitinol surface. J. Biomater. Sci. Polym. Ed. 2009, 20, 807–819. [Google Scholar] [CrossRef]
- Maitz, M.F.; Martins, M.C.L.; Grabow, N.; Matschegewski, C.; Huang, N.; Chaikof, E.L.; Barbosa, M.A.; Werner, C.; Sperling, C. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater. 2019, 94, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Alibeik, S.; Zhu, S.; Yau, J.W.; Weitz, J.I.; Brash, J.L. Modification of polyurethane with polyethylene glycol–corn trypsin inhibitor for inhibition of factor Xlla in blood contact. J. Biomater. Sci. Polym. Ed. 2012, 23, 1981–1993. [Google Scholar] [CrossRef]
- Yau, J.W.; Stafford, A.R.; Liao, P.; Fredenburgh, J.C.; Roberts, R.; Brash, J.L.; Weitz, J.I. Corn trypsin inhibitor coating attenuates the prothrombotic properties of catheters in vitro and in vivo. Acta Biomater. 2012, 8, 4092–4100. [Google Scholar] [CrossRef]
- Lin, J.; Okano, T.; Dost, L.; Feijen, J.; Kim, S. Prevention of platelet contact activation by prostaglandin e1released from polyurethane surfaces. ASAIO J. 1985, 31, 468–473. [Google Scholar]
- Chandy, T.; Sharma, C.P. Prostaglandin E1-immobilized poly(vinyl alcohol)-blended chitosan membranes: Blood compatibility and permeability properties. J. Appl. Polym. Sci. 1992, 44, 2145–2156. [Google Scholar] [CrossRef]
- Chandy, T.; Sharma, C.P. The antithrombotic effect of prostaglandin E1 immobilized on albuminated polymer matrix. J. Biomed. Mater. Res. 1984, 18, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Aldenhoff, Y.B.; van der Veen, F.H.; ter Woorst, J.; Habets, J.; Poole–Warren, L.A.; Koole, L.H. Performance of a polyurethane vascular prosthesis carrying a dipyridamole (Persantin®) coating on its lumenal surface. J. Biomed. Mater. 2001, 54, 224–233. [Google Scholar] [CrossRef]
- Aldenhoff, Y.; Koole, L.H. Platelet adhesion studies on dipyridamole coated polyurethane surfaces. Eur. Cell Mater. 2003, 5, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Aldenhoff, Y.B.; Blezer, R.; Lindhout, T.; Koole, L.H. Photo-immobilization of dipyridamole (Persantin®) at the surface of polyurethane biomaterials: Reduction ofin vitro thrombogenicity. Biomaterials 1997, 18, 167–172. [Google Scholar] [CrossRef]
- Nilsson, P.H.; Engberg, A.E.; Bäck, J.; Faxälv, L.; Lindahl, T.L.; Nilsson, B.; Ekdahl, K.N. The creation of an antithrombotic surface by apyrase immobilization. Biomaterials 2010, 31, 4484–4491. [Google Scholar] [CrossRef] [Green Version]
- Annich, G.M.; Meinhardt, J.P.; Mowery, K.A.; Ashton, B.A.; Merz, S.I.; Hirschl, R.B.; Meyerhoff, M.E.; Bartlett, R.H. Reduced platelet activation and thrombosis in extracorporeal circuits coated with nitric oxide release polymers. Crit. Care Med. 2000, 28, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Gappa-Fahlenkamp, H.; Lewis, R.S. Improved hemocompatibility of poly(ethylene terephthalate) modified with various thiol-containing groups. Biomaterials 2005, 26, 3479–3485. [Google Scholar] [CrossRef]
- Duan, X.; Lewis, R.S. Improved haemocompatibility of cysteine-modified polymers via endogenous nitric oxide. Biomaterials 2002, 23, 1197–1203. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Y.; Xiong, K.; Li, X.; Qi, P.; Tu, Q.; Jing, F.; Weng, Y.; Wang, J.; Huang, N. Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials 2015, 63, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jin, D.; Dou, J.; Wang, L.; Wang, Y.; Jin, X.; Han, X.; Kang, I.-K.; Yuan, J.; Shen, J. Nitric oxide-releasing poly (ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts. Int. J. Biol. Macromol. 2021, 189, 516–527. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Brash, J.L. Mimicking the fibrinolytic system on material surfaces. Colloids Surf. B Biointerfaces 2011, 86, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, K.; Brash, J. Adsorption of plasminogen from plasma to lysine-derivatized polyurethane surfaces. Biomaterials 1992, 13, 1103–1108. [Google Scholar] [CrossRef]
- Woodhouse, K.; Weitz, J.; Brash, J. Interactions of plasminogen and fibrinogen with model silica glass surfaces: Adsorption from plasma and enzymatic activity studies. J. Biomed. Mater. Res. 1994, 28, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, X.; Luan, Y.; Liu, W.; Wu, Z.; Li, D.; Chen, H. Regulation of fibrinolytic protein adsorption on polyurethane surfaces by modification with lysine-containing copolymers. Polym. Chem. 2013, 4, 5597–5602. [Google Scholar] [CrossRef]
- Park, Y.-J.; Liang, J.; Yang, Z.; Yang, V.C. Controlled release of clot-dissolving tissue-type plasminogen activator from a poly (L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Control. Release 2001, 75, 37–44. [Google Scholar] [CrossRef]
- Liu, T.; Liu, S.; Zhang, K.; Chen, J.; Huang, N. Endothelialization of implanted cardiovascular biomaterial surfaces: The development from in vitro to in vivo. J. Biomed. Mater. Res. Part A 2014, 102, 3754–3772. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.; Eicke, D.; Yuzefovych, Y.; Avsar, M.; Hanke, J.S.; Pflaum, M.; Schmitto, J.-D.; Blasczyk, R.; Haverich, A.; Wiegmann, B. Low immunogenic endothelial cells endothelialize the Left Ventricular Assist Device. Sci. Rep. 2019, 9, 11318. [Google Scholar] [CrossRef] [Green Version]
- Avci-Adali, M.; Ziemer, G.; Wendel, H.P. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization—a review of current strategies. Biotechnol. Adv. 2010, 28, 119–129. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kihara, S.; Akimoto, T.; Tagusari, O.; Kawai, A.; Umezu, M.; Tomioka, J.; Kormos, R.L.; Griffith, B.P.; Kurosawa, H. EVAHEART™: An implantable centrifugal blood pump for long-term circulatory support. Jpn. J. Thorac. Cardiovasc. Surg. 2002, 50, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Snyder, T.A.; Tsukui, H.; Kihara, S.; Akimoto, T.; Litwak, K.N.; Kameneva, M.V.; Yamazaki, K.; Wagner, W.R. Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: Coating comparison and platelet activation. J. Biomed. Mater. Res. Part A 2007, 81, 85–92. [Google Scholar] [CrossRef]
- Hauert, R. A review of modified DLC coatings for biological applications. Diam. Relat. Mater. 2003, 12, 583–589. [Google Scholar] [CrossRef]
- Ma, W.; Ruys, A.; Zreiqat, H. Diamond-like carbon (DLC) as a biocompatible coating in orthopaedic and cardiac medicine. Cell. Response Biomater. 2009, 391–426. [Google Scholar] [CrossRef]
- Ishihara, K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir 2018, 35, 1778–1787. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, N.; Yokoi, H.; Iwabuchi, M.; Nosaka, H.; Kadota, K.; Mitsudo, K.; Nobuyoshi, M. Initial and follow-up results of the BiodivYsio phosphorylcholine coated stent for treatment of coronary artery disease. Circ. J. 2005, 69, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abizaid, A.; Popma, J.J.; Tanajura, L.F.; Hattori, K.; Solberg, B.; Larracas, C.; Feres, F.; Costa, J.D.R., Jr.; Schwartz, L.B. Clinical and angiographic results of percutaneous coronary revascularization using a trilayer stainless steel-tantalum-stainless steel phosphorylcholine-coated stent: The TriMaxx trial. Catheter. Cardiovasc. Interv. 2007, 70, 914–919. [Google Scholar] [CrossRef]
- Newland, R.F.; Baker, R.A.; Sanderson, A.J.; Tuble, S.C.; Tully, P.J. Oxygenator safety evaluation: A focus on connection grip strength and arterial temperature measurement accuracy. J. Extra-Corpor. Technol. 2012, 44, 53. [Google Scholar] [PubMed]
- John, R.; Kamdar, F.; Liao, K.; Colvin–Adams, M.; Miller, L.; Joyce, L.; Boyle, A. Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J. Thorac. Cardiovasc. Surg. 2008, 136, 1318–1323. [Google Scholar] [CrossRef] [Green Version]
- Griffith, K.; Jenkins, E.; Pagani, F. First American experience with the Terumo DuraHeart™ left ventricular assist system. Perfusion 2009, 24, 83–89. [Google Scholar] [CrossRef]
- Timms, D. A review of clinical ventricular assist devices. Med. Eng. Phys. 2011, 33, 1041–1047. [Google Scholar] [CrossRef]
- Aoki, J.; Serruys, P.W.; van Beusekom, H.; Ong, A.T.; McFadden, E.P.; Sianos, G.; van der Giessen, W.J.; Regar, E.; de Feyter, P.J.; Davis, H.R.; et al. Endothelial Progenitor Cell Capture by Stents Coated With Antibody Against CD34: The Healing-Fim (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J. Am. Coll. Cardiol. 2005, 45, 1574–1579. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.-H.; Seo, W.-W.; Choe, W.; Kang, C.-K.; Park, J.; Cho, H.-J.; Kyeong, S.; Hur, J.; Yang, H.-M.; Lee, Y.-S.; et al. Stent Coated With Antibody Against Vascular Endothelial-Cadherin Captures Endothelial Progenitor Cells, Accelerates Re-Endothelialization, and Reduces Neointimal Formation. Arter. Thromb. Vasc. Biol. 2011, 31, 2798–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, E.; Hong, M.-K. Drug-eluting stents to prevent stent thrombosis and restenosis. Expert Rev. Cardiovasc. Ther. 2016, 14, 87–104. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuchinka, J.; Willems, C.; Telyshev, D.V.; Groth, T. Control of Blood Coagulation by Hemocompatible Material Surfaces—A Review. Bioengineering 2021, 8, 215. https://doi.org/10.3390/bioengineering8120215
Kuchinka J, Willems C, Telyshev DV, Groth T. Control of Blood Coagulation by Hemocompatible Material Surfaces—A Review. Bioengineering. 2021; 8(12):215. https://doi.org/10.3390/bioengineering8120215
Chicago/Turabian StyleKuchinka, Janna, Christian Willems, Dmitry V. Telyshev, and Thomas Groth. 2021. "Control of Blood Coagulation by Hemocompatible Material Surfaces—A Review" Bioengineering 8, no. 12: 215. https://doi.org/10.3390/bioengineering8120215
APA StyleKuchinka, J., Willems, C., Telyshev, D. V., & Groth, T. (2021). Control of Blood Coagulation by Hemocompatible Material Surfaces—A Review. Bioengineering, 8(12), 215. https://doi.org/10.3390/bioengineering8120215