Pilot Clinical Study Investigating the Thermal Physiology of Breast Cancer via High-Resolution Infrared Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Institutional Review Board Approval
2.2. Procedure and Equipment
2.3. Data Analysis
3. Results
3.1. Histologic Diagnoses
3.2. Static IR Images under Steady-State Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Confidence interval |
BIRADS | Breast Imaging Reporting and Data System |
DCIS | Ductal carcinoma in situ |
IDC | Invasive ductal carcinoma |
IGM | Idiopathic granulomatous mastitis |
IR | Infrared |
IRB | Institutional Review Board |
LIQ | Lower inner quadrant |
LOQ | Lower outer quadrant |
MR | Magnetic resonance |
NOS | Not otherwise specified |
ROI | Region of interest |
US | Ultrasound |
UIQ | Upper inner quadrant |
UOQ | Upper outer quadrant |
References
- Anbar, M. Hyperthermia of the cancerous breast: Analysis of mechanism. Cancer Lett. 1994, 84, 23–29. [Google Scholar] [CrossRef]
- Lozano, A.; Hassanipour, F. Infrared imaging for breast cancer detection: An objective review of foundational studies and its proper role in breast cancer screening. Infrared Phys. Technol. 2019, 97, 244–257. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Perez-Raya, I.; Raghupathi, P.A.; Gonzalez-Hernandez, J.L.; Dabydeen, D.; Medeiros, L.; Phatak, P. Infrared imaging technology for breast cancer detection—Current status, protocols and new directions. Int. J. Heat Mass Transf. 2017, 108, 2303–2320. [Google Scholar] [CrossRef]
- Singh, D.; Singh, A.K. Role of image thermography in early breast cancer detection-Past, present and future. Comput. Methods Programs Biomed. 2020, 183, 105074. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschey, M.D.; DeBerardinis, R.J.; Diehl, A.M.E.; Drew, J.E.; Frezza, C.; Green, M.F.; Jones, L.W.; Ko, Y.H.; Le, A.; Lea, M.A.; et al. Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. 2015, 35, S129–S150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Zhao, S. Metabolic changes in cancer: Beyond the Warburg effect. Acta Biochim. Biophys. Sin. 2013, 45, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.K.; Aster, J.C. Neoplasia. In Robbins Basic Pathology, 10th ed.; Elsevier: Philadelphia, PA, USA, 2018; Chapter 6; pp. 189–242. [Google Scholar]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [Green Version]
- DeBerardinis, R.J.; Chandel, N.S. We need to talk about the Warburg effect. Nat. Metab. 2020, 2, 127–129. [Google Scholar] [CrossRef]
- Bullitt, E.; Reardon, D.A.; Smith, J.K. A review of micro- and macrovascular analyses in the assessment of tumor-associated vasculature as visualized by MR. NeuroImage 2007, 37, S11–S119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Stamatelos, S.; Cebulla, J.; Bhujwalla, Z.M.; Popel, A.S.; Pathak, A.P. Multiscale Imaging and Computational Modeling of Blood Flow in the Tumor Vasculature. Ann. Biomed. Eng. 2012, 40, 2425–2441. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Winkler, F. Hostile takeover: How tumours hijack pre-existing vascular environments to thrive. J. Pathol. 2017, 242, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Tumor Angiogenesis Factor. Cancer Res. 1974, 34, 2109–2113. [Google Scholar] [PubMed]
- Folkman, J. Tumor Angiogenesis. In Advances in Cancer Research; Klein, G., Weinhouse, S., Eds.; Academic Press: Cambridge, MA, USA, 1985; Volume 43, pp. 175–203. [Google Scholar] [CrossRef]
- Huang, H.; Lu, J.; Wu, J.; Ding, Z.; Chen, S.; Duan, L.; Cui, J.; Chen, F.; Kang, D.; Qi, L.; et al. Tumor Tissue Detection using Blood-Oxygen-Level-Dependent Functional MRI based on Independent Component Analysis. Sci. Rep. 2018, 8, 1223. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Abbas, A.K.; Aster, J.C. Inflammation and Repair. In Robbins Basic Pathology, 10th ed.; Elsevier: Philadelphia, PA, USA, 2018; Chapter 3; pp. 57–96. [Google Scholar]
- Cristofanilli, M.; Buzdar, A.U.; Hortobagyi, G.N. Update on the Management of Inflammatory Breast Cancer. Oncologist 2003, 8, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Robertson, F.M.; Bondy, M.; Yang, W.; Yamauchi, H.; Wiggins, S.; Kamrudin, S.; Krishnamurthy, S.; Le-Petross, H.; Bidaut, L.; Player, A.N.; et al. Inflammatory Breast Cancer: The Disease, the Biology, the Treatment. CA Cancer J. Clin. 2010, 50, 351–375. [Google Scholar] [CrossRef]
- Buchholz, T.A.; Strom, E.A. The Breast. In Radiation Oncology, 9th ed.; Cox, J.D., Ang, K.K., Eds.; Elsevier: Philadelphia, PA, USA, 2010; Chapter 17; pp. 353–407. [Google Scholar]
- Smith, B.D. Breast Cancer: Postmastectomy Radiation, Locally Advanced Disease, and Inflammatory Breast Cancer. In Clinical Radiation Oncology, 4th ed.; Gunderson, L.L., Tepper, J.E., Eds.; Elsevier: Philadelphia, PA, USA, 2016; Chapter 64; pp. 1329–1344. [Google Scholar]
- Carr, R.J.; Smith, S.M.; Peters, S.B. Primary and Secondary Dermatologic Disorders of the Breast. In The Breast: Comprehensive Management of Benign and Malignant Diseases, 5th ed.; Bland, K.I., Klimberg, V.S., Copeland, E.M., Gradishar, W.J., Eds.; Elsevier: Philadelphia, PA, USA, 2018; Chapter 13; pp. 177–196. [Google Scholar]
- Williams, K.L. A Thermographic Prognostic Index. In Recent Advances in Medical Thermology; Ring, E.F.J., Phillips, B., Eds.; Springer: Boston, MA, USA, 1984; pp. 551–555. [Google Scholar] [CrossRef]
- Lozano, A.; Hayes, J.C.; Compton, L.M.; Azarnoosh, J.; Hassanipour, F. Determining the thermal characteristics of breast cancer based on high-resolution infrared imaging, 3D breast scans, and magnetic resonance imaging. Sci. Rep. 2020, 10, 10105. [Google Scholar] [CrossRef]
- Ng, E.Y.K. A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Therm. Sci. 2009, 48, 849–859. [Google Scholar] [CrossRef]
- Watmough, D.J.; Oliver, R. Emissivity of Human Skin in vivo between 2.0 and 5.4 measured at Normal Incidence. Nature 1968, 218, 885–886. [Google Scholar] [CrossRef]
- Steketee, J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 1973, 18, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Minkina, W.; Dudzik, S. Normal emissivities of various materials. In Infrared Thermography: Errors and Uncertainties, 1st ed.; John Wiley & Sons: Chichester, UK, 2009; Chapter Appendix B; pp. 177–183. [Google Scholar] [CrossRef]
- Invasive Breast Cancer (IDC/ILC), American Cancer Society. 2021. Available online: www.cancer.org (accessed on 5 May 2021).
- Kontos, M.; Wilson, R.; Fentiman, I. Digital infrared thermal imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers. Clin. Radiol. 2011, 66, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, U.R.; Majumdar, G.; Bhowmik, M.K.; Ghosh, A.K. Evaluating the efficiency of infrared breast thermography for early breast cancer risk prediction in asymptomatic population. Infrared Phys. Technol. 2019, 99, 201–211. [Google Scholar] [CrossRef]
- Gardner, H.; Lai, C.T.; Ward, L.C.; Geddes, D.T. Thermal physiology of the lactating nipple influences the removal of human milk. Sci. Rep. 2019, 9, 11854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, R.G. Vascular System. In Elsevier’s Integrated Physiology, 1st ed.; Elsevier Mosby: Philadelphia, PA, USA, 2007; Chapter 8; pp. 77–89. [Google Scholar]
- Lawson, R.N. Implications of surface temperatures in the diagnosis of breast cancer. Can. Med. Assoc. J. 1956, 75, 309–310. [Google Scholar] [PubMed]
- Parker, S.J.; Harries, S.A. Phyllodes tumours. Postgrad. Med. J. 2001, 77, 428–435. [Google Scholar] [CrossRef] [PubMed]
Subject No. | Diagnosis | Breast Side | Histology | Grade | Lesion Size | Lesion Location | Hormone Receptor Status | Stage | Notes |
---|---|---|---|---|---|---|---|---|---|
01 | Malignant | Left | IDC | 3 | 1.6 cm (US); 2.1 cm (MR) | UIQ, 11:00, 12 cm from nipple | ER−, PR−, HER2/neu− | 1 | Triple negative |
02 | Malignant | Left | DCIS | 3 | 10 cm (mammo) | Calcifications centered at 3:00, spanning from 2 to 10 cm from nipple | ER−, PR− | 0 | Micropapillary |
03 | Malignant | Left | IDC (NOS) | 2 | 10 cm (mammo) | UIQ, 11:00, 4 cm from nipple | ER−, PR−, HER2/neu− | 4 | Triple negative |
04 * | Malignant | Left | Phyllodes | High | 17.5 cm (mammo) | Mass occupied entire breast | – | – | Non-mammary origin (stromal cancer) |
05 | Malignant | Left | IDC | 1 | 1 cm (US) | LIQ, 8:00, 3 cm from nipple | ER+, PR+, HER2/neu− | 1a | – |
06 | Malignant | Right | IDC | 3 | 1.8 cm (US); 2.8 cm (MR) | LIQ, 4:00, 6 cm from nipple | ER−, PR−, HER2/neu− | 2b | Triple negative |
07 * | Benign | Right | IGM | – | 1.6 cm (US) | LOQ, 7:00, 6 cm from nipple | – | – | Pregnant (9 weeks) |
08 * | Benign | Left | Fibroadenoma | – | 1.9 cm (US) | UOQ, 2:00, 10 cm from nipple | – | – | – |
09 | Malignant | Left | IDC | 3 | 3.6 cm (US) | 12:00, 2 cm, from nipple (dominant mass) UOQ, 1:00, 2 cm from nipple (satellite mass) | ER+, PR+, HER2/neu+ | 2b | – |
10 | Malignant | Right | IDC | 3 | 4.4 cm (US); 5.2 cm (MR) | UIQ, 1:00, 2 cm from nipple (dominant mass) UIQ, 2:00, 8 cm from nipple (satellite mass) | ER−, PR−, HER2/neu− | 3b (inflammatory) | Triple negative |
11 | Malignant | Left | IDC (NOS) | 3 | 8 cm (mammo) | UOQ, 2:00, 4 cm from nipple (dominant mass) UOQ, 2:00; UIQ, 10:00 (satellite masses) | ER−, PR−, HER2/neu− | 2b | Triple negative; multiple adjacent satellite masses |
Subject No. | Diagnosis | Side | Generalized Temperatures (C) | Localized Temperatures (C) |
---|---|---|---|---|
01 | Breast cancer | Left | 33.3 | 33.4 |
Normal | Right | 33.1 | 33.1 | |
02 | Breast cancer | Left | 33.7 | 33.4 |
Normal | Right | 33.9 | 33.3 | |
03 | Breast cancer | Left | 35.0 | 35.0 |
Normal | Right | 33.8 | 33.8 | |
04 | Breast cancer | Left | 35.0 | 34.8 |
Normal | Right | 33.8 | 33.6 | |
05 | Breast cancer | Left | 33.8 | 33.7 |
Normal | Right | 33.4 | 32.9 | |
06 | Breast cancer | Right | 33.0 | 32.8 |
Normal | Left | 33.0 | 32.5 | |
07 | Breast cancer | Right | 35.3 | 35.2 |
Normal | Left | 35.3 | 35.6 | |
08 | Breast cancer | Left | 34.0 | 34.5 |
Normal | Right | 34.3 | 34.3 | |
09 | Breast cancer | Left | 33.5 | 33.7 |
Normal | Right | 33.4 | 33.3 | |
10 | Breast cancer | Right | 35.3 | 35.6 |
Normal | Left | 33.6 | 33.8 | |
11 | Breast cancer | Left | 33.8 | 34.4 |
Normal | Right | 33.0 | 32.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, A., III; Hayes, J.C.; Compton, L.M.; Hassanipour, F. Pilot Clinical Study Investigating the Thermal Physiology of Breast Cancer via High-Resolution Infrared Imaging. Bioengineering 2021, 8, 86. https://doi.org/10.3390/bioengineering8070086
Lozano A III, Hayes JC, Compton LM, Hassanipour F. Pilot Clinical Study Investigating the Thermal Physiology of Breast Cancer via High-Resolution Infrared Imaging. Bioengineering. 2021; 8(7):86. https://doi.org/10.3390/bioengineering8070086
Chicago/Turabian StyleLozano, Adolfo, III, Jody C. Hayes, Lindsay M. Compton, and Fatemeh Hassanipour. 2021. "Pilot Clinical Study Investigating the Thermal Physiology of Breast Cancer via High-Resolution Infrared Imaging" Bioengineering 8, no. 7: 86. https://doi.org/10.3390/bioengineering8070086
APA StyleLozano, A., III, Hayes, J. C., Compton, L. M., & Hassanipour, F. (2021). Pilot Clinical Study Investigating the Thermal Physiology of Breast Cancer via High-Resolution Infrared Imaging. Bioengineering, 8(7), 86. https://doi.org/10.3390/bioengineering8070086