The Preliminary Results for Evaluating Cocoa Butter’s Hepatoprotective Effects against Lipid Accumulation and Inflammation in Adult Male Rats Chronically Fed Ethanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Study Protocol
2.2. Liver Function Indicators
2.3. Histopathological Examinations
2.4. Lipid Profiles
2.5. Oxidative Stress
2.6. Hepatic Cytochrome P450 2E1 (CYP2E1)
2.7. Proinflammatory Markers
2.8. Fatty Acid Composition
2.9. Statistical Analysis
3. Results
3.1. Food Intake, Alcohol Intake, Body Weight (BW), and Liver Weight
3.2. Liver Damage
3.2.1. Liver Function Index
3.2.2. Liver Histopathological Examinations
3.3. Lipid Profiles
3.4. Oxidative Stress
3.5. Inflammatory Response
3.6. Erythrocytic FA Composition
3.7. Correlations between Erythrocytic FA Compositions and Hepatic Damage Scores
4. Discussion
4.1. Food Intake, Alcohol Intake, and BW
4.2. SFAs, Alcohol Intake, and Liver Damage
4.3. SFAs, Alcohol Intake, and Lipid Metabolism
4.4. SFAs, Alcohol Intake, and Oxidative Stress
4.5. SFAs, Alcohol Intake, and Inflammation
4.6. Correlations between SFAs and Alcoholic Liver Damage
4.7. The Research Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osna, N.A.; Donohue, T.M., Jr.; Kharbanda, K.K. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res. 2017, 38, 147–161. [Google Scholar]
- Park, S.H.; Lee, Y.S.; Sim, J.; Sim, J.; Seo, S.; Seo, W. Alcoholic liver disease: A new insight into the pathogenesis of liver disease. Arch. Pharmacal. Res. 2022, 45, 447–459. [Google Scholar] [CrossRef]
- Orman, E.S.; Odena, G.; Bataller, R. Alcoholic liver disease: Pathogenesis, management, and novel targets for therapy. J. Gastroenterol. Hepatol. 2013, 28, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Bataller, R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology 2011, 141, 1572–1585. [Google Scholar] [CrossRef] [Green Version]
- Reitz, R.C. Dietary fatty acids and alcohol: Effects on cellular membranes. Alcohol Alcohoism 1993, 28, 59–71. [Google Scholar]
- Nanji, A.A.; Mendenhall, C.L.; French, S.W. Beef fat prevents alcoholic liver disease in the rat. Alcohol Clin. Exp. Res. 1989, 13, 15–19. [Google Scholar] [CrossRef]
- Mezey, E. Dietary fat and alcoholic liver disease. Hepatology 1998, 28, 901–905. [Google Scholar] [CrossRef]
- Nanji, A.A.; Sadrzadeh, S.M.; Yang, E.K.; Fogt, F.; Meydani, M.; Dannenberg, A.J. Dietary saturated fatty acids: A novel treatment for alcoholic liver disease. Gastroenterology 1995, 109, 547–554. [Google Scholar] [CrossRef]
- Nanji, A.A.; Satoh, S.; Uetake, S.; Ohata, M.; Nakajima, H.; Yamauchi, M. Effect of type of dietary fat and ethanol on hepatic leukotriene level in experimental alcoholic liver disease. Nihon Arukoru Yakubutsu Igakkai Zasshi 2003, 38, 350–363. [Google Scholar]
- Ronis, M.J.; Korourian, S.; Zipperman, M.; Hakkak, R.; Badger, T.M. Dietary saturated fat reduces alcoholic hepatotoxicity in rats by altering fatty acid metabolism and membrane composition. J. Nutr. 2004, 134, 904–912. [Google Scholar] [CrossRef] [Green Version]
- You, M.; Cao, Q.; Liang, X.; Ajmo, J.M.; Ness, G.C. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J. Nutr. 2008, 138, 497–501. [Google Scholar] [CrossRef] [Green Version]
- You, M.; Considine, R.V.; Leone, T.C.; Kelly, D.P.; Crabb, D.W. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology 2005, 42, 568–577. [Google Scholar] [CrossRef] [Green Version]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288. [Google Scholar] [CrossRef]
- Gammone, M.A.; Efthymakis, K.; Pluchinotta, F.R.; Bergante, S.; Tettamanti, G.; Riccioni, G.; D’Orazio, N. Impact of chocolate on the cardiovascular health. Front. Biosci. 2018, 23, 852–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, E.L.; Hutfless, S.M.; Ding, X.; Girotra, S. Chocolate and prevention of cardiovascular disease: A systematic review. Nutr. Metab. 2006, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Mustad, V.; Derr, J. Effects of dietary stearic acid on plasma lipids and thrombosis. Nutr. Today 1993, 28, 30–38. [Google Scholar] [CrossRef]
- Keys, A.; Anderson, J.T.; Grande, F. Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet 1957, 273, 959–966. [Google Scholar] [CrossRef]
- Hegsted, D.M.; McGandy, R.B.; Myers, M.L.; Stare, F.J. Quantitative effects of dietary fat on serum cholesterol in man. Am. J. Clin. Nutr. 1965, 17, 281–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B.; Manson, J.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Peng, H.C.; Wang, X.D.; Yang, S.C. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats. Hepatobiliary Surg. Nutr. 2015, 4, 172–183. [Google Scholar] [PubMed]
- Lieber, C.S.; DeCarli, L.M. Animal models of chronic ethanol toxicity. Methods Enzymol. 1994, 233, 585–594. [Google Scholar] [PubMed]
- Chiu, W.C.; Huang, Y.L.; Chen, Y.L.; Peng, H.C.; Liao, W.H.; Chuang, H.L.; Chen, J.R.; Yang, S.C. Synbiotics reduce ethanol-induced hepatic steatosis and inflammation by improving intestinal permeability and microbiota in rats. Food Funct. 2015, 6, 1692–1700. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969, 27, 502–522. [Google Scholar] [CrossRef]
- Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212. [Google Scholar] [CrossRef]
- Chen, Y.L.; Peng, H.C.; Tan, S.W.; Tsai, C.Y.; Huang, Y.H.; Wu, H.Y.; Yang, S.C. Amelioration of ethanol-induced liver injury in rats by nanogold flakes. Alcohol 2013, 47, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aynaud, M.M.; Hernandez, J.J.; Barutcu, S.; Braunschweig, U.; Chan, K.; Pearson, J.D.; Trcka, D.; Prosser, S.L.; Kim, J.; Barrios-Rodiles, M.; et al. A multiplexed, next generation sequencing platform for high-throughput detection of SARS-CoV-2. Nat. Commun. 2021, 12, 1405. [Google Scholar] [CrossRef]
- Lee, H.C.; Liang, A.; Lin, Y.H.; Guo, Y.R.; Huang, S.Y. Low dietary n-6/n-3 polyunsaturated fatty acid ratio prevents induced oral carcinoma in a hamster pouch model. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Peng, H.C.; Chien, Y.W.; Chen, Y.L.; Lu, N.S.; Yang, S.C. Effects of fish oil on lipid metabolism and its molecular biological regulators in chronic ethanol-fed rats. Nutrients 2018, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Shirakawa, H.; Lu, N.S.; Peng, H.C.; Xiao, Q.; Yang, S.C. Impacts of fish oil on the gut microbiota of rats with alcoholic liver damage. J. Nutr. Biochem. 2020, 86, 108491. [Google Scholar] [CrossRef]
- Chen, Y.L.; Peng, H.C.; Hsieh, Y.C.; Yang, S.C. Epidermal growth factor improved alcohol-induced inflammation in rats. Alcoholosm 2014, 48, 701–706. [Google Scholar] [CrossRef]
- Pirola, R.C.; Lieber, C.S. The energy cost of the metabolism of drugs, including ethanol. Pharmacology 1972, 7, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Mezey, E. Interaction between alcohol and nutrition in the pathogenesis of alcoholic liver disease. Semin. Liver Dis. 1991, 11, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Kirpich, I.A.; Feng, W.; Wang, Y.; Liu, Y.; Barker, D.F.; Barve, S.S.; McClain, C.J. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol. Clin. Exp. Res. 2012, 36, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, S.; Cooper, J.A. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur. J. Nutr. 2014, 53, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Hézode, C.; Lonjon, I.; Roudot-Thoraval, F.; Pawlotsky, J.M.; Zafrani, E.S.; Dhumeaux, D. Impact of moderate alcohol consumption on histological activity and fibrosis in patients with chronic hepatitis C, and specific influence of steatosis: A prospective study. Aliment. Pharmacol. Ther. 2003, 17, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Beier, J.I.; Arteel, G.E.; Ramsden, C.E.; Feldstein, A.E.; McClain, C.J.; Kirpich, I.A. Transient receptor potential vanilloid 1 gene deficiency ameliorates hepatic injury in a mouse model of chronic binge alcohol-induced alcoholic liver disease. Am. J. Pathol. 2015, 185, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.F.; Wiggins, D.; Brown, A.M.; Hebbachi, A.M. Synthesis and function of hepatic very-low-density lipoprotein. Biochem. Soc. Trans. 2004, 32, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, S.; Ward, R.J.; Peters, T.J. Effect of chronic ethanol feeding on the hepatic secretion of very-low-density lipoproteins. Biochim. Et Biophys. Acta 1988, 960, 61–66. [Google Scholar] [CrossRef]
- Lakshman, M.R.; Chirtel, S.J.; Chambers, L.C.; Campbell, B.S. Hepatic synthesis of apoproteins of very low density and high density lipoproteins in perfused rat liver: Influence of chronic heavy and moderate doses of ethanol. Alcohol. Clin. Exp. Res. 1989, 13, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhong, W.; Qiu, Y.; Kang, X.; Sun, X.; Tan, X.; Zhao, Y.; Sun, X.; Jia, W.; Zhou, Z. Preservation of hepatocyte nuclear factor-4α contributes to the beneficial effect of dietary medium chain triglyceride on alcohol-induced hepatic lipid dyshomeostasis in rats. Alcohol. Clin. Exp. Res. 2013, 37, 587–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woollett, L.A.; Spady, D.K.; Dietschy, J.M. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res. 1992, 33, 77–88. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Lin, E.C.; McNamara, D.J. Differential effects of saturated fatty acids on low density lipoprotein metabolism in the guinea pig. J. Lipid Res. 1992, 33, 1833–1842. [Google Scholar] [CrossRef]
- Fernandez, M.L.; McNamara, D.J. Regulation of cholesterol and lipoprotein metabolism in guinea pigs mediated by dietary fat quality and quantity. Nutrition 1991, 121, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Siri-Tarino, P.W.; Chiu, S.; Bergeron, N.; Krauss, R.M. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu. Rev. Nutr. 2015, 35, 517–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep. 2010, 12, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, M.; Hagbjörk, A.L.; Wan, Y.J.; Fu, P.C.; Clot, P.; Albano, E.; Ingelman-Sundberg, M.; French, S.W. Modulation of experimental alcohol-induced liver disease by cytochrome P450 2E1 inhibitors. Hepatology 1995, 21, 1610–1617. [Google Scholar] [PubMed]
- Gouillon, Z.; Lucas, D.; Li, J.; Hagbjork, A.L.; French, B.A.; Fu, P.; Fang, C.; Ingelman-Sundberg, M.; Donohue, T.M., Jr.; French, S.W. Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc. Soc. Exp. Biol. Med. 2000, 224, 302–308. [Google Scholar] [CrossRef]
- Järveläinen, H.A.; Fang, C.; Ingelman-Sundberg, M.; Lukkari, T.A.; Sippel, H.; Lindros, K.O. Kupffer cell inactivation alleviates ethanol-induced steatosis and CYP2E1 induction but not inflammatory responses in rat liver. J. Hepatol. 2000, 32, 900–910. [Google Scholar] [CrossRef]
- Lu, Y.; Zhuge, J.; Wang, X.; Bai, J.; Cederbaum, A.I. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 2008, 47, 1483–1494. [Google Scholar] [CrossRef]
- Loguercio, C.; Clot, P.; Albano, E.; Argenzio, F.; Grella, A.; De Girolamo, V.; Delle Cave, M.; Del Vecchio Bianco, C.; Nardi, G. Free radicals and not acetaldehyde influence the circulating levels of glutathione after acute or chronic alcohol abuse: In vivo and in vitro studies. Ital. J. Gastroenterol. Hepatol. 1997, 29, 168–173. [Google Scholar]
- Hirano, T.; Kaplowitz, N.; Tsukamoto, H.; Kamimura, S.; Fernandez-Checa, J.C. Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats. Hepatology 1992, 16, 1423–1427. [Google Scholar] [CrossRef]
- Matsuzawa-Nagata, N.; Takamura, T.; Ando, H.; Nakamura, S.; Kurita, S.; Misu, H.; Ota, T.; Yokoyama, M.; Honda, M.; Miyamoto, K.; et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metab. Clin. Exp. 2008, 57, 1071–1077. [Google Scholar] [CrossRef]
- Chen, P.; Torralba, M.; Tan, J.; Embree, M.; Zengler, K.; Stärkel, P.; van Pijkeren, J.P.; DePew, J.; Loomba, R.; Ho, S.B.; et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 2015, 148, 203–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douds, A.C.; Lim, A.G.; Jazrawi, R.P.; Finlayson, C.; Maxwell, J.D. Serum intercellular adhesion molecule-1 in alcoholic liver disease and its relationship with histological disease severity. J. Hepatol. 1997, 26, 280–286. [Google Scholar] [CrossRef]
- Kono, H.; Uesugi, T.; Froh, M.; Rusyn, I.; Bradford, B.U.; Thurman, R.G. ICAM-1 is involved in the mechanism of alcohol-induced liver injury: Studies with knockout mice. Am. Physiol. Soc. 2001, 280, G1289–G1295. [Google Scholar] [CrossRef]
- Wheeler, M.D. Endotoxin and Kupffer cell activation in alcoholic liver disease. Alcohol Res. Health 2003, 27, 300–306. [Google Scholar]
- Videm, V.; Albrigtsen, M. Soluble ICAM-1 and VCAM-1 as markers of endothelial activation. Scand. J. Immunol. 2008, 67, 523–531. [Google Scholar] [CrossRef]
- Sanadgol, N.; Mostafaie, A.; Mansouri, K.; Bahrami, G. Effect of palmitic acid and linoleic acid on expression of ICAM-1 and VCAM-1 in human bone marrow endothelial cells (HBMECs). Arch. Med. Sci. 2012, 8, 192–198. [Google Scholar] [CrossRef]
- Rao, R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 2009, 50, 638–644. [Google Scholar] [CrossRef]
- Bishehsari, F.; Magno, E.; Swanson, G.; Desai, V.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Alcohol and gut-derived inflammation. Alcohol Res. Curr. Rev. 2017, 38, 163–171. [Google Scholar]
- Zhong, W.; Li, Q.; Xie, G.; Sun, X.; Tan, X.; Sun, X.; Jia, W.; Zhou, Z. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats. Am. J. Physiol.-Gastrointest. Liver Physiol. 2013, 305, G919–G932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ristić-Medić, D.; Takić, M.; Vučić, V.; Kandić, D.; Kostić, N.; Glibetić, M. Abnormalities in the serum phospholipids fatty acid profile in patients with alcoholic liver cirrhosis-a pilot study. J. Clin. Biochem. Nutr. 2013, 53, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraishi, K.; Matsuzaki, S.; Itakura, M.; Ishida, H. Abnormality in membrane fatty acid compositions of cells measured on erythrocyte in alcoholic liver disease. Alcohol. Clin. Exp. Res. 1996, 20, 56A–59A. [Google Scholar] [CrossRef]
- Poppitt, S.D.; Kilmartin, P.; Butler, P.; Keogh, G.F. Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary MUFA, PUFA or saturated fatty acid intake in a controlled cross-over intervention trial. Lipids Health Dis. 2005, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Eagon, P.K. Alcoholic liver injury: Influence of gender and hormones. World J. Gastroenterol. 2010, 16, 1377–1384. [Google Scholar] [CrossRef]
Component | C | CL | CC | E | EL | EC |
---|---|---|---|---|---|---|
g/L (1000 kcal) | ||||||
Casein 1 | 41.4 | 41.4 | 41.4 | 41.4 | 41.4 | 41.4 |
L-Cysteine 2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
DL-Methionine 3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Corn oil 4 | 8.5 | 0 | 0 | 8.5 | 0 | 0 |
Olive oil 5 | 28.4 | 0 | 0 | 28.4 | 0 | 0 |
Safflower oil 6 | 2.7 | 0 | 0 | 2.7 | 0 | 0 |
Lard 7 | 0 | 35.6 | 0 | 0 | 35.6 | 0 |
Cocoa butter 8 | 0 | 0 | 35.6 | 0 | 0 | 35.6 |
Soybean oil 6 | 0 | 4 | 4 | 0 | 4 | 4 |
Choline bitartrate 9 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 |
Fiber 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Xanthan gum 11 | 4 | 4 | 4 | 4 | 4 | 4 |
ICN: AIN-76 vitamins 12 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
ICN: AIN-76 minerals 13 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 |
Maltodextrin 14 | 115.2 | 115.2 | 115.2 | 25.6 | 25.6 | 25.6 |
Ethanol 15 | 0 | 0 | 0 | 50 | 50 | 50 |
Fatty Acids 2 (%) | C, E | CL, EL | CC, EC |
---|---|---|---|
C14:0 | 0.5 | 1.4 | 0.1 |
C16:0 | 11.2 | 20.3 | 25.4 |
C16:1 | 2.3 | 5.8 | – |
C18:0 | 2.1 | 10.4 | 26.7 |
C18:1 (n-9) | 54.5 | 36.7 | 32.2 |
C18:2 (LA, n-6) | 27.5 | 16.6 | 10.5 |
C18:3 (ALA, n-3) | 0.2 | – | – |
C20:0 | 0.6 | 3.5 | 2.9 |
C20:2 (n-6) | 0.7 | 1.4 | 1.1 |
C20:3 | 0.1 | – | – |
C20:4 (AA, n-6) | – | 1.7 | 0.7 |
C20:5 (EPA, n-3) | 0.3 | 0.4 | 0.1 |
C22:4 | 0.1 | 1.2 | 0.2 |
C22:5 (DPA, n-3) | – | 0.3 | 0.1 |
C22:6 (DHA, n-3) | – | 0.3 | – |
SFAs | 14.4 | 35.5 | 55.1 |
MUFAs | 56.7 | 42.6 | 32.2 |
PUFAs | 28.8 | 21.9 | 12.7 |
Total n-3 | 0.5 | 1.0 | 0.2 |
Total n-6 | 28.1 | 19.7 | 12.3 |
Total n-9 | 54.5 | 36.7 | 32.2 |
Group 2 | Food Intake | Alcohol Intake | BW | Relative Liver Weight 3 |
---|---|---|---|---|
(g/kg BW/day) | (g/kg BW/day) | (g) | (%) | |
C | 198.5 ± 1.9 | - | 440.0 ± 5.1d | 2.3 ± 0.02a |
CL | 197.5 ± 2.4 | - | 439.4 ± 5.8d | 2.3 ± 0.04a |
CC | 216.3 ± 3.9 | - | 384.9 ± 12.5bc | 2.6 ± 0.10b |
E | 207.4 ± 2.1 | 10.4 ± 0.1 | 404.3 ± 11.1c | 2.9 ± 0.11c |
EL | 206.0 ± 3.9 | 10.3 ± 0.2 | 346.3 ± 9.0a | 3.0 ± 0.08c |
EC | 203.6 ± 2.1 | 10.2 ± 0.1 | 363.0 ± 5.1ab | 2.9 ± 0.05c |
Group 2 | AST (U/L) | ALT (U/L) |
---|---|---|
C | 74.5 ± 4.0a | 36.0 ± 8.7a |
CL | 73.8 ± 6.8a | 36.0 ± 7.6a |
CC | 870 ± 11.6a | 51.6 ± 11.4ab |
E | 125.8 ± 23.7b | 74.6 ± 23.4c |
EL | 176.8 ± 37.1b | 75.5 ± 46.2c |
EC | 168.5 ± 54.9b | 70.5 ± 15.7bc |
Group 2 | Fatty Change | Inflammatory Cell Infiltration | Degeneration and Necrosis | Bile Duct Hyperplasia | Fibrosis |
---|---|---|---|---|---|
C | 1.2 ± 0.4ab | 1.8 ± 0.2a | 0.2 ± 0.2a | 0.2 ± 0.2 | 0.2 ± 0.2 |
CL | 1.6 ± 0.2abc | 1.8 ± 0.2a | 0.2 ± 0.2a | 0.4 ± 0.2 | 0.0 ± 0.0 |
CC | 0.6 ± 0.4a | 1.8 ± 0.2a | 0.2 ± 0.2a | 0.2 ± 0.2 | 0.0 ± 0.0 |
E | 2.4 ± 0.2c | 2.6 ± 0.2b | 2.8 ± 0.2c | 0.0 ± 0.0 | 0.0 ± 0.0 |
EL | 2.4 ± 0.4c | 1.8 ± 0.2a | 1.4 ± 0.2b | 0.0 ± 0.0 | 0.0 ± 0.0 |
EC | 1.8 ± 0.4b | 1.8 ± 0.4a | 1.2 ± 0.2b | 0.4 ± 0.2 | 0.4 ± 0.4 |
Group 3 | TGs | TC | HDL-C | LDL-C | TC/HDL-C Ratio |
---|---|---|---|---|---|
(mg/dL) | (mg/dL) | (mg/dL) | (mg/dL) | ||
C | 50.5 ± 4.0 | 52.5 ± 3.9ab | 12.9 ± 0.9a | 6.6 ± 0.6b | 4.1 ± 0.1bc |
CL | 41.4 ± 5.9 | 51.9 ± 2.9a | 12.3 ± 0.5a | 7.1 ± 0.3b | 4.2 ± 0.1c |
CC | 47.2 ± 4.2 | 52.5 ± 2.4ab | 12.5 ± 1.0a | 7.7 ± 0.7b | 4.4 ± 0.1c |
E | 37.2 ± 3.9 | 63.3 ± 4.2b | 14.6 ± 0.9a | 4.2 ± 0.4a | 4.3 ± 0.1c |
EL | 60.4 ± 21.5 | 77.7 ± 4.4c | 20.9 ± 0.7b | 7.1 ± 1.1b | 3.7 ± 0.2ab |
EC | 52.4 ± 5.6 | 76.2 ± 5.6c | 20.3 ± 0.9b | 7.6 ± 1.3b | 3.7 ± 0.1ab |
Group 2 | TGs | TC |
---|---|---|
(mg/g Liver) | (mg/g Liver) | |
C | 14.1 ± 1.6ab | 21.2 ± 0.6 |
CL | 15.5 ± 1.2bc | 26.3 ± 5.6 |
CC | 13.2 ± 1.2b | 20.9 ± 0.9 |
E | 18.9 ± 1.5c | 21.9 ± 1.4 |
EL | 17.0 ± 1.1bc | 23.3 ± 1.1 |
EC | 18.0 ± 2.2bc | 19.8 ± 0.9 |
Group 3 | Hepatic GSH/GSSG Ratio | Hepatic TBARSs (μM) |
---|---|---|
C | 6.0 ± 0.9ab | 10.6 ± 0.6 |
CL | 8.9 ± 0.8bc | 10.9 ± 1.1 |
CC | 7.6 ± 2.6bc | 12.1 ± 1.3 |
E | 5.1 ± 0.3a | 13.6 ± 1.3 |
EL | 5.4 ± 0.4ab | 14.8 ± 2.1 |
EC | 6.5 ± 0.7ab | 13.5 ± 3.8 |
Group 2 | VCAM-1 | ICAM-1 | E-Selectin |
---|---|---|---|
(ng/mL) | (ng/mL) | (ng/mL) | |
C | 190.9 ± 20.7ab | 13.6 ± 0.6a | 24.7 ± 1.3 |
CL | 168.8 ± 22.0ab | 12.8 ± 0.7a | 23.3 ± 1.3 |
CC | 161.4 ± 27.3a | 11.6 ± 0.4a | 23.0 ± 1.8 |
E | 286.7 ± 80.6ab | 17.8 ± 2.6b | 25.0 ± 2.1 |
EL | 307.5 ± 61.0b | 13.3 ± 1.1a | 20.6 ± 1.6 |
EC | 276.9 ± 40.9ab | 13.1 ± 0.8a | 21.4 ± 1.4 |
Group 2 | TNF-α | IL-1β | IL-6 | IL-10 |
---|---|---|---|---|
(pg/mg Protein) | (pg/mg Protein) | (pg/mg Protein) | (pg/mg Protein) | |
C | 0.4 ± 0.03b | 5.8 ± 0.6a | 1.7 ± 0.1bc | 6.2 ± 0.6bc |
CL | 0.4 ± 0.03b | 5.9 ± 0.7a | 1.6 ± 0.1bc | 6.3 ± 0.5bc |
CC | 0.4 ± 0.03b | 4.8 ± 0.5a | 1.4 ± 0.1b | 6.5 ± 0.7c |
E | 0.4 ± 0.02b | 9.6 ± 2.3b | 1.9 ± 0.3c | 4.9 ± 0.3b |
EL | 0.2 ± 0.01a | 3.8 ± 0.5a | 0.8 ± 0.1a | 3.1 ± 0.2a |
EC | 0.2 ± 0.02a | 3.4 ± 0.5a | 0.7 ± 0.1a | 3.3 ± 0.4a |
Fatty Acid 2 (%) | C | CL | CC | E | EL | EC |
---|---|---|---|---|---|---|
C14:0 | 1.90 ± 0.26a | 2.10 ± 0.31a | 2.00 ± 0.33a | 2.00 ± 0.31a | 3.10 ± 0.31b | 2.00 ± 0.25a |
C16:0 | 41.1 ± 1.00bcd | 43.5 ± 0.94d | 40.1 ± 0.88abc | 39.1 ± 0.28ab | 42.4 ± 0.55cd | 38.0 ± 0.97a |
C16:1 | 0.40 ± 0.10ab | 0.50 ± 0.08bc | 0.30 ± 0.09ab | 0.40 ± 0.03b | 0.70 ± 0.14c | 0.20 ± 0.07a |
C18:0 | 18.6 ± 0.84a | 20.2 ± 0.82ab | 24.3 ± 0.52d | 22.2 ± 0.32c | 21.8 ± 0.80bc | 26.0 ± 0.55d |
C18:1 (n-9) | 15.6 ± 1.07bc | 13.4 ± 0.36a | 14.4 ± 0.29ab | 16.8 ± 0.40c | 16.4 ± 0.83c | 15.5 ± 0.49bc |
C18:2 (LA, n-6) | 8.30 ± 0.52cd | 8.80 ± 0.49d | 6.80 ± 0.31ab | 6.10 ± 0.17a | 7.40 ± 0.39bc | 7.20 ± 0.16b |
C18:3 (ALA, n-3) | – | 0.10 ± 0.15 | – | – | – | – |
C20:0 | 1.60 ± 0.31b | 1.20 ± 0.25b | 0.50 ± 0.03a | 0.50 ± 0.04a | 0.30 ± 0.10a | 0.30 ± 0.06a |
C20:2 (n-6) | 2.90 ± 0.83ab | 1.30 ± 0.46a | 1.80 ± 0.63ab | 3.20 ± 0.29b | 1.40 ± 0.59a | 1.70 ± 0.66ab |
C20:3 | 0.70 ± 0.29 | 0.90 ± 0.54 | 0.50 ± 0.25 | 1.20 ± 0.15 | 0.30 ± 0.26 | 0.30 ± 0.26 |
C20:4 (AA, n-6) | 6.20 ± 1.51ab | 5.70 ± 0.88ab | 6.40 ± 1.00b | 5.60 ± 0.31ab | 3.50 ± 0.70a | 5.70 ± 1.04ab |
C20:5 (EPA, n-3) | 0.60 ± 0.27b | 0.10 ± 0.04a | 0.10 ± 0.04a | 0.20 ± 0.04ab | 0.30 ± 0.15ab | 0.10 ± 0.04a |
C22:0 | 0.20 ± 0.22 | – | – | – | 0.10 ± 0.11 | 0.40 ± 0.29 |
C22:4 | 1.30 ± 0.53 | 1.40 ± 0.34 | 2.10 ± 0.59 | 2.00 ± 0.08 | 1.60 ± 0.54 | 0.70 ± 0.43 |
C22:5 (DPA, n-3) | 0.40 ± 0.07 | 0.40 ± 0.09 | 0.40 ± 0.07 | 0.20 ± 0.01 | 0.30 ± 0.04 | 0.40 ± 0.07 |
C22:6 (DHA, n-3) | 0.30 ± 0.14 | 0.40 ± 0.16 | 0.50 ± 0.18 | 0.30 ± 0.03 | 0.40 ± 0.15 | 0.60 ± 0.15 |
SFAs | 63.3 ± 1.53a | 67.0 ± 0.91bc | 66.8 ± 1.20bc | 63.9 ± 0.39ab | 67.8 ± 1.02c | 67.6 ± 1.37c |
MUFAs | 15.9 ± 1.05bc | 13.9 ± 0.42a | 14.7 ± 0.37ab | 17.2 ± 0.41c | 17.1 ± 0.87c | 15.7 ± 0.53abc |
PUFAs | 20.8 ± 1.66c | 19.2 ± 0.79bc | 18.5 ± 1.23bc | 18.9 ± 0.19bc | 15.1 ± 0.59a | 16.7 ± 1.79ab |
Total n-3 | 1.30 ± 0.33 | 1.00 ± 0.18 | 0.90 ± 0.27 | 0.80 ± 0.05 | 0.90 ± 0.19 | 1.10 ± 0.21 |
Total n-6 | 17.4 ± 1.24b | 15.9 ± 0.66b | 15.0 ± 0.96ab | 14.9 ± 0.30ab | 12.2 ± 0.43a | 14.6 ± 1.60ab |
Total n-9 | 15.6 ± 1.07bc | 13.4 ± 0.36a | 14.4 ± 0.29ab | 16.8 ± 0.40c | 16.4 ± 0.83c | 15.5 ± 0.49bc |
SFAs/MUFAs | 4.10 ± 0.30ab | 4.80 ± 0.19c | 4.60 ± 0.15bc | 3.70 ± 0.11a | 4.00 ± 0.26ab | 4.30 ± 0.10bc |
SFAs/PUFAs | 3.10 ± 0.30a | 3.50 ± 0.19ab | 3.70 ± 0.28abc | 3.40 ± 0.04a | 4.50 ± 0.22c | 4.30 ± 0.52bc |
MUFAs/PUFAs | 0.80 ± 0.11ab | 0.70 ± 0.04a | 0.80 ± 0.06ab | 0.90 ± 0.03abc | 1.10 ± 0.08c | 1.00 ± 0.13bc |
SFAs/USFAs | 1.70 ± 0.11a | 2.00 ± 0.09bc | 2.00 ± 0.10abc | 1.80 ± 0.03ab | 2.10 ± 0.10c | 2.10 ± 0.13c |
n-6/n-3 | 19.5 ± 6.94 | 17.5 ± 2.31 | 31.6 ± 14.0 | 18.8 ± 1.39 | 18.3 ± 7.03 | 15.7 ± 3.21 |
n-9/n-3 | 20.4 ± 10.3 | 14.6 ± 1.64 | 32.5 ± 15.1 | 21.1 ± 1.55 | 23.6 ± 8.15 | 19.6 ± 7.27 |
n-9/n-6 | 0.90 ± 0.11a | 0.90 ± 0.04a | 1.00 ± 0.06a | 1.10 ± 0.04ab | 1.30 ± 0.09b | 1.10 ± 0.17ab |
Fatty Acids 1 | Inflammatory Cell Infiltration | Degeneration and Necrosis | Fatty Change | |||
---|---|---|---|---|---|---|
r | p Value | r | p Value | r | p Value | |
C14:0 | 0.149 | 0.544 | 0.151 | 0.538 | 0.556 | 0.513 |
C16:0 | 0.020 | 0.937 | −0.272 | 0.260 | −0.159 | 0.516 |
C16:1 | 0.200 | 0.411 | 0.054 | 0.827 | 0.250 | 0.303 |
C18:0 | −0.105 | 0.669 | 0.096 | 0.695 | 0.232 | 0.340 |
C18:1 (n-9) | 0.359 | 0.131 | 0.667 | 0.002 * | 0.218 | 0.370 |
C18:2 (LA, n-6) | −0.167 | 0.493 | −0.565 | 0.012 * | −0.287 | 0.233 |
C20:0 | −0.117 | 0.633 | −0.439 | 0.060 | -0.384 | 0.105 |
C20:2 (n-6) | −0.147 | 0.547 | −0.252 | 0.298 | −0.118 | 0.631 |
C20:3 | 0.353 | 0.138 | 0.121 | 0.622 | 0.044 | 0.860 |
C20:4 (AA, n-6) | −0.108 | 0.661 | 0 | 0.987 | −0.088 | 0.719 |
C20:5 (EPA, n-3) | 0.030 | 0.906 | −0.201 | 0.409 | −0.224 | 0.356 |
C22:0 | −0.330 | 0.167 | 0.042 | 0.864 | -0.171 | 0.484 |
C22:4 | 0.129 | 0.599 | 0.345 | 0.148 | 0.050 | 0.838 |
C22:5 (DPA, n-3) | −0.202 | 0.408 | −0.377 | 0.111 | 0.017 | 0.943 |
C22:6 (DHA, n-3) | −0.179 | 0.465 | −0.091 | 0.710 | −0.085 | 0.729 |
SFAs | −0.127 | 0.604 | −0.190 | 0.436 | 0.081 | 0.742 |
MUFAs | 0.385 | 0.104 | 0.681 | 0.001 * | 0.240 | 0.323 |
PUFAs | −0.096 | 0.697 | −0.207 | 0.395 | −0.245 | 0.313 |
Total n-3 | −0.144 | 0.556 | −0.307 | 0.201 | −0.219 | 0.368 |
Total n-6 | −0.251 | 0.299 | −0.387 | 0.102 | −0.276 | 0.253 |
Total n-9 | 0.359 | 0.131 | 0.667 | 0.002 * | 0.218 | 0.370 |
SFAs/MUFAs | −0.307 | 0.201 | −0.587 | 0.008 * | −0.178 | 0.465 |
SFAs/PUFAs | −0.028 | 0.907 | 0.090 | 0.715 | 0.247 | 0.307 |
MUFAs/PUFAs | 0.210 | 0.389 | 0.465 | 0.045 * | 0.353 | 0.138 |
SFAs/USFAs | −0.155 | 0.527 | −0.221 | 0.364 | 0.119 | 0.628 |
n-6/n-3 | −0.281 | 0.245 | 0.041 | 0.865 | −0.162 | 0.507 |
n-9/n-3 | −0.199 | 0.414 | 0.080 | 0.746 | −0.071 | 0.771 |
n-9/n-6 | 0.353 | 0.139 | 0.687 | 0.001 * | 0.271 | 0.261 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-Y.; Chen, J.-R.; Chen, Y.-H.; Xiao, Q.; Chen, Y.-L.; Yang, S.-C. The Preliminary Results for Evaluating Cocoa Butter’s Hepatoprotective Effects against Lipid Accumulation and Inflammation in Adult Male Rats Chronically Fed Ethanol. Bioengineering 2022, 9, 526. https://doi.org/10.3390/bioengineering9100526
Chang H-Y, Chen J-R, Chen Y-H, Xiao Q, Chen Y-L, Yang S-C. The Preliminary Results for Evaluating Cocoa Butter’s Hepatoprotective Effects against Lipid Accumulation and Inflammation in Adult Male Rats Chronically Fed Ethanol. Bioengineering. 2022; 9(10):526. https://doi.org/10.3390/bioengineering9100526
Chicago/Turabian StyleChang, Hsiao-Yun, Jiun-Rong Chen, Yi-Hsiu Chen, Qian Xiao, Ya-Ling Chen, and Suh-Ching Yang. 2022. "The Preliminary Results for Evaluating Cocoa Butter’s Hepatoprotective Effects against Lipid Accumulation and Inflammation in Adult Male Rats Chronically Fed Ethanol" Bioengineering 9, no. 10: 526. https://doi.org/10.3390/bioengineering9100526
APA StyleChang, H. -Y., Chen, J. -R., Chen, Y. -H., Xiao, Q., Chen, Y. -L., & Yang, S. -C. (2022). The Preliminary Results for Evaluating Cocoa Butter’s Hepatoprotective Effects against Lipid Accumulation and Inflammation in Adult Male Rats Chronically Fed Ethanol. Bioengineering, 9(10), 526. https://doi.org/10.3390/bioengineering9100526