COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies
Abstract
:1. Introduction
2. Nucleic Acid Amplification Tests (NAATs)
2.1. PCR-Based Tests
2.1.1. RT-PCR
Company | Test Name | Target Gene(s) | Sensitivity | LoD | Specificity | Assay Time |
---|---|---|---|---|---|---|
Vela Diagnostics (Singapore) [35] | ViroKey™ SARS-CoV-2 RT-PCR Test | ORF1a, RdRp | 97.2% | (ORF1a: 250 genome equivalents (GE)/mL, RdRp: 560 GE/mL | 95.1% | 3.5 h |
Verily Life Sciences (San Francisco, CA, USA) [36] | Verily COVID-19 RT-PCR Test | ORF1ab, N gene, S | 100% | 60 GE/mL | 100% | (No info) |
MiraDx (Los Angeles, CA, USA) [37] | MiraDx SARS-CoV-2 RT-PCR assay | N1, N2 | 96.90% | 4000 copies/mL | 100% | 2–4 h |
BayCare Laboratories, LLC (Tampa, FL, USA) [38] | BayCare SARS-CoV-2 RT PCR Assay | ORF1, E gene | 88% | 0.009 TCID50/mL | 100% | (No info) |
DxTerity Diagnostics, Inc. (Rancho Dominguez, CA, USA) [39] | DxTerity SARS-CoV-2 RT PCR CE Test | N gene, E gene, ORF1ab | 97.3% | 50 copies/mL | 90.0% | 2–4 h |
Texas Department of State Health Services, Laboratory Services Section (Austin, TX, USA) [40] | Texas Department of State Health Services (DSHS) SARS-CoV-2 Assay | N gene and ORF1ab | 100.0% | 20 copies/mL | 100% | (No info) |
Yale School of Public Health, Department of Epidemiology of Microbial Diseases (New Haven, CT, USA) [41] | SalivaDirect | N gene (N1 region) | 94.1% | 6000 copies/mL | 90.9% | ≈2 h |
Solaris Diagnostics (Nicholasville, KY) [42] | Solaris Multiplex SARS-CoV-2 Assay | N gene (N1 and N2 regions) | 100% | 10,000 copies/mL | 100% | 2–4 h |
Alpha Genomix Laboratories (Peachtree Corners, GA, USA) [43] | Alpha Genomix TaqPath SARS-CoV-2 Combo Assay | ORF1ab, N, S | 96.70% | 4000 copies/mL | 100% | 2–4 h |
George Washington University Public Health Laboratory (Washington, DC, USA) [44] | GWU SARS-CoV-2 RT-PCR Test | N gene (N1 and N2 regions) | 95.00% | 12,500 copies/mL | 100% | (No info) |
Wren Laboratories (Branford, CT, USA) [45] | Wren Laboratories COVID-19 PCR Test | N1 of SARS-CoV-2, N3 of Sarbecovirus | 100% | 10,000 copies/mL | 95.0% | (No info) |
Ethos Laboratories (Newport, KY, USA) [46] | Ethos Laboratories SARS-CoV-2 MALDI-TOF Assay | Orf1ab, N1, N2, N3, ORF1 | 98.10% | 1 TCID50/mL | 96.3% | 2–4 h |
Cleveland Clinic Robert J. Tomsich Pathology and Laboratory Medicine Institute (Cleveland, OH, USA) [47] | Cleveland Clinic SARS-CoV-2 Assay | E, RDRp | 97.0% | 10,000 copies/mL | 100% | (No info) |
ISPM Labs, LLC dba Capstone Healthcare (Atlanta, GA, USA) [48] | Genus SARS-CoV-2 Assay | N (2 targets) | 100.0% | 40,000 copies/mL | 100% | (No info) |
Abbott Molecular Inc. (Des Plaines, IL, USA) [49] | Alinity m SARS-CoV-2 assay | RdRp, N | 100% | 100 copies/mL | 100 | <115 min to 12 first results, 16 min thereafter |
altona Diagnostics (Hamburg, Germany) [50] | RealStar SARS-CoV-2 RT-PCR Kit U.S. | E, S | No info. | 1.00 E-01 PFU/ml | 100% | 4–6 h |
Beijing Wantai Biological Pharmacy Enterprise Co. Ltd (Beijing, China) [51] | Wantai SARS-CoV-2 RT-PCR Kit | ORF1ab, N | 100% | 50 copies/mL | 100% | 2–4 h |
bioMérieux SA (Marcy-Letolle, France) | SARS-COV-2 R-GENE® | N, E, RdRP | 100% | 380 copies/mL | 100% | <1 h |
EUROIMMUN AG (Lubeck, Germany) [52] | EURORealTime SARS-CoV-2 | ORF1ab, N | 100% | 1 copy/µl | 100% | |
Sansure Biotech Inc. (Changsha, China) [53] | Novel Coronavirus (2019-nCoV) Nucleic Acid Diagnostic Kit (PCR-Fluorescence Probing) | ORF1, N | 94% | 200 copies /mL | 99% | 1 h, 15 min |
SD Biosensor Inc. (Suwon-si, Korea) [54] | STANDARD M nCoV Real-Time Detection Kit | E, ORF1ab | No info. | 0.5 copies /µL for upper respiratory specimens and 0.25 cp/µL for lower respiratory specimens | 100% | 6 h |
Seegene Inc. (Seoul, Korea) [55] | Allplex™ 2019-nCoV Assay | E, N, RdRP | No info. | 4167 copies/mL | 100% | 1 h, 50 min |
Thermo Fisher Scientific (Waltham, MA, USA) [56] | TaqPath™ COVID-19 CE-IVD RT-PCR Kit | ORF1ab, S, N | 100% | 1250 copies/mL | 97% | 4 h |
2.1.2. ddPCR
2.1.3. nPCR
2.2. Isothermal Nucleic Acid Amplification-Based Tests
2.2.1. LAMP
2.2.2. RPA
Manufacture | Test | LoD | Sensitivity | Specificity | Target | Duration | Regulatory Status |
---|---|---|---|---|---|---|---|
Lucira Health, Inc. (Emeryville, CA, USA) [104] | Lucira COVID-19 All-In-One Test Kit | 900 copies/mL | A single nucleotide mismatch is probable in one of the primers (Positive agreement: 94%, Negative agreement: 98%) | No cross-reaction | N | 30 min | FDA EUA |
Detectachem Inc. (Sugar Land, TX, USA) [105] | MobileDetect Bio BCC19 (MD-Bio BCC19) Test Kit | 30% for 25 copies/mL and 100% for 75 copies/mL | Positive agreement: 97.7% Negative agreement: 100% | Cross-reaction with SARS-CoV | N, E | 30 min | FDA EUA |
SEASUN BIOMATERIALS, Inc. (Seoul, Korea) [106] | AQ-TOP COVID-19 Rapid Detection Kit PLUS | 1 copy/µL | (No info) | Some primers have homology with other microorganisms | ORF1ab, N | 20 min | FDA EUA |
UCSF Health Clinical Laboratories, UCSF Clinical Labs at China Basin (San Francisco, CA, USA) [107] | RT-LAMP | 20,000 copies/mL | 95% | 100.0% | N (N2 region) | 45 min | FDA EUA |
Abbott Diagnostics Scarborough, Inc. (Scarborough, ME, USA) [108] | ID NOW COVID-19 | 125 copies/mL | 71.7% | no cross-reactivity | RdRp | Positive results 15 min, Negative results 30 min | FDA EUA |
Pro-Lab Diagnostics (Round Rock, TX, USA) [109] | Pro-AmpRT SARS-CoV-2 Test | 125 genomic equivalents/swab | 96.60% | 100.0% | ORF1ab | 30 min | FDA EUA |
Color Genomics, Inc. (Burlingame, CA, USA) [110] | Color SARS Cov-2 Diagnostic Assay | 0.75 copies/μl | 100% | 100% | ORF1a, E, N, | 70 min | FDA EUA |
SEASUN BIOMATERIALS [106] | AQ-TOP™ COVID-19 Rapid Detection Kit | 7000 copie/ml | (No info) | (No info) | ORF1ab | Positive results 15 min, Negative results 30 min | FDA EUA |
Atila BioSystems Inc. (Mountain View, CA, USA) [111] | Atila iAMP® COVID Detection Kit | ~2000 copies of viral RNA per swab | 100% | 99% | ORF1ab, N | 75 to 90 min | FDA EUA |
CapitalBio Technology (Beijing, China) [112] | Respiratory Virus Nucleic Acid Detection Kit | 5 × 102 copies per reaction | (No info) | (No info) | (No info) | 13 for respiratory pathogens simultaneously | CE-IVD |
2.2.3. TMA
2.3. CRISPR/Cas-Based Tests
Manufacture | Test | Technique | Detection | Test Format | Target | Time to Result | Analytical Sensitivity (LoD) | Specificity | Regulatory Status |
---|---|---|---|---|---|---|---|---|---|
Sherlock Bioscience [131] | Sherlock™ CRISPR SARS-CoV-2 | RT-LAMP + CRISPR/Cas | Lateral-flow visual readout | Rapid PoC test | ORF1ab, N | 1 h | 6.75 copies/uL | No cross-reaction | FDA EUA |
Mammoth Biosciences [134] | SARS-CoV-2 DETECTR Reagent Kit | RT-LAMP + CRISPR/Cas12 | Lateral-flow visual readout | PoC High-throughput diagnostic | N and E | 30–40 min | 20–30 copies/µL | No cross-reaction | FDA EUA |
Caspr Biotech [140] | Lyo-CRISPR SARS-CoV-2 Kit | RT-LAMP + CRISPR-Cas12 | Fluorescence detection using reader | Semi-automated, High throughput (48 tests), using Lyophilized beads | Direct from Sample Kit: 2 regions in N and 1 region in orf1ab; Purified RNA kit: 1 region in N | ≈1 h | Direct from Sample Kit: 25 copies/μL; Purified RNA kit: 7.5 copies/μl | 100% | In review for FDA EUA |
2.4. DNA-Microarray Based Tests
3. Sequencing-Based Tests
Manufacture | Test | Test Format | Target | Time to Result | LoD | Sensitivity | Specificity | Regulatory Status |
---|---|---|---|---|---|---|---|---|
IDbyDNA (Salt Lake City, UT, USA) [173] | NGS-Based SARS-CoV-2 Detection test | NGS-based metagenomics | (No info) | (No info) | (No info) | (No info) | (No info) | Used in Indonesia |
BGI Genomics (Beijing, China) [174] | DNBSEQ-T7 2019-nCoV | Combination of RT-PCR and meta- genomics detection (combinatorial probe anchor synthesis sequencing) | (No info) | Results in a few hours | (No info) | (No info) | (No info) | RUO |
Helix OpCo, LLC (San Mateo, CA, USA) [175] | Helix COVID-19 NGS Test | NGS | S gene | 2–4 h | 125 genomic copy equivalents/mL | 100.0% | 100.0% | FDA EUA |
BillionToOne [176] | qSanger-COVID-19 Test | Sanger Sequencing Combining the Sanger sequencing and the machine learning algorithm | N protein | (No info) | 3200 copies/mL | (No info) | No cross-reaction is expected | FDA EUA |
YouSeq (Hampshire, UK) [177] | SARS-COV-2 Coronavirus NGS Library Prep Kit | Complete kit for amplicon-based NGS Library preparation, Amplicon-based protocol | 99.5% viral genome coverage | ≈9 h | (No info) | (No info) | (No info) | RUO |
Illumina Inc. [160] | Illumina COVIDSeq Test | NGS High-throughput Shotgun metagenomic sequencing | Detects 98 targets on SARS-CoV-2 | 1536 to 3072 results can be processed in 12 h | (No info) | 1000 copies/mL | (No info) | FDA EUA |
Oxford Nanopore [178] | LamPORE COVID-19 | NGS High-throughput-combines nanopore analyses with loop-mediated isothermal amplification | SARS-CoV-2 genes including E, N ORF1a | Under two hours | 7–10 copies/µl | 98% | 100% | CE-marked |
Oxford Nanopore [178,179] | LamPORE | NGS High-throughput nanopore sequencing | Entire viral genome (>99%) using the ARTIC network | Provide a consensus viral genome in 7 h | (No info) | (No info) | (No info) | RUO |
Thermo Fisher [180] | Ion AmpliSeq SARS-CoV-2 Research Pane | Targeted sequencing by overlapping amplicons | Entire viral genome | 14 h | 20 copies | (No info) | (No info) | RUO |
Paragon Genomics Inc. (Hayward, CA, USA) [181] | CleanPlex SARS-CoV-2 Research and Surveillance NGS Panel | NGS Highly multiplexed amplicon-based target enrichment | Entire viral genome except for 92 bases at the ends using 343 primer pairs | 5.5 h with Less than 1 h HoT | 3.9 copies/reaction for the E gene assay and 3.6 copies/reaction for the RdRp assay | E gene and RdRp gene assays (5.2 and 3.8 copies per reaction respectively) | (No info) | RUO |
Fulgent Genetics/MedScan Laboratory (Williston, ND, USA) [182] | COVID-19 | NGS | (No info) | 2–4 days | (No info) | (No info) | (No info) | FDA EUA |
Guardant Health (Redwood City, CA, USA) [183] | Guardant-19 | Reverse Transcriptase PCR (RT-PCR) and NGS | N1 region of the SARS-CoV-2 N gene and human RNase P gene | 2–4 h | 125 copies/mL | 95% | 98% | FDA EUA |
Twist Bioscience (San Francisco, CA, USA) [184] | NGS-based target capture for SARS-CoV-2 detection and screening | NGS-based target capture | Entire viral genome | (No info) | 10 copies | Coverage of >99.9% of the genome | (No info) | RUO |
Clear Labs, Inc. (San Carlos, CA, USA) [185] | Clear Dx SARS-CoV-2 Test | Automated (manual RNA extraction) and high-throughput (192), Multiplexed barcoded RT-PCR and targeted NGS | 21 target genes | 2–4 h | 2000 copies/mL | 100% | Cross-reaction with SARS-CoV-1 in one sequence | FDA EUA |
University of California, Los Angeles (UCLA) (Los Angeles, CA, USA) [186] | UCLA SwabSeq COVID-19 Diagnostic Platform | NGS High-throughput RT-PCR and Sequencing | S2 gene | 12 h | 250 genome copy equivalents/mL | 100% | Not expected | FDA EUA |
4. Emerging Detection and Sensing Strategies
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin. Exp. Pediatrics 2020, 63, 119. [Google Scholar] [CrossRef] [Green Version]
- WHO. Coronavirus disease (COVID-19) pandemic. Med. J. Malays. 2020, 72, 95. [Google Scholar]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25, 2000180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Lu, X.; Deng, Y.; Tang, Y.; Lu, J. COVID-19: Asymptomatic carrier transmission is an underestimated problem. Epidemiol. Infect. 2020, 148, e116. [Google Scholar] [CrossRef] [PubMed]
- Interim: Implications of the Emerging SARS-CoV-2 Variant VOC 202012/01. Available online: https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-emerging-variant.html (accessed on 9 March 2021).
- Kost, G.J. Geospatial hotspots need point-of-care strategies to stop highly infectious outbreaks: Ebola and coronavirus. Arch. Pathol. Lab. Med. 2020, 144, 1166–1190. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.U.; Iqbal, J. An Update on Molecular Diagnostics for COVID-19. Front. Cell. Infect. Microbiol. 2020, 10, 560616. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
- Santiago, I. Trends and innovations in biosensors for COVID-19 mass testing. Chembiochem Eur. J. Chem. Biol. 2020, 21, 2880. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020, 20, 411–412. [Google Scholar] [CrossRef]
- World Health Organization. Laboratory Testing for Coronavirus Disease (COVID-19) in Suspected Human Cases: Interim Guidance; World Health Organization: Geneva, The Switzerland, 3 March 2020. [Google Scholar]
- Skovgaard, N. Real-Time PCR in Microbiology. From Diagnosis to Characterization; Ian, M.M., Ed.; Caister Academic Press: Norfolk, UK, 2007. [Google Scholar]
- Pfaffl, M.W. Quantification strategies in real-time PCR. AZ Quant. PCR 2004, 1, 89–113. [Google Scholar]
- TaqPath COVID-19 Multiplex Diagnostic Solution. Available online: https://www.thermofisher.com/ca/en/home/clinical/clinical-genomics/pathogen-detection-solutions/covid-19-sars-cov-2/multiplex.html (accessed on 9 March 2021).
- In Vitro Diagnostics EUAs. Available online: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas#individual-molecular (accessed on 9 March 2021).
- Rao, A.; Wolk, D.M.; Goldstein, D.; Wolf, L.A. Development and Evaluation of Two SARS-CoV-2 RT-PCR Laboratory Developed Tests on the ARIES® Automated, Sample-to-Answer, Real-Time PCR System. Accessed March 2020, 12. Available online: https://www.luminexcorp.com/download/development-and-evaluation-of-two-sars-cov-2-rt-pcr-laboratory-developed-tests-on-the-aries-automated-sample-to-answer-real-time-pcr-system/ (accessed on 9 March 2021).
- Cobas® SARS-CoV-2, Qualitative Assay for Use on the Cobas® 6800/8800 Systems. Available online: https://www.who.int/diagnostics_laboratory/eul_050404600_cobas_sars_cov2_qualitative_assay_ifu.pdf?ua=1#:~:text=cobas%C2%AE%20SARS%2DCoV%2D2%20for%20use%20on%20the%20cobas,or%20symptoms%20of%20acute%20respiratory (accessed on 9 March 2021).
- Fung, B.; Gopez, A.; Servellita, V.; Arevalo, S.; Ho, C.; Deucher, A.; Thornborrow, E.; Chiu, C.; Miller, S. Direct comparison of SARS-CoV-2 analytical limits of detection across seven molecular assays. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef]
- SARS-CoV-2 Test Development Information, Xpert® Xpress SARS-CoV-2. Available online: https://www.cepheid.com/coronavirus (accessed on 9 March 2021).
- Xpert® Xpress SARS-CoV-2. Instructions for Use. Available online: https://www.fda.gov/media/136314/download (accessed on 9 March 2021).
- Moran, A.; Beavis, K.G.; Matushek, S.M.; Ciaglia, C.; Francois, N.; Tesic, V.; Love, N. The detection of SARS-CoV-2 using the cepheid xpert xpress SARS-CoV-2 and Roche cobas SARS-CoV-2 assays. J.Clin. Microbiol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Xpert® Xpress SARS-CoV-2/Flu/RSV. Available online: https://www.fda.gov/media/142438/download (accessed on 9 March 2021).
- QIAGEN Announces Worldwide Shipments of QIAstat-Dx Test Kits for SARS-CoV-2. Available online: https://corporate.qiagen.com/newsroom/press-releases/2020/20200226_coronavirus (accessed on 9 March 2021).
- Visseaux, B.; Le Hingrat, Q.; Collin, G.; Bouzid, D.; Lebourgeois, S.; Le Pluart, D.; Deconinck, L.; Lescure, F.-X.; Lucet, J.-C.; Bouadma, L. Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel, the first rapid multiplex PCR commercial assay for SARS-CoV-2 detection. J.Clin. Microbiol. 2020. [Google Scholar] [CrossRef]
- GenMark Receives FDA Emergency Use Authorization for Its ePlex® SARS-CoV-2 Test. Available online: http://ir.genmarkdx.com/news-releases/news-release-details/genmark-receives-fda-emergency-use-authorization-its-eplexr-sars (accessed on 9 March 2021).
- Zhen, W.; Smith, E.; Manji, R.; Schron, D.; Berry, G.J. Clinical evaluation of three sample-to-Answer platforms for the detection of SARS-CoV-2. J.Clin. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ePlex® SARS-CoV-2 Test Assay Manual. Available online: https://www.fda.gov/media/136282/download (accessed on 9 March 2021).
- SARS-COV-2. Available online: https://www.abacusdiagnostica.com/products/sars-cov-2/ (accessed on 9 March 2021).
- GENOMERA® CDX SYSTEM. Available online: https://www.abacusdiagnostica.com/products/genomera-cdx-system-ce-ivd/ (accessed on 9 March 2021).
- 3DMed 2019-nCoV TEST. Available online: http://www.3dmedcare.com/covid/ (accessed on 9 March 2021).
- COVID-19 Testing & Research Solutions. Available online: https://www.luminexcorp.com/covid19-testing-solutions/ (accessed on 9 March 2021).
- Luminex ARIES® SARS-CoV-2 Assay, Package Insert. Available online: https://www.fda.gov/media/136693/download (accessed on 9 March 2021).
- BD SARS-CoV-2 Reagents for BD MAX™ System. Available online: https://www.fda.gov/media/136816/download (accessed on 9 March 2021).
- False Positive Results with BD SARS-CoV-2 Reagents for the BD Max System—Letter to Clinical Laboratory Staff and Health Care Providers. Available online: https://www.fda.gov/medical-devices/letters-health-care-providers/false-positive-results-bd-sars-cov-2-reagents-bd-max-system-letter-clinical-laboratory-staff-and (accessed on 9 March 2021).
- ViroKey SARS-CoV-2 RT-PCR Test—FDA. Available online: https://www.fda.gov/media/140922/download (accessed on 9 March 2021).
- Verily COVID-19 RT-PCR Test—US Food and Drug Administration. Available online: https://www.fda.gov/media/141951/download (accessed on 9 March 2021).
- MiraDx SARS-CoV-2 RT-PCR assay—FDA. Available online: https://www.fda.gov/media/141760/download (accessed on 9 March 2021).
- BayCare SARS-CoV-2 RT PCR Assay—FDA. Available online: https://www.fda.gov/media/141769/download (accessed on 9 March 2021).
- DxTerity SARS-CoV-2 RT PCR CE Test—EUA Summary—FDA. Available online: https://www.fda.gov/media/141669/download (accessed on 9 March 2021).
- Emergency Use Authorization (EUA) Summary Texas Department of State Health Services (DSHS) SARS-CoV-2 Assay (Texas Department of State Health Services, Laboratory Services Section). Available online: https://www.fda.gov/media/141496/download (accessed on 9 March 2021).
- Accelerated Emergency Use Authorization (EUA) Summary SARS-CoV-2 RT-PCR Assay. Available online: https://www.fda.gov/media/141192/download (accessed on 9 March 2021).
- Solaris Multiplex SARS-CoV-2 Assay—FDA. Available online: https://www.fda.gov/media/141016/download (accessed on 9 March 2021).
- Alpha Genomix TaqPath SARS-CoV-2 Combo Assay—FDA. Available online: https://www.fda.gov/media/141017/download (accessed on 9 March 2021).
- GWU SARS-CoV-2 RT-PCR Test—FDA. Available online: https://www.fda.gov/media/140980/download (accessed on 9 March 2021).
- Wren Laboratories COVID-19 PCR Test—FDA. Available online: https://www.fda.gov/media/140776/download (accessed on 9 March 2021).
- Ethos Laboratories SARS-CoV-2 MALDI-TOF Assay—FDA. Available online: https://www.fda.gov/media/140778/download (accessed on 9 March 2021).
- Cleveland Clinic SARS-CoV-2 Assay—FDA. Available online: https://www.fda.gov/media/140785/download (accessed on 9 March 2021).
- Genus SARS-CoV-2 Assay—FDA. Available online: https://www.fda.gov/media/140815/download (accessed on 9 March 2021).
- SARS-CoV-2 AMP Kit—US Food and Drug Administration. Available online: https://www.fda.gov/media/137979/download (accessed on 9 March 2021).
- RealStar® SARS-CoV-2 RT-PCR Kit, U.S. Instructions for Use. Available online: https://www.fda.gov/media/137252/download (accessed on 9 March 2021).
- Wantai SARS-CoV-2 RT-PCR Kit Instructions for Use—FDA. Available online: https://www.fda.gov›media›download.PDF (accessed on 9 March 2021).
- BIOMÉRIEUX ARGENE® SARS-COV-2 R-GENE. Available online: https://www.fda.gov/media/137742/download (accessed on 9 March 2021).
- Novel Coronavirus (2019-nCoV) Nucleic Acid Diagnostic Kit (PCR-Fluorescence Probing). Available online: https://www.fda.gov/media/137651/download (accessed on 9 March 2021).
- STANDARD M nCoV Real-Time Detection kit. Available online: https://www.fda.gov/media/137302/download (accessed on 9 March 2021).
- Allplex™ 2019-nCoV Assay—FDA. Available online: https://www.fda.gov/media/137178/download (accessed on 9 March 2021).
- TaqPath™ COVID-19 Combo Kit and TaqPath™ COVID‑19 Combo Kit Advanced*. Available online: https://www.fda.gov/media/136112/download (accessed on 9 March 2021).
- Authorized Medical Devices for Uses Related to COVID-19: List of Authorized Testing Devices. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/covid19-industry/medical-devices/authorized/list.html (accessed on 9 March 2021).
- NEUMODX SARS-COV-2 ASSAY. Available online: https://www.neumodx.com/sars-cov-2/ (accessed on 9 March 2021).
- Li, Y.; Li, J.; Zhang, Y.; Dai, L.; Li, L.; Liu, J.; Zhang, S.; Wu, X.; Hu, Y.; Qin, C.; et al. Development of an automatic integrated gene detection system for novel Severe acute respiratory syndrome-related coronavirus (SARSCoV 2). Emerg. Microbes Infect. 2020, 9, 1489–1496. [Google Scholar] [CrossRef]
- DiaSorin Molecular. Simplexa™ COVID-19 Direct. Available online: https://www.who.int/diagnostics_laboratory/eual/eul_0526_212_00_simplexa_covid19_direct_and_positive_control_pack_ifu.pdf?ua=1 (accessed on 9 March 2021).
- U.S. Food and Drug Administration. 510(k) substantial equivalence determination decision summary assay and instrument combination template. AlloMap® Mol. Expr. Test. 2013, 73482. Available online: https://www.accessdata.fda.gov/cdrh_docs/reviews/k073482.pdf (accessed on 9 March 2021).
- Strain, M.C.; Lada, S.M.; Luong, T.; Rought, S.E.; Gianella, S.; Terry, V.H.; Spina, C.A.; Woelk, C.H. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS ONE 2013, 8, e55943. [Google Scholar] [CrossRef]
- Bio-Rad SARS-CoV-2 ddPCR Test, Qualitative Assay for Use on the QX200™ and QXDx™ Droplet Digital™ PCR Systems. Available online: https://www.fda.gov/media/137579/download (accessed on 9 March 2021).
- SARS-CoV-2/COVID-19 Diagnosis and Confirmation Solutions. Available online: https://www.bio-rad.com/featured/en/sarscov2covid19testingsolutions.html?tlplink=[FeatureNav]%20[Diagnosis%20and%20Confirmation] (accessed on 9 March 2021).
- Falzone, L.; Musso, N.; Gattuso, G.; Bongiorno, D.; Palermo, C.I.; Scalia, G.; Libra, M.; Stefani, S. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int. J. Mol. Med. 2020, 46, 957–964. [Google Scholar] [CrossRef]
- Lv, J.; Yang, J.; Xue, J.; Zhu, P.; Liu, L.; Li, S. Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR. Sci. Total Environ. 2020, 742, 140370. [Google Scholar] [CrossRef] [PubMed]
- Droplet Digital™ PCR (ddPCR™) Technology. Available online: https://www.bio-rad.com/en-ca/applications-technologies/droplet-digital-pcr-ddpcr-technology?ID=MDV31M4VY#Hindson (accessed on 9 March 2021).
- Dong, L.; Wang, X.; Wang, S.; Du, M.; Niu, C.; Yang, J.; Li, L.; Zhang, G.; Fu, B.; Gao, Y. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta 2020, 207, 120293. [Google Scholar] [CrossRef] [PubMed]
- Huggett, J.; Dheda, K.; Bustin, S.; Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Goode, T.; O’Connell, J.; Ho, W.-Z.; O’Sullivan, G.C.; Collins, J.K.; Douglas, S.D.; Shanahan, F. Differential expression of neurokinin-1 receptor by human mucosal and peripheral lymphoid cells. Clin. Diagn. Lab. Immunol. 2000, 7, 371–376. [Google Scholar] [CrossRef] [Green Version]
- BioFire® COVID-19 Test. Available online: https://www.biofiredefense.com/covid-19test/ (accessed on 9 March 2021).
- BioFire ® COVID-19 Test, Instructions for Use. Available online: https://www.fda.gov/media/136353/download (accessed on 9 March 2021).
- BioFire® Respiratory Panel 2.1 (RP2.1). Available online: https://www.fda.gov/media/137583/download (accessed on 9 March 2021).
- Creager, H.M.; Cabrera, B.; Schnaubelt, A.; Cox, J.L.; Cushman-Vokoun, A.M.; Shakir, S.M.; Tardif, K.D.; Huang, M.-L.; Jerome, K.R.; Greninger, A.L. Clinical evaluation of the BioFire® Respiratory Panel 2.1 and detection of SARS-CoV-2. J. Clin. Virol. 2020, 129, 104538. [Google Scholar] [CrossRef] [PubMed]
- Accelerated Emergency Use Authorization (EUA) Summary SARS-CoV2 RT-PCR Assay. Available online: https://www.fda.gov/media/137255/download (accessed on 9 March 2021).
- Mahony, J.B. Nucleic acid amplification-based diagnosis of respiratory virus infections. Expert Rev. Anti-Infect. Ther. 2010, 8, 1273–1292. [Google Scholar] [CrossRef]
- Quan, P.-L.; Briese, T.; Palacios, G.; Lipkin, W.I. Rapid sequence-based diagnosis of viral infection. Antivir. Res. 2008, 79, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Odiwuor, N.; Xiong, J.; Sun, L.; Nyaruaba, R.O.; Wei, H.; Tanner, N.A. Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP. MedRxiv 2020. [Google Scholar] [CrossRef]
- Lamb, L.E.; Bartolone, S.N.; Ward, E.; Chancellor, M.B. Rapid Detection of Novel Coronavirus (COVID19) by Reverse Transcription-Loop-Mediated Isothermal Amplification. SSRN 2020. [Google Scholar] [CrossRef]
- Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci. 2020, 6, 591–605. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Klochendler, A.; Seidel, M.; Sido, T.; Gurel-Gurevich, O.; Yassour, M.; Meshorer, E.; Benedek, G.; Fogel, I.; Oiknine-Djian, E. Pooled RNA extraction and PCR assay for efficient SARS-CoV-2 detection. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Park, G.-S.; Ku, K.; Baek, S.-H.; Kim, S.-J.; Kim, S.I.; Kim, B.-T.; Maeng, J.-S. Development of Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) Assays Targeting SARS-CoV-2. J. Mol. Diagn. 2020, 22, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Dang, X.; Wang, Q.; Xu, M.; Zhao, Q.; Zhou, Y.; Zhao, H.; Wang, L.; Xu, Y.; Wang, J. Rapid detection of SARS-CoV-2 using reverse transcription RT-LAMP method. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- In Vitro Diagnostics EUAs. Available online: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas (accessed on 9 March 2021).
- McCarthy, M.W. At-Home Coronavirus Testing: The Next Game-Changer? Taylor Fr. 2021, 21. [Google Scholar] [CrossRef]
- Detect COVID-19 in as Little as 5 Minutes|Abbott Newsroom. Available online: https://www.abbott.com/corpnewsroom/product-and-innovation/detect-covid-19-in-as-little-as-5-min.html (accessed on 9 March 2021).
- Mitchell, S.L.; George, K.S. Evaluation of the COVID19 ID NOW EUA Assay. J. Clin. Virol. 2020, 128, 104429. [Google Scholar] [CrossRef]
- Thwe, P.M.; Ren, P. How many are we missing with ID NOW COVID-19 assay using direct nasopharyngeal swabs?–Findings from a mid-sized academic hospital clinical microbiology laboratory. Diagn. Microciol. Infect. Dis. 2020, 98. [Google Scholar] [CrossRef] [PubMed]
- The White House Bet on Abbott’s Rapid Tests. It Didn’t Work Out. Available online: https://www.nytimes.com/2020/10/06/health/covid-white-house-testing.html (accessed on 9 March 2021).
- Basu, A.; Zinger, T.; Inglima, K.; Woo, K.; Atie, O.; Yurasits, L.; See, B.; Aguero-Rosenfeld, M.E. Performance of Abbott ID Now COVID-19 rapid nucleic acid amplification test using nasopharyngeal swabs transported in viral transport media and dry nasal swabs in a New York City academic institution. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef]
- Yan, C.; Cui, J.; Huang, L.; Du, B.; Chen, L.; Xue, G.; Li, S.; Zhang, W.; Zhao, L.; Sun, Y. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin. Microbiol. Infect. 2020, 26, 773–779. [Google Scholar] [CrossRef]
- Younes, N.; Al-Sadeq, D.W.; Al-Jighefee, H.; Younes, S.; Al-Jamal, O.; Daas, H.I.; Yassine, H.; Nasrallah, G.K. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020, 12, 582. [Google Scholar] [CrossRef]
- Fakruddin, M. Loop mediated isothermal amplification (LAMP)—An alternative to polymerase chain reaction (PCR). Bangladesh Res. Publ. J. 2011, 5, 425–439. [Google Scholar]
- Bao, Y.; Jiang, Y.; Xiong, E.; Tian, T.; Zhang, Z.; Lv, J.; Li, Y.; Zhou, X. CUT-LAMP: Contamination-Free Loop-Mediated Isothermal Amplification Based on the CRISPR/Cas9 Cleavage. ACS Sens. 2020, 5, 1082–1091. [Google Scholar] [CrossRef]
- Ali, Z.; Aman, R.; Mahas, A.; Rao, G.S.; Tehseen, M.; Marsic, T.; Salunke, R.; Subudhi, A.K.; Hala, S.M.; Hamdan, S.M. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 2020, 288, 198129. [Google Scholar] [CrossRef]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trac Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef]
- Abd El Wahed, A.; Patel, P.; Faye, O.; Thaloengsok, S.; Heidenreich, D.; Matangkasombut, P.; Manopwisedjaroen, K.; Sakuntabhai, A.; Sall, A.A.; Hufert, F.T. Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS ONE 2015, 10, e0129682. [Google Scholar]
- Kalsi, S.; Valiadi, M.; Tsaloglou, M.-N.; Parry-Jones, L.; Jacobs, A.; Watson, R.; Turner, C.; Amos, R.; Hadwen, B.; Buse, J. Rapid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform. Lab. Chip 2015, 15, 3065–3075. [Google Scholar] [CrossRef] [PubMed]
- Rames, E.K.; Macdonald, J. Rapid assessment of viral water quality using a novel recombinase polymerase amplification test for human adenovirus. Appl. Microbiol. Biotechnol. 2019, 103, 8115–8125. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Niemz, A.; Boyle, D.S. Nucleic acid testing for tuberculosis at the point-of-care in high-burden countries. Expert Rev. Mol. Diagn. 2012, 12, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Lillis, L.; Lehman, D.; Singhal, M.C.; Cantera, J.; Singleton, J.; Labarre, P.; Toyama, A.; Piepenburg, O.; Parker, M.; Wood, R. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS ONE 2014, 9, e108189. [Google Scholar] [CrossRef] [Green Version]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef]
- Lucira™ COVID-19 All-In-One Test Kit Instruction for Use—FDA. Available online: https://www.fda.gov/media/143808/download (accessed on 9 March 2021).
- MobileDetect-BIO BCC19 Test Kit—FDA. Available online: https://www.fda.gov/media/141791/download (accessed on 9 March 2021).
- AQ-TOP COVID-19 Rapid Detection Kit—FDA. Available online: https://www.fda.gov/media/138307/download (accessed on 9 March 2021).
- SARS-CoV-2 RNA DETECTR Assay—FDA. Available online: https://www.fda.gov/media/139934/download (accessed on 9 March 2021).
- ID NOW COVID-19—FDA. Available online: https://www.fda.gov/media/136522/download (accessed on 9 March 2021).
- Emergency Use Authorization (EUA) Summary Pro-AmpRT SARS-CoV-2 Test (Pro-Lab Diagnostics). Available online: https://www.fda.gov/media/141149/download (accessed on 9 March 2021).
- Emergency Use Authorization (EUA) Summary for the Color SARS-COV-2 RT-LAMP DIAGNOSTIC ASSAY. Available online: https://www.fda.gov/media/138249/download (accessed on 9 March 2021).
- iAMP COVID-19 Detection Kit - FDA. Available online: https://www.fda.gov/media/136870/download (accessed on 9 March 2021).
- CapitalBio′s Isothermal Microfludic Chip Analyzer gains CE certification. Available online: http://en.thholding.com.cn/2020-04/28/c_488807.htm (accessed on 9 March 2021).
- Hofmann, W.P.; Dries, V.; Herrmann, E.; Gärtner, B.; Zeuzem, S.; Sarrazin, C. Comparison of transcription mediated amplification (TMA) and reverse transcription polymerase chain reaction (RT-PCR) for detection of hepatitis C virus RNA in liver tissue. J. Clin. Virol. 2005, 32, 289–293. [Google Scholar] [CrossRef]
- Compton, J. Nucleic acid sequence-based amplification. Nature 1991, 350, 91–92. [Google Scholar] [CrossRef]
- Fakruddin, M.; Mazumdar, R.M.; Chowdhury, A.; Mannan, K.B. Nucleic acid sequence based amplification (NASBA)-prospects and applications. Int. J. Life Sci. Pharma. Res. 2012, 2, 106–121. [Google Scholar]
- Hologic SARS-CoV-2 Assays. Available online: https://www.hologic.com/hologic-products/diagnostic-solutions/hologic-sars-cov-2-assays (accessed on 9 March 2021).
- für den US-Export, N. Aptima™ SARS-CoV-2 Assay (Panther™ System). Available online: https://www.hologic.com/sites/default/files/2020-05/AW-21490-001_002_01%20%281%29%20%28003%29.pdf (accessed on 9 March 2021).
- Trémeaux, P.; Lhomme, S.; Abravanel, F.; Raymond, S.; Mengelle, C.; Mansuy, J.-M.; Izopet, J. Evaluation of the Aptima™ transcription-mediated amplification assay (Hologic®) for detecting SARS-CoV-2 in clinical specimens. J. Clin. Virol. 2020, 129, 104541. [Google Scholar] [CrossRef] [PubMed]
- Gorzalski, A.J.; Tian, H.; Laverdure, C.; Morzunov, S.; Verma, S.C.; VanHooser, S.; Pandori, M.W. High-Throughput Transcription-mediated amplification on the Hologic Panther is a highly sensitive method of detection for SARS-CoV-2. J. Clin. Virol. 2020, 129, 104501. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Huang, X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regen. 2019, 8, 33–41. [Google Scholar] [CrossRef]
- Ai, J.-W.; Zhou, X.; Xu, T.; Yang, M.; Chen, Y.; He, G.-Q.; Pan, N.; Cai, Y.; Li, Y.; Wang, X. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg. Microbes Infect. 2019, 8, 1361–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, X.; Qian, K.; Zhang, Z.; Lin, F.; Xie, Y.; Liu, Y.; Yang, Z. CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. J. Drug Target. 2020, 28, 727–731. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wang, J.; Liu, G. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol. 2019, 37, 730–743. [Google Scholar] [CrossRef]
- Terns, M.P. CRISPR-based technologies: Impact of RNA-targeting systems. Mol. Cell 2018, 72, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Nouri, R.; Tang, Z.; Dong, M.; Liu, T.; Kshirsagar, A.; Guan, W. CRISPR-based detection of SARS-CoV-2: A review from sample to result. Biosens. Bioelectron. 2021, 178, 113012. [Google Scholar] [CrossRef]
- Li, S.-Y.; Cheng, Q.-X.; Wang, J.-M.; Li, X.-Y.; Zhang, Z.-L.; Gao, S.; Cao, R.-B.; Zhao, G.-P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kilic, T.; Weissleder, R.; Lee, H. Molecular and immunological diagnostic tests of COVID-19–current status and challenges. Iscience 2020, 23, 101406. [Google Scholar] [CrossRef]
- Lucia, C.; Federico, P.-B.; Alejandra, G.C. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Abudayyeh, O.O.; Gootenberg, J.S. A protocol for detection of COVID-19 using CRISPR diagnostics. A Protoc. Detect. COVID-19 CRISPR Diagn. 2020, 8. Available online: https://sci-hub.do/https://go.idtdna.com/rs/400-UEU-432/images/Zhang%20et%20al.%2C%202020%20COVID-19%20detection%20%28updated%29.pdf (accessed on 9 March 2021).
- Joung, J.; Ladha, A.; Saito, M.; Segel, M.; Bruneau, R.; Huang, M.-l.W.; Kim, N.-G.; Yu, X.; Li, J.; Walker, B.D. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. MedRxiv 2020. [Google Scholar] [CrossRef]
- Julia Joung, B.S.; Alim Ladha, B.S.; Makoto Saito, P.D.; Nam‑Gyun Kim, P.D.; Ann, E.; Woolley, M.D.; Michael Segel, P.D.; Robert, P.J.; Barretto, P.D.; Faure, G.; et al. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Broughton1, J.P.; Deng, W.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Chiu, C.Y.; Chen, J.S. A Protocol for Rapid Detection of the 2019 Novel Coronavirus SARS-CoV-2 Using CRISPR Diagnostics: SARS-CoV-2 DETECTR. Available online: https://mammoth.bio/wp-content/uploads/2020/02/A-protocol-for-rapid-detection-of-the-2019-novel-coronavirus-SARS-CoV-2-using-CRISPR-diagnostics-SARS-CoV-2-DETECTR.pdf (accessed on 9 March 2021).
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef] [Green Version]
- Rauch, J.N.; Valois, E.; Solley, S.C.; Braig, F.; Lach, R.S.; Baxter, N.J.; Kosik, K.S.; Arias, C.; Acosta-Alvear, D.; Wilson, M.Z. A Scalable, easy-to-deploy, protocol for Cas13-based detection of SARS-CoV-2 genetic material. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.; Zeng, W.; Yang, M.; Chen, W.; Ren, L.; Ai, J.; Wu, J.; Liao, Y.; Gou, X.; Li, Y. Development and evaluation of a CRISPR-based diagnostic for 2019-novel coronavirus. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Sun, X.; Wang, X.; Liang, C.; Jiang, H.; Gao, Q.; Dai, M.; Qu, B.; Fang, S.; Mao, Y. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 2020, 6, 1–4. [Google Scholar] [CrossRef]
- Abbott, T.R.; Dhamdhere, G.; Liu, Y.; Lin, X.; Goudy, L.; Zeng, L.; Chemparathy, A.; Chmura, S.; Heaton, N.S.; Debs, R. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 2020, 181, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yin, K.; Li, Z.; Liu, C. All-in-One dual CRISPR-cas12a (AIOD-CRISPR) assay: A case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. bioRxiv 2020. [Google Scholar] [CrossRef]
- Innovative Solutions for SARS-CoV-2 Testing. Available online: https://caspr.bio/pdf/Brochure.pdf (accessed on 9 March 2021).
- Li, P.C.; Sedighi, A.; Wang, L. Microarray Technology: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Shaw-Smith, C.; Redon, R.; Rickman, L.; Rio, M.; Willatt, L.; Fiegler, H.; Firth, H.; Sanlaville, D.; Winter, R.; Colleaux, L. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J. Med Genet. 2004, 41, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COVID-19: The Microarray Matters. Meeting the Challenge of Our Time. Available online: https://pathogendx.com/covid-19/ (accessed on 9 March 2021).
- PathogenDx Product Insert DetectX-Rv. Available online: https://pathogendx.com/wp-content/uploads/2020/08/EUA200311A001-IFU-PathogenDx-Detectx-PDX-011-Rev-1.pdf (accessed on 9 March 2021).
- ALIMETRIX® COVID-19 TESTS. Available online: https://www.alimetrix.com/covid-19.html (accessed on 9 March 2021).
- Veredus Laboratories. Veredus Laboratories Launches Next Generation COVID-19 Diagnostic Test Using Samples Directly from Saliva or Swab; Veredus Laboratories: Singapore, 2020; Volume 2020. [Google Scholar]
- VereRTCoV™ SARS-CoV-2 Real-Time RT-PCR 2.0. Available online: https://vereduslabs.com/wordpress/wp-content/uploads/2020/06/VereRTCoV-Kit-2.0_Brochure-1.pdf (accessed on 9 March 2021).
- Microchip RT-PCR COVID-19 Detection System 1. Available online: https://www.lumexinstruments.com/applications/covid-19_detection_system.php (accessed on 9 March 2021).
- Microchip RT-PCR COVID-19 Detection System. Available online: https://www.lumexinstruments.com/metodics/Microchip_RT-PCR_Covid-19_Detection_System.pdf (accessed on 9 March 2021).
- COVID-19 KITS. Available online: http://genomica.com/covid-19/?lang=en (accessed on 9 March 2021).
- Jordan, B.R. Is there a niche for DNA microarrays in molecular diagnostics? Expert Rev. Mol. Diagn. 2010, 10, 875–882. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Deng, Z.; Xiong, W.; Wang, Q.; Hu, Y.-q. Comprehensive detection and identification of seven animal coronaviruses and human respiratory coronavirus 229E with a microarray hybridization assay. Intervirology 2010, 53, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Hardick, J.; Metzgar, D.; Risen, L.; Myers, C.; Balansay, M.; Malcom, T.; Rothman, R.; Gaydos, C. Initial performance evaluation of a spotted array Mobile Analysis Platform (MAP) for the detection of influenza A/B, RSV, and MERS coronavirus. Diagn. Microbiol. Infect. Dis. 2018, 91, 245–247. [Google Scholar] [CrossRef]
- Morgan, X.C.; Huttenhower, C. Human microbiome analysis. PLoS Comput. Biol. 2012, 8, e1002808. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, Z.; Chen, Z.; Huang, X.; Xu, M.; He, T.; Zhang, Z. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med Virol. 2020, 92, 667–674. [Google Scholar] [CrossRef] [PubMed]
- GenBank. Severe Acute Respiratory Syndrome Coronavirus 2 Isolate Wuhan-Hu-1, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/MN908947 (accessed on 9 March 2021).
- Sequence Read Archive. SRA—Now Available on the Cloud. Available online: https://www.ncbi.nlm.nih.gov/sra (accessed on 9 March 2021).
- Loeffelholz, M.J.; Tang, Y.-W. Laboratory diagnosis of emerging human coronavirus infections–the state of the art. Emerg. Microbes Infect. 2020, 9, 747–756. [Google Scholar] [CrossRef]
- Illumina COVIDSeq Test Instructions for Use - FDA. Available online: https://www.fda.gov/media/138776/download (accessed on 9 March 2021).
- Comprehensive Workflow for Detecting Coronavirus Using Illumina Benchtop Systems. Available online: https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/ngs-coronavirus-app-note-1270-2020-001.pdf (accessed on 9 March 2021).
- Targeted NGS for SARS-CoV-2 Viral Typing, Discovery, and Epidemiology. Available online: https://www.thermofisher.com/ca/en/home.html (accessed on 9 March 2021).
- Ming, W. Nanopore target sequencing for accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. MedRvix 2020. [Google Scholar] [CrossRef]
- Chandler-Brown, D.; Bueno, A.M.; Atay, O.; Tsao, D.S. A highly scalable and rapidly deployable RNA extraction-free COVID-19 assay by quantitative Sanger sequencing. BioRxiv 2020. [Google Scholar] [CrossRef]
- COVID-19 Response FDA EUA—Billion To One. Available online: https://billiontoone.com/covid-19/ (accessed on 9 March 2021).
- Mboowa, G. Current and emerging diagnostic tests available for the novel COVID-19 global pandemic. AAS Open Res. 2020, 3. [Google Scholar] [CrossRef] [PubMed]
- Novel Coronavirus (COVID-19) Overview. Available online: https://nanoporetech.com/covid-19/overview (accessed on 9 March 2021).
- Pareek, C.S.; Smoczynski, R.; Tretyn, A. Sequencing technologies and genome sequencing. J. Appl. Genet. 2011, 52, 413–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Lee, J.-Y.; Yang, J.-S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell 2020, 181, 914–921. [Google Scholar] [CrossRef] [PubMed]
- LamPORE. Available online: https://nanoporetech.com/covid-19/overview (accessed on 9 March 2021).
- nCoV-2019 sequencing protocol V.1. Available online: https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w (accessed on 9 March 2021).
- Tyson, J.R.; James, P.; Stoddart, D.; Sparks, N.; Wickenhagen, A.; Hall, G.; Choi, J.H.; Lapointe, H.; Kamelian, K.; Smith, A.D. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore. BioRxiv 2020. [Google Scholar] [CrossRef]
- SARS-CoV-2. Available online: https://artic.network/ncov-2019 (accessed on 9 March 2021).
- IDbyDNA to Help Indonesian Government Fight COVID-19 Pandemic. Available online: https://www.prweb.com/releases/idbydna_to_help_indonesian_government_fight_covid_19_pandemic/prweb17175791.htm (accessed on 9 March 2021).
- BGI Responds to Novel Coronavirus with Real-Time Detection Kits, Deploys Emergency Team to Wuhan. Available online: https://www.bgi.com/us/company/news/bgi-responds-to-novel-coronavirus-with-real-time-detection-kits-deploys-emergency-team-to-wuhan/ (accessed on 9 March 2021).
- Helix COVID-19 NGS Test—EUA Summary—FDA. Available online: https://www.fda.gov/media/140917/download (accessed on 9 March 2021).
- Instructions For Use: QSanger-COVID-19 Assay. Available online: https://www.fda.gov/media/141935/download (accessed on 9 March 2021).
- BUILD YOUR OWN CUSTOM TARGETED NGS PANEL. Available online: https://youseq.com/build-your-own (accessed on 9 March 2021).
- IVD TESTING (COVID-19): LamPORE COVID-19. Available online: https://oxfordnanoporedx.com/products/lampore-covid19?__hstc=26773666.21eedaa7ae849c4585504e6de58a7b4e.1616556287545.1616865169610.1617771470376.6&__hssc=26773666.1.1617771470376&__hsfp=1281939615 (accessed on 9 March 2021).
- LamPORE. Available online: https://nanoporetech.com/covid-19/lampore (accessed on 9 March 2021).
- Targeted NGS for SARS-CoV-2 Viral Typing, Discovery, and Epidemiology. Available online: https://www.thermofisher.com/ca/en/home/life-science/sequencing/dna-sequencing/microbial-sequencing/microbial-identification-ion-torrent-next-generation-sequencing/viral-typing/coronavirus-research.html (accessed on 9 March 2021).
- CleanPlex® for MGI SARS-CoV-2 Panel. Available online: https://www.paragongenomics.com/product/cleanplex-for-mgi-sars-cov-2-panel/ (accessed on 9 March 2021).
- Comprehensive COVID-19 Testing For Enterprises, Communities & Patients. Available online: https://www.fulgentgenetics.com/ (accessed on 9 March 2021).
- EUA Summary—FDA. Available online: https://www.fda.gov/media/141487/download (accessed on 9 March 2021).
- Tools for Addressing the SARS-CoV-2 Virus. Available online: https://www.twistbioscience.com/productchild/tools-addressing-sars-cov-2-virus (accessed on 9 March 2021).
- Clear Dx™ SARS-CoV-2 Test. Available online: https://www.fda.gov/media/142418/download (accessed on 9 March 2021).
- UCLA SwabSeq COVID-19 Diagnostic Platform—FDA. Available online: https://www.fda.gov/media/142802/download (accessed on 9 March 2021).
- Choi, J.R. Development of Point-of-Care Biosensors for COVID-19. Front. Chem. 2020, 8, 517. [Google Scholar] [CrossRef]
- Zhu, H.; Fohlerová, Z.; Pekárek, J.; Basova, E.; Neužil, P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020, 153, 112041. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, L.; Liu, G. CRISPR/Cas multiplexed biosensing: A challenge or an insurmountable obstacle? Trends Biotechnol. 2019, 37, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Hajian, R.; Balderston, S.; Tran, T.; DeBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N.A.; Chung, J.-Y.; Nokes, J.; Athaiya, M. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019, 3, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X.; Hu, J.; Gong, Y.; Wang, L.; Zhou, W.; Li, X.; Xu, F. A smartphone-based on-site nucleic acid testing platform at point-of-care settings. Electrophoresis 2019, 40, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ju, R.; Sekine, S.; Zhang, D.; Zhuang, S.; Yamaguchi, Y. All-in-one microfluidic device for on-site diagnosis of pathogens based on an integrated continuous flow PCR and electrophoresis biochip. Lab Chip 2019, 19, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.M.; Wong, W.S.; Liu, L.; Dewar, R.; Klapperich, C.M. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 2016, 16, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020, 14, 5268–5277. [Google Scholar] [CrossRef] [Green Version]
- Sanofi and Luminostics to join forces on developing breakthrough COVID-19 smartphone-based self-testing solution. Available online: https://www.sanofi.com/en/media-room/press-releases/2020/2020-04-16-14-00-00 (accessed on 9 March 2021).
- Lab-quality health analysis on your phone with Clip. Available online: https://luminostics.com/technology#LFA (accessed on 9 March 2021).
- Sun, F.; Ganguli, A.; Nguyen, J.; Brisbin, R.; Shanmugam, K.; Hirschberg, D.L.; Wheeler, M.B.; Bashir, R.; Nash, D.M.; Cunningham, B.T. Smartphone-based multiplex 30-min nucleic acid test of live virus from nasal swab extract. Lab Chip 2020, 20, 1621–1627. [Google Scholar] [CrossRef]
- Srivastava, A.; Dwivedi, N.; Dhand, C.; Khan, R.; Sathish, N.; Gupta, M.K.; Kumar, R.; Kumar, S. Potential of Graphene-based Materials to Combat COVID-19: Properties, Perspectives and Prospects. Mater. Today Chem. 2020. [Google Scholar] [CrossRef]
- Samson, R.; Navale, G.R.; Dharne, M.S. Biosensors: Frontiers in rapid detection of COVID-19. 3 Biotech. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Rana, D.R.; Pokhrel, N. Sequence mismatch in PCR probes may mask the COVID-19 detection in Nepal. Mol. Cell. Probes 2020, 53, 101599. [Google Scholar] [CrossRef]
- Shen, Z.; Xiao, Y.; Kang, L.; Ma, W.; Shi, L.; Zhang, L.; Zhou, Z.; Yang, J.; Zhong, J.; Yang, D. Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T. Genetic diversity and evolution of SARS-CoV-2. Infect. Genet. Evol. 2020, 81, 104260. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [Green Version]
- Beetz, C.; Skrahina, V.; Förster, T.M.; Gaber, H.; Paul, J.J.; Curado, F.; Rolfs, A.; Bauer, P.; Schäfer, S.; Weckesser, V. Rapid Large-Scale COVID-19 Testing during Shortages. Diagnostics 2020, 10, 464. [Google Scholar] [CrossRef]
- Malpartida-Cardenas, K.; Miscourides, N.; Rodriguez-Manzano, J.; Yu, L.-S.; Moser, N.; Baum, J.; Georgiou, P. Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform. Biosens. Bioelectron. 2019, 145, 111678. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yu, H.; Liu, X.; Jiang, Y.; Yan, M.; Wu, D. A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Trans. Biomed. Eng. 2015, 62, 2224–2233. [Google Scholar] [CrossRef]
- Heer, F.; Keller, M.; Yu, G.; Janata, J.; Josowicz, M.; Hierlemann, A. CMOS electro-chemical DNA-detection array with on-chip ADC. In Proceedings of the 2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008; pp. 168–604. [Google Scholar]
- Lai, W.-A.; Lin, C.-H.; Yang, Y.-S.; Lu, M.S.-C. Ultrasensitive and label-free detection of pathogenic avian influenza DNA by using CMOS impedimetric sensors. Biosens. Bioelectron. 2012, 35, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Ghafar-Zadeh, E.; Sawan, M.; Chodavarapu, V.P.; Hosseini-Nia, T. Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 232–238. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Sun, A.; Zhao, Y.; Aronoff-Spencer, E.; Hall, D.A. A 16 × 20 electrochemical CMOS biosensor array with in-pixel averaging using polar modulation. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar]
- Mitra, D.; Roy, S.; Bhattacharjee, S.; Chakrabarty, K.; Bhattacharya, B.B. On-chip sample preparation for multiple targets using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2014, 33, 1131–1144. [Google Scholar] [CrossRef]
- Yoo, H.J.; Baek, C.; Lee, M.-H.; Min, J. Integrated microsystems for the in situ genetic detection of dengue virus in whole blood using direct sample preparation and isothermal amplification. Analyst 2020, 145, 2405–2411. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaffaf, T.; Ghafar-Zadeh, E. COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies. Bioengineering 2021, 8, 49. https://doi.org/10.3390/bioengineering8040049
Shaffaf T, Ghafar-Zadeh E. COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies. Bioengineering. 2021; 8(4):49. https://doi.org/10.3390/bioengineering8040049
Chicago/Turabian StyleShaffaf, Tina, and Ebrahim Ghafar-Zadeh. 2021. "COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies" Bioengineering 8, no. 4: 49. https://doi.org/10.3390/bioengineering8040049
APA StyleShaffaf, T., & Ghafar-Zadeh, E. (2021). COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies. Bioengineering, 8(4), 49. https://doi.org/10.3390/bioengineering8040049