Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Methodological Workflow
2.3. Preprocessing, Inclusion Criteria, and Estimation of the FHRV Signal
- Absence of visually evident artifacts (determined by visual inspection of the signals);
- Absence of prolonged signal loss (i.e., higher than 30% signal length);
- Limited number of outliers (less than 5%);
- Minimum duration of the signal equal to 20 min.
2.4. Feature Extraction and Selection
- the week of gestation (estimated from the last menstruation);
- the mean value of the heart rate.
- Standard Deviation of the FHRV (SDev), calculated as the standard deviation of the whole FHRV signal, obtained after subtraction of the floatingline from the FHR signal;
- Peak-to-Peak amplitude (PPA), calculated on the FHR signal.
- Power and percentages (with respect to the total power) in the very low frequency band (VLF and %VLF), low frequency band (LF and %LF), and high frequency band (HF and %HF); respectively defined in the following frequency ranges: VLF = 0–0.003 Hz; LF = 0.003–0.2 Hz; HF = 0.2–1 Hz.
- Total power of the FHRV signal, calculated as the sum of the VLF, LF, and HF power;
- Sympahto-vagal balance (SVB), obtained as the ratio between the power in the LF band and the power in the HF band [48].
- Sample Entropy (SampEn), which was calculated according to the method proposed by Lake et al. [49];
- Standard deviations perpendicular (SD1) and parallel (SD2) to the line-of-identity calculated through the Poincarè Maps, as described by Fishman et al. [50];
- Higuchi fractal dimension (HFD), calculated according to Higuchi [51];
- Variability Index (VIRR), obtained by applying the Symbolic Dynamic Analysis (SDA), a well-established technique in the analysis of the HRV in adults [52,53], to the series of the difference between consecutive beat-to-beat intervals (ΔRR), in accordance with a methodological approach previously proposed by the authors [54,55,56,57];
2.5. Blockwise Dimension Reduction
- one time-dependent component, named LIN_time, which is correlated with STV, SDev, and PPA;
- three frequency-dependent components, named LIN_VLF_power, LIN_LF_HF, and LIN_SVB, which are correlated, respectively, with: VLF indices and total power; LF and HF indices; SVB;
- two nonlinear components, named NL_variability and NL_complexity, which are correlated, respectively, with indicators of the variability (SD1, SD2, VIRR, and VIFHR) and complexity metrics (SampEn and HFD).
2.6. Regression by Means of Artificial Neural Network
2.7. ANN Regression Performance Assessment
2.8. Interpretability and Validity of the Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Taebi, A.; Mansy, H.A. Time-Frequency Distribution of Seismocardiographic Signals: A Comparative Study. Bioengineering 2017, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Khalili, F.; Gamage, P.T.; Taebi, A.; Johnson, M.E.; Roberts, R.B.; Mitchel, J. Spectral Decomposition and Sound Source Localization of Highly Disturbed Flow through a Severe Arterial Stenosis. Bioengineering 2021, 8, 34. [Google Scholar] [CrossRef]
- Gulbulak, U.; Ertas, A. Finite Element Driven Design Domain Identification of a Beating Left Ventricular Simulator. Bioengineering 2019, 6, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, N.; Zhu, Y. Early Detection of Atrial Fibrillation Based on ECG Signals. Bioengineering 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soder, H.E.; Wardle, M.C.; Schmitz, J.M.; Lane, S.D.; Green, C.; Vujanovic, A.A. Baseline Resting Heart Rate Variability Predicts Post-Traumatic Stress Disorder Treatment Outcomes in Adults with Co-Occurring Substance Use Disorders and Post-Traumatic Stress. Psychophysiology 2019, 56, e13377. [Google Scholar] [CrossRef]
- Eggenberger, P.; Annaheim, S.; Kündig, K.A.; Rossi, R.M.; Münzer, T.; de Bruin, E.D. Heart Rate Variability Mainly Relates to Cognitive Executive Functions and Improves Through Exergame Training in Older Adults: A Secondary Analysis of a 6-Month Randomized Controlled Trial. Front. Aging Neurosci. 2020, 12, 197. [Google Scholar] [CrossRef]
- Graham, S.A.; Jeste, D.V.; Lee, E.E.; Wu, T.-C.; Tu, X.; Kim, H.-C.; Depp, C.A. Associations between Heart Rate Variability Measured With a Wrist-Worn Sensor and Older Adults’ Physical Function: Observational Study. JMIR mHealth uHealth 2019, 7, e13757. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yoshida, A.; Kobayashi, M.; Hamada, T.; Noguchi, Y.; Yamada, T. A New Computerized Analysis to Precisely Evaluate Heart Rate Variability During the Nonstress Test. Am. J. Perinatol. 2003, 20, 77–86. [Google Scholar] [CrossRef]
- Sadat Ghafourian, M.; Sadat Tabatabaee, P.; Noori, A. Obstructive Sleep Apnea Syndrome Diagnosis Using HRV Signal Processing. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019; pp. 1819–1824. [Google Scholar]
- Tsai, C.-H.; Ma, H.-P.; Lin, Y.-T.; Hung, C.-S.; Huang, S.-H.; Chuang, B.-L.; Lin, C.; Lo, M.-T.; Peng, C.-K.; Lin, Y.-H. Usefulness of Heart Rhythm Complexity in Heart Failure Detection and Diagnosis. Sci. Rep. 2020, 10, 14916. [Google Scholar] [CrossRef]
- Sankar, P.; Cyriac, M. A Non-Invasive Approach for the Diagnosis of Type 2 Diabetes Using HRV Parameters. Int. J. Biomed. Eng. Technol. 2018, 26, 71–83. [Google Scholar] [CrossRef]
- Lee, H.G.; Noh, K.Y.; Ryu, K.H. Mining Biosignal Data: Coronary Artery Disease Diagnosis Using Linear and Nonlinear Features of HRV. In Emerging Technologies in Knowledge Discovery and Data Mining; Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 218–228. [Google Scholar]
- Ahuja, N.D.; Agarwal, A.K.; Mahajan, N.M.; Mehta, N.H.; Kapadia, H.N. GSR and HRV: Its Application in Clinical Diagnosis. In Proceedings of the 16th IEEE Symposium Computer-Based Medical Systems, New York, NY, USA, 26–27 June 2003; pp. 279–283. [Google Scholar]
- Huhn, E.A.; Lobmaier, S.; Fischer, T.; Schneider, R.; Bauer, A.; Schneider, K.T.; Schmidt, G. New Computerized Fetal Heart Rate Analysis for Surveillance of Intrauterine Growth Restriction. Prenat. Diagn. 2011, 31, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Garabedian, C.; Butruille, L.; Servan-Schreiber, E.; Ficheur, G.; Storme, L.; Deruelle, P.; Jonckheere, J.D.; Houfflin-Debarge, V. Fetal Heart-Rate Variability: Validation of a New Continuous, Noninvasive Computerized Analysis. Gynecol. Obstet. Investig. 2017, 82, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Van Leeuwen, P.; Geue, D.; Hatzmann, W.; Grönemeyer, D. Influence of Gestational Age, Heart Rate, Gender and Time of Day on Fetal Heart Rate Variability. Med. Biol. Eng. Comput. 2005, 43, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Cömert, Z.; Kocamaz, A.F. A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals. Bitlis Eren Univ. J. Sci. Technol. 2017, 7, 93–103. [Google Scholar] [CrossRef]
- Improta, G.; Romano, M.; Ponsiglione, A.M.; Bifulco, P.; Faiella, G.; Cesarelli, M. Computerized Cardiotocography: A Software to Generate Synthetic Signals. J. Health Med. Inform. 2014, 5, 10-4172. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.; Bifulco, P.; Ruffo, M.; Improta, G.; Clemente, F.; Cesarelli, M. Software for Computerised Analysis of Cardiotocographic Traces. Comput. Methods Programs Biomed. 2016, 124, 121–137. [Google Scholar] [CrossRef]
- Romano, M.; Bifulco, P.; Ponsiglione, A.M.; Gargiulo, G.D.; Amato, F.; Cesarelli, M. Evaluation of Floatingline and Foetal Heart Rate Variability. Biomed. Signal. Process. Control 2018, 39, 185–196. [Google Scholar] [CrossRef]
- Cömert, Z.; Kocamaz, A.F. Open-Access Software for Analysis of Fetal Heart Rate Signals. Biomed. Signal. Process. Control 2018, 45, 98–108. [Google Scholar] [CrossRef]
- Abdulhay, E.W.; Oweis, R.J.; Alhaddad, A.M.; Sublaban, F.N.; Radwan, M.A.; Almasaeed, H.M. Review Article: Non-Invasive Fetal Heart Rate Monitoring Techniques. Biomed. Sci. Eng. 2014, 2, 53–67. [Google Scholar] [CrossRef]
- Castro, L.; Loureiro, M.; Henriques, T.S.; Nunes, I. Systematic Review of Intrapartum Fetal Heart Rate Spectral Analysis and an Application in the Detection of Fetal Acidemia. Front. Pediatr. 2021, 9, 757. [Google Scholar] [CrossRef] [PubMed]
- Ponsiglione, A.M.; Cosentino, C.; Cesarelli, G.; Amato, F.; Romano, M. A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals. Sensors 2021, 21, 6136. [Google Scholar] [CrossRef]
- Frassineti, L.; Lanatà, A.; Olmi, B.; Manfredi, C. Multiscale Entropy Analysis of Heart Rate Variability in Neonatal Patients with and without Seizures. Bioengineering 2021, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Mamprin, M.; Zelis, J.M.; Tonino, P.A.L.; Zinger, S.; de With, P.H.N. Decision Trees for Predicting Mortality in Transcatheter Aortic Valve Implantation. Bioengineering 2021, 8, 22. [Google Scholar] [CrossRef]
- Savalia, S.; Emamian, V. Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks. Bioengineering 2018, 5, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, Y.; Vaino, D. Controlling Electronic Devices with Brain Rhythms/Electrical Activity Using Artificial Neural Network (ANN). Bioengineering 2019, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Balayla, J.; Shrem, G. Use of Artificial Intelligence (AI) in the Interpretation of Intrapartum Fetal Heart Rate (FHR) Tracings: A Systematic Review and Meta-Analysis. Arch. Gynecol. Obstet. 2019, 300, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-L.; Hsu, Y.-Y. Fetal Distress Prediction Using Discriminant Analysis, Decision Tree, and Artificial Neural Network. J. Biomed. Sci. Eng. 2012, 5, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Marques de Sa, J.P.; Reis, L.P.; Lau, J.N.; Bernardes, J. Estimation and Classification of Fetal Heart Rate Baselines Using Artificial Neural Networks. In Proceedings of the Computers in Cardiology, Bethesda, MD, USA, 25–28 September 1994; pp. 541–544. [Google Scholar]
- Yılmaz, E. Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks. J. Med. Biol. Eng. 2016, 36, 820–832. [Google Scholar] [CrossRef]
- Improta, G.; Ricciardi, C.; Amato, F.; D’Addio, G.; Cesarelli, M.; Romano, M. Efficacy of Machine Learning in Predicting the Kind of Delivery by Cardiotocography. In Proceedings of the XV Mediterranean Conference on Medical and Biological Engineering and Computing—MEDICON, Coimbra, Portugal, 26–28 September 2019; Henriques, J., de Carvalho, P., Neves, N., Eds.; Springer: Cham, Switzerland, 2020; Volume 76, pp. 793–799. [Google Scholar]
- Ricciardi, C.; Improta, G.; Amato, F.; Cesarelli, G.; Romano, M. Classifying the Type of Delivery from Cardiotocographic Signals: A Machine Learning Approach. Comput. Methods Programs Biomed. 2020, 196, 105712. [Google Scholar] [CrossRef]
- Maeda, K.; Utsu, M.; Makio, A.; Serizawa, M.; Noguchi, Y.; Hamada, T.; Mariko, K.; Matsumoto, F. Neural Network Computer Analysis of Fetal Heart Rate. J. Matern.-Fetal Investig. 1998, 8, 163–171. [Google Scholar]
- Liszka-Hackzell, J.J. Categorization of Fetal Heart Rate Patterns Using Neural Networks. J. Med. Syst. 2001, 25, 269–276. [Google Scholar] [CrossRef]
- Lai, J.; Nowlan, N.C.; Vaidyanathan, R.; Shaw, C.J.; Lees, C.C. Fetal Movements as a Predictor of Health. Acta Obstet. Gynecol. Scand. 2016, 95, 968–975. [Google Scholar] [CrossRef] [Green Version]
- Krebs, H.-B.; Petres, R.E.; Dunn, L.J.; Smith, P.J. Intrapartum Fetal Heart Rate Monitoring: VI. Prognostic Significance of Accelerations. Am. J. Obstet. Gynecol. 1982, 142, 297–305. [Google Scholar] [CrossRef]
- Zhao, H.; Wakai, R.T. Simultaneity of Foetal Heart Rate Acceleration and Foetal Trunk Movement Determined by Foetal Magnetocardiogram Actocardiography. Phys. Med. Biol. 2002, 47, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Ryo, E.; Kamata, H.; Seto, M.; Morita, M.; Nagaya, Y.; Nishihara, K.; Ohki, N. Reference Values for a Fetal Movement Acceleration Measurement Recorder to Count Fetal Movements. Pediatr. Res. 2018, 83, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.; Faiella, G.; Bifulco, P.; D’Addio, G.; Clemente, F.; Cesarelli, M. Outliers Detection and Processing in CTG Monitoring. In Proceedings of the XIII Mediterranean Conference on Medical and Biological Engineering and Computing, Seville, Spain, 25–28 September 2013; Roa Romero, L.M., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 651–654. [Google Scholar]
- Cesarelli, M.; Romano, M.; Bifulco, P.; Fedele, F.; Bracale, M. An Algorithm for the Recovery of Fetal Heart Rate Series from CTG Data. Comput. Biol. Med. 2007, 37, 663–669. [Google Scholar] [CrossRef]
- Cesarelli, M.; Romano, M.; D’Addio, G.; Ruffo, M.; Bifulco, P.; Pasquariello, G.; Fratini, A. Floatingline Estimation in FHR Signal Analysis. In Proceedings of the 5th European Conference of the International Federation for Medical and Biological Engineering, Budapest, Hungary, 14–18 September 2011; Jobbágy, Á., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 179–182. [Google Scholar]
- Cesarelli, M.; Romano, M.; Bifulco, P. Comparison of Short Term Variability Indexes in Cardiotocographic Foetal Monitoring. Comput. Biol. Med. 2009, 39, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.; Iuppariello, L.; Ponsiglione, A.M.; Improta, G.; Bifulco, P.; Cesarelli, M. Frequency and Time Domain Analysis of Foetal Heart Rate Variability with Traditional Indexes: A Critical Survey. Comput. Math. Methods Med. 2016, 2016, 9585431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesarelli, M.; Romano, M.; Ruffo, M.; Bifulco, P.; Pasquariello, G.; Fratini, A. PSD Modifications of FHRV Due to Interpolation and CTG Storage Rate. Biomed. Signal Process. Control 2011, 6, 225–230. [Google Scholar] [CrossRef]
- Romano, M.; Cesarelli, M.; Bifulco, P.; Sansone, M.; Bracale, M. Study of Fetal Autonomous Nervous System’s Response by Means of FHRV Frequency Analysis. In Proceedings of the First International IEEE EMBS Conference on Neural Engineering, Capri, Italy, 20–22 March 2003; pp. 399–402. [Google Scholar]
- Horne, R.S.C. Cardio-Respiratory Control during Sleep in Infancy. Paediatr. Respir. Rev. 2014, 15, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishman, M.; Jacono, F.J.; Park, S.; Jamasebi, R.; Thungtong, A.; Loparo, K.A.; Dick, T.E. A Method for Analyzing Temporal Patterns of Variability of a Time Series from Poincare Plots. J. Appl. Physiol. 2012, 113, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T. Approach to an Irregular Time Series on the Basis of the Fractal Theory. Phys. Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Guzzetti, S.; Borroni, E.; Garbelli, P.E.; Ceriani, E.; Bella, P.D.; Montano, N.; Cogliati, C.; Somers, V.K.; Mallani, A.; Porta, A. Symbolic Dynamics of Heart Rate Variability. Circulation 2005, 112, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Cysarz, D.; Porta, A.; Montano, N.; Leeuwen, P.V.; Kurths, J.; Wessel, N. Quantifying Heart Rate Dynamics Using Different Approaches of Symbolic Dynamics. Eur. Phys. J. Spec. Top. 2013, 222, 487–500. [Google Scholar] [CrossRef]
- Romano, M.; D’Addio, G.; Clemente, F.; Ponsiglione, A.M.; Improta, G.; Cesarelli, M. Symbolic Dynamic and Frequency Analysis in Foetal Monitoring. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisboa, Portugal, 11–12 June 2014; pp. 1–5. [Google Scholar]
- Cesarelli, M.; Romano, M.; Bifulco, P.; Improta, G.; D’Addio, G. An Application of Symbolic Dynamics for FHRV Assessment. Stud. Health Technol. Inf. 2012, 180, 123–127. [Google Scholar]
- Cesarelli, M.; Romano, M.; Bifulco, P.; Improta, G.; D’Addio, G. Prognostic Decision Support Using Symbolic Dynamics in CTG Monitoring. Stud. Health Technol. Inf. 2013, 186, 140–144. [Google Scholar]
- Romano, M.; Bifulco, P.; Improta, G.; Faiella, G.; Cesarelli, M.; Clemente, F.; D’Addio, G. Symbolic Dynamics in Cardiotocographic Monitoring. In Proceedings of the 2013 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2013. [Google Scholar]
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test For The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Ecker, C.; Reynaud, E.; Williams, S.C.; Brammer, M.J. Detecting Functional Nodes in Large-scale Cortical Networks with Functional Magnetic Resonance Imaging: A Principal Component Analysis of the Human Visual System. Hum. Brain Mapp. 2006, 28, 817–834. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Mäkikallio, T.H.; Perkiömäki, J. Measurement of Heart Rate Variability by Methods Based on Nonlinear Dynamics. J. Electrocardiol. 2003, 36, 95–99. [Google Scholar] [CrossRef]
- Voss, A.; Kurths, J.; Kleiner, H.J.; Witt, A.; Wessel, N.; Saparin, P.; Osterziel, K.J.; Schurath, R.; Dietz, R. The Application of Methods of Non-Linear Dynamics for the Improved and Predictive Recognition of Patients Threatened by Sudden Cardiac Death. Cardiovasc. Res. 1996, 31, 419–433. [Google Scholar] [CrossRef]
- Chung, D.Y.; Sim, Y.B.; Park, K.T.; Yi, S.H.; Shin, J.C.; Kim, S.P. Spectral Analysis of Fetal Heart Rate Variability as a Predictor of Intrapartum Fetal Distress. Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2001, 73, 109–116. [Google Scholar] [CrossRef]
- David, M.; Hirsch, M.; Karin, J.; Toledo, E.; Akselrod, S. An Estimate of Fetal Autonomic State by Time-Frequency Analysis of Fetal Heart Rate Variability. J. Appl. Physiol. 2007, 102, 1057–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, D.; Preissl, H.; Eswaran, H.; Lowery, C.L. A Study of Fetal Sympatho-Vagal Balance at Various Gestational Periods Using the Length Transform on Magnetocardiographic Data. In Proceedings of the 2007 Computers in Cardiology, Durham, NC, USA, 30 September–3 October 2007; pp. 685–688. [Google Scholar]
- Hopkins, P.; Sneyd, R.; Outram, N.; Rosén, K.; Ifeachor, E. Suitability of Fractal Dimension Analysis of Foetal Heart Rate as an Indicator for Asphyxia. In Proceedings of the International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2005), Lisbon, Portugal, 29 June—1 July 2005; Volume 2, pp. 480–485. [Google Scholar]
- Timor-Tritsch, I.E.; Dierker, L.J.; Zador, I.; Hertz, R.H.; Rosen, M.G. Fetal Movements Associated with Fetal Heart Rate Accelerations and Decelerations. Am. J. Obstet. Gynecol. 1978, 131, 276–280. [Google Scholar] [CrossRef]
- Vintzileos, A.M.; Campbell, W.A.; Nochimson, D. Relation between Fetal Heart Rate Accelerations, Fetal Movements, and Fetal Breathing Movements. Am. J. Perinatol. 1986, 3, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.R.B.; Besinger, R.E.; Thomas, R.L.; Strobino, D.M.; Niebyl, J.R. Quantitative and Qualitative Relationships Between Fetal Heart Rate Accelerations and Fetal Movement. J. Matern. Fetal Med. 1992, 1, 251–253. [Google Scholar] [CrossRef]
- Zizzo, A.R.; Kirkegaard, I.; Hansen, J.; Uldbjerg, N.; Mølgaard, H. Fetal Heart Rate Variability Is Affected by Fetal Movements: A Systematic Review. Front. Physiol. 2020, 11, 1177. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Van Leeuwen, P.; Schneider, U.; Frank, B.; Hoyer, D.; Geue, D.; Grönemeyer, D. Heart Rate Features in Fetal Behavioural States. Early Hum. Dev. 2009, 85, 131–135. [Google Scholar] [CrossRef]
- Brändle, J.; Preissl, H.; Draganova, R.; Ortiz, E.; Kagan, K.O.; Abele, H.; Brucker, S.Y.; Kiefer-Schmidt, I. Heart Rate Variability Parameters and Fetal Movement Complement Fetal Behavioral States Detection via Magnetography to Monitor Neurovegetative Development. Front. Hum. Neurosci. 2015, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Montero-Nava, J.E.; Pliego-Carrillo, A.C.; Ledesma-Ramírez, C.I.; Peña-Castillo, M.Á.; Echeverría, J.C.; Pacheco-López, G.; Reyes-Lagos, J.J. Analysis of the Fetal Cardio-Electrohysterographic Coupling at the Third Trimester of Gestation in Healthy Women by Bivariate Phase-Rectified Signal Averaging. PLoS ONE 2020, 15, e0236123. [Google Scholar] [CrossRef]
- Rivolta, M.W.; Stampalija, T.; Casati, D.; Richardson, B.S.; Ross, M.G.; Frasch, M.G.; Bauer, A.; Ferrazzi, E.; Sassi, R. Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model. PLoS ONE 2014, 9, e104193. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Jaramillo, C.I.; Pliego-Carrillo, A.C.; Peña-Castillo, M.Á.; Echeverría, J.C.; Becerril-Villanueva, E.; Pavón, L.; Ayala-Yáñez, R.; González-Camarena, R.; Berg, K.; Wessel, N.; et al. Comparison of Fetal Heart Rate Variability by Symbolic Dynamics at the Third Trimester of Pregnancy and Low-Risk Parturition. Heliyon 2020, 6, e03485. [Google Scholar] [CrossRef]
Time-Domain FHRV Features | Principal Component |
---|---|
1 | |
STV | 0.995 |
SDev | 0.999 |
PPA | 0.999 |
Frequency-Domain Features | Principal Components | ||
---|---|---|---|
1 | 2 | 3 | |
VLF | 0.903 | 0.345 | −0.013 |
LF | 0.238 | 0.932 | 0.132 |
HF | 0.275 | 0.802 | −0.443 |
Total power | 0.862 | 0.465 | 0.001 |
SVB | −0.085 | 0.286 | 0.939 |
%VLF | 0.809 | −0.566 | −0.089 |
%LF | −0.788 | 0.573 | 0.172 |
%HF | 0.238 | 0.932 | 0.132 |
Nonlinear Features | Principal Components | |
---|---|---|
1 | 2 | |
SampEn | −0.165 | 0.929 |
SD1 | 0.774 | 0.506 |
SD2 | 0.857 | −0.256 |
HFD | −0.302 | 0.861 |
VIRR | 0.873 | 0.304 |
VIFHR | 0.860 | −0.028 |
Type of Feature | Feature | Principal Components |
---|---|---|
Time domain | STV | LIN_time 1 |
SDev | ||
PPA | ||
Frequency domain | VLF | LIN_VLF_power 2 |
LF | LIN_LF_HF 3 | |
HF | LIN_SVB 4 | |
Total power | ||
%VLF | ||
%LF | ||
%HF | ||
SVB | ||
Nonlinear | SampEn | NL_variability 5 |
SD1 | NL_complexity 6 | |
SD2 | ||
HFD | ||
VIRR | ||
VIFHR |
R | R2 | R2-Adjusted | Error |
---|---|---|---|
0.742 | 0.551 | 0.531 | 3.724 |
Independent Variable | Standardized Coefficient | p-Value | Confidence Interval (CI = 95%) | |
---|---|---|---|---|
Upper CI | Lower CI | |||
intercept | - | 0.445 | −21.941 | 9.668 |
meanFHR | 0.126 | 0.074 | −0.008 | 0.159 |
Pregnancy week | 0.047 | 0.399 | −0.142 | 0.355 |
LIN_time | 0.499 | 0.045 | 0.066 | 5.360 |
LIN_VLF_power | −0.317 | 0.000 | −2.677 | −0.776 |
LIN_LF_HF | −0.060 | 0.752 | −2.369 | 1.714 |
LIN_SVB | −0.116 | 0.175 | −1.543 | 0.282 |
NL_variability | 0.267 | 0.061 | −0.071 | 2.975 |
NL_complexity | −0.179 | 0.024 | −1.821 | −0.127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponsiglione, A.M.; Amato, F.; Romano, M. Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals. Bioengineering 2022, 9, 8. https://doi.org/10.3390/bioengineering9010008
Ponsiglione AM, Amato F, Romano M. Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals. Bioengineering. 2022; 9(1):8. https://doi.org/10.3390/bioengineering9010008
Chicago/Turabian StylePonsiglione, Alfonso Maria, Francesco Amato, and Maria Romano. 2022. "Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals" Bioengineering 9, no. 1: 8. https://doi.org/10.3390/bioengineering9010008
APA StylePonsiglione, A. M., Amato, F., & Romano, M. (2022). Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals. Bioengineering, 9(1), 8. https://doi.org/10.3390/bioengineering9010008