Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality
Abstract
:1. Introduction
2. Impact of Heat Stress on Udder Health, Livestock Production, and Milk Quality
2.1. Dairy Industry in the Era of Climate Change
2.2. Assessing Heat Stress in Cattle
2.3. Discussions
3. Udder Health Management—A Key Role in Ensuring Milk Quality
Discussions
4. On-Farm and Lab Methods for Monitoring Udder Health and Milk Quality
4.1. Conventional Methods for Monitoring Udder Health
4.2. Methods Based on the Detection of the Pathogen Agent Causing Mastitis
4.3. Emergent Methods for Monitoring Udder Health: Infrared Thermography, Biosensors, and Lab-on-Chip Devices
4.4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Recio, O.; López-Paredes, J.; Ouatahar, L.; Charfeddine, N.; Ugarte, E.; Alenda, R.; Jiménez-Montero, J.A. Mitigation of Greenhouse Gases in Dairy Cattle via Genetic Selection: 2. Incorporating Methane Emissions into the Breeding Goal. J. Dairy Sci. 2020, 103, 7210–7221. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.M.; Amer, P.R.; Quinton, C.; Crowley, J.; Hely, F.S.; van den Berg, I.; Pryce, J.E. Reducing Greenhouse Gas Emissions through Genetic Selection in the Australian Dairy Industry. J. Dairy Sci. 2022, 105, 4272–4288. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.-P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited Review: Changes in the Dairy Industry Affecting Dairy Cattle Health and Welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewley, J.M.; Robertson, L.M.; Eckelkamp, E.A. A 100-Year Review: Lactating Dairy Cattle Housing Management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef]
- Brito, L.F.; Bedere, N.; Douhard, F.; Oliveira, H.R.; Arnal, M.; Peñagaricano, F.; Schinckel, A.P.; Baes, C.F.; Miglior, F. Review: Genetic Selection of High-Yielding Dairy Cattle toward Sustainable Farming Systems in a Rapidly Changing World. Animal 2021, 15, 100292. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments—A Review. Asian-Australas J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Azooz, M.F.; El-Wakeel, S.A.; Yousef, H.M. Financial and Economic Analyses of the Impact of Cattle Mastitis on the Profitability of Egyptian Dairy Farms. Vet. World 2020, 13, 1750–1759. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.S.; Ariton, A.M.; Mădescu, B.M.; Rîmbu, C.M.; Creangă, Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals 2021, 11, 1625. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Dhama, K.; Tiwari, R.; Mohd, I.Y.; Khurana, S.K.; Khandia, R.; Munjal, A.; Munuswamy, P.; Kumar, M.A.; Singh, M.; et al. Technological Interventions and Advances in the Diagnosis of Intramammary Infections in Animals with Emphasis on Bovine Population—A Review. Vet. Q. 2019, 39, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Bórawski, P.; Pawlewicz, A.; Parzonko, A.; Harper, J.K.; Holden, L. Factors Shaping Cow’s Milk Production in the EU. Sustainability 2020, 12, 420. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.R.; Innes, G.K.; Johnson, K.A.; Lhermie, G.; Ivanek, R.; Safi, A.G.; Lansing, D. Consumer Perceptions of Antimicrobial Use in Animal Husbandry: A Scoping Review. PLoS ONE 2021, 16, e0261010. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Directorate-General for Agriculture and Rural Development. Study on CAP Measures and Instruments Promoting Animal Welfare and Reduction of Antimicrobials Use: Final Report; Publications Office of the European Union: Brussels, Belgium, 2022; Available online: https://data.europa.eu/doi/10.2762/122586 (accessed on 10 August 2022).
- Eurostat Cows’milk Collection and Products Obtained—Annual Data. 2021. Available online: https://agriculture.ec.europa.eu/data-and-analysis/markets/production-data/production-sector/milk-and-dairy-products_en (accessed on 1 July 2022).
- Friedlander, B. Heat Stress for Cattle May Cost Billions by Century’s End. Available online: https://news.cornell.edu/stories/2022/03/heat-stress-cattle-may-cost-billions-centurys-end (accessed on 10 August 2022).
- Gunn, K.M.; Holly, M.A.; Veith, T.L.; Buda, A.R.; Prasad, R.; Rotz, C.A.; Soder, K.J.; Stoner, A.M.K. Projected Heat Stress Challenges and Abatement Opportunities for U.S. Milk Production. PLoS ONE 2019, 14, e0214665. [Google Scholar] [CrossRef] [Green Version]
- Ji, B.; Banhazi, T.; Perano, K.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. A Review of Measuring, Assessing and Mitigating Heat Stress in Dairy Cattle. Biosyst. Eng. 2020, 199, 4–26. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of Heat Stress on Milk and Meat Production. Anim. Front. 2019, 9, 39–46. [Google Scholar] [CrossRef]
- Mbuthia, J.M.; Mayer, M.; Reinsch, N. Modeling Heat Stress Effects on Dairy Cattle Milk Production in a Tropical Environment Using Test-Day Records and Random Regression Models. Animal 2021, 15, 100222. [Google Scholar] [CrossRef]
- Rodriguez-Venegas, R.; Meza-Herrera, C.A.; Robles-Trillo, P.A.; Angel-Garcia, O.; Rivas-Madero, J.S.; Rodriguez-Martínez, R. Heat Stress Characterization in a Dairy Cattle Intensive Production Cluster under Arid Land Conditions: An Annual, Seasonal, Daily, and Minute-to-Minute, Big Data Approach. Agriculture 2022, 12, 760. [Google Scholar] [CrossRef]
- Ouellet, V.; Toledo, I.M.; Dado-Senn, B.; Dahl, G.E.; Laporta, J. Critical Temperature-Humidity Index Thresholds for Dry Cows in a Subtropical Climate. Front. Anim. Sci. 2021, 2, 28. [Google Scholar] [CrossRef]
- Shock, D.A.; LeBlanc, S.J.; Leslie, K.E.; Hand, K.; Godkin, M.A.; Coe, J.B.; Kelton, D.F. Studying the Relationship between On-Farm Environmental Conditions and Local Meteorological Station Data during the Summer. J. Dairy Sci. 2016, 99, 2169–2179. [Google Scholar] [CrossRef]
- Ouellet, V.; Bellavance, A.L.; Fournel, S.; Charbonneau, É. Short Communication: Summer on-Farm Environmental Condition Assessments in Québec Tiestall Farms and Adaptation of Temperature-Humidity Index Calculated with Local Meteorological Data. J. Dairy Sci. 2019, 102, 7503–7508. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of Heat Stress on Health and Performance of Dairy Animals: A Review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polsky, L.; von Keyserlingk, M.A.G. Invited Review: Effects of Heat Stress on Dairy Cattle Welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- Chang-Fung-Martel, J.; Harrison, M.T.; Brown, J.N.; Rawnsley, R.; Smith, A.P.; Meinke, H. Negative Relationship between Dry Matter Intake and the Temperature-Humidity Index with Increasing Heat Stress in Cattle: A Global Meta-Analysis. Int. J. Biometeorol. 2021, 65, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Bhatta, R. Physiological Adaptability of Livestock to Heat Stress: An Updated Review. J. Anim. Behav. Biometeorol. 2018, 6, 62–71. [Google Scholar] [CrossRef]
- dos Santos, M.M.; Souza-Junior, J.B.F.; Dantas, M.R.T.; de Macedo Costa, L.L. An Updated Review on Cattle Thermoregulation: Physiological Responses, Biophysical Mechanisms, and Heat Stress Alleviation Pathways. Environ. Sci. Pollut. Res. 2021, 28, 30471–30485. [Google Scholar] [CrossRef] [PubMed]
- Deb, R.; Fonsêca, V.D.F.C.; Payan-Carreira, R.; Sejian, V.; Lees, A.M. Editorial: Genetic Basis of Thermoregulation in Livestock. Front. Vet. Sci. 2022, 9, 839612. [Google Scholar] [CrossRef]
- Berry, I.L.; Shanklin, M.D.; Johnson, H.D. Dairy Shelter Design Based on Milk Production Decline as Affected by Temperature and Humidity. Trans. Am. Soc. Agric. Eng. 1964, 7, 329–331. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and Hormonal Acclimation to Heat Stress in Domesticated Ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Cowley, F.C.; Barber, D.G.; Houlihan, A.V.; Poppi, D.P. Immediate and Residual Effects of Heat Stress and Restricted Intake on Milk Protein and Casein Composition and Energy Metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef]
- Bernabucci, U.; Basiricò, L.; Morera, P.; Dipasquale, D.; Vitali, A.; Cappelli, F.P.; Calamari, L. Effect of Summer Season on Milk Protein Fractions in Holstein Cows. J. Dairy Sci. 2015, 98, 1815–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pragna, P.; Archana, P.R.; Aleena, J.; Sejian, V.; Krishnan, G.; Bagath, M.; Manimaran, A.; Beena, V.; Kurien, E.K.; Varma, G.; et al. Heat Stress and Dairy Cow: Impact on Both Milk Yield and Composition. Int. J. Dairy Sci. 2016, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.L.; Wall, E. Dairy Cattle in a Temperate Climate: The Effects of Weather on Milk Yield and Composition Depend on Management. Animal 2015, 9, 138–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Ezernieks, V.; Wang, J.; Arachchillage, N.W.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dado-Senn, B.; Skibiel, A.L.; Dahl, G.E.; Apelo, S.I.A.; Laporta, J. Dry Period Heat Stress Impacts Mammary Protein Metabolism in the Subsequent Lactation. Animals 2021, 11, 2676. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Luna, P.; Nag, R.; Martínez, I.; Mauricio-Iglesias, M.; Hospido, A.; Cummins, E. Quantifying Current and Future Raw Milk Losses Due to Bovine Mastitis on European Dairy Farms under Climate Change Scenarios. Sci. Total Environ. 2022, 833, 155149. [Google Scholar] [CrossRef]
- Vitali, A.; Felici, A.; Lees, A.M.; Giacinti, G.; Maresca, C.; Bernabucci, U.; Gaughan, J.B.; Nardone, A.; Lacetera, N. Heat Load Increases the Risk of Clinical Mastitis in Dairy Cattle. J. Dairy Sci. 2020, 103, 8378–8387. [Google Scholar] [CrossRef]
- Baraki, A.; Teklue, T.; Atsbha, T.; Tesfay, T.; Wayou, S. Prevalence and Risk Factors of Bovine Mastitis in Southern Zone of Tigray, Northern Ethiopia. Vet. Med. Int. 2021, 2021, 8831117. [Google Scholar] [CrossRef]
- Toghdory, A.; Ghoorchi, T.; Asadi, M.; Bokharaeian, M.; Najafi, M.; Nejad, J.G. Effects of Environmental Temperature and Humidity on Milk Composition, Microbial Load, and Somatic Cells in Milk of Holstein Dairy Cows in the Northeast Regions of Iran. Animals 2022, 12, 2484. [Google Scholar] [CrossRef]
- Fredebeul-Krein, F.; Schmenger, A.; Wente, N.; Zhang, Y.; Krömker, V. Factors Associated with the Severity of Clinical Mastitis. Pathogens 2022, 11, 1089. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Günther, J.; Fitzpatrick, J.; Fontaine, M.C.; Goetze, L.; Holst, O.; Leigh, J.; Petzl, W.; Schuberth, H.-J.; Sipka, A.; et al. Host-Response Patterns of Intramammary Infections in Dairy Cows. Vet. Immunol. Immunopathol. 2011, 144, 270–289. [Google Scholar] [CrossRef]
- Dahl, G.E.; Tao, S.; Laporta, J. Heat Stress Impacts Immune Status in Cows Across the Life Cycle. Front. Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hand, K.J.; Godkin, A.; Kelton, D.F. Milk Production and Somatic Cell Counts: A Cow-Level Analysis. J. Dairy Sci. 2012, 95, 1358–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinar, M.; Serbester, U.; Ceyhan, A.; Gorgulu, M. Effect of Somatic Cell Count on Milk Yield and Composition of First and Second Lactation Dairy Cows. Ital. J. Anim. Sci. 2015, 14, 3646. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Weersink, A.; Kelton, D.; von Massow, M. Estimating Milk Loss Based on Somatic Cell Count at the Cow and Herd Level. J. Dairy Sci. 2021, 104, 7919–7931. [Google Scholar] [CrossRef]
- Pegolo, S.; Giannuzzi, D.; Bisutti, V.; Tessari, R.; Gelain, M.E.; Gallo, L.; Schiavon, S.; Tagliapietra, F.; Trevisi, E.; Ajmone Marsan, P.; et al. Associations between Differential Somatic Cell Count and Milk Yield, Quality, and Technological Characteristics in Holstein Cows. J. Dairy Sci. 2021, 104, 4822–4836. [Google Scholar] [CrossRef] [PubMed]
- Rearte, R.; Corva, S.G.; de la Sota, R.L.; Lacau-Mengido, I.M.; Giuliodori, M.J. Associations of Somatic Cell Count with Milk Yield and Reproductive Performance in Grazing Dairy Cows. J. Dairy Sci. 2022, 105, 6251–6260. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.E.P.; Cerri, R.L.A.; Ballou, M.A.; Higginbotham, G.E.; Kirk, J.H. Effect of Timing of First Clinical Mastitis Occurrence on Lactational and Reproductive Performance of Holstein Dairy Cows. Anim. Reprod. Sci. 2004, 80, 31–45. [Google Scholar] [CrossRef]
- Franzoi, M.; Manuelian, C.L.; Penasa, M.; de Marchi, M. Effects of Somatic Cell Score on Milk Yield and Mid-Infrared Predicted Composition and Technological Traits of Brown Swiss, Holstein Friesian, and Simmental Cattle Breeds. J. Dairy Sci. 2020, 103, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Benić, M.; Maćešić, N.; Cvetnić, L.; Habrun, B.; Cvetnić, Ž.; Turk, R.; Đuričić, D.; Lojkić, M.; Dobranić, V.; Valpotić, H.; et al. Bovine Mastitis: A Persistent and Evolving Problem Requiring Novel Approaches for Its Control—A Review. Vet. Arh. 2018, 88, 535–557. [Google Scholar] [CrossRef]
- Alhussien, M.N.; Dang, A.K. Milk Somatic Cells, Factors Influencing Their Release, Future Prospects, and Practical Utility in Dairy Animals: An Overview. Vet. World 2018, 11, 562–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandeel, S.A.; Megahed, A.A.; Constable, P.D. Evaluation of Hand-held Sodium, Potassium, Calcium, and Electrical Conductivity Meters for Diagnosing Subclinical Mastitis and Intramammary Infection in Dairy Cattle. J. Vet. Intern. Med. 2019, 33, 2343–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, T.J.; van Veersen, J.C.; Sampimon, O.C.; Riekerink, R.G.O. On-Farm Udder Health Monitoring. Tierarztl Prax. Ausg. G Grosstiere. Nutztiere. 2011, 39, 95–100. [Google Scholar]
- Geary, U.; Lopez-Villalobos, N.; Begley, N.; McCoy, F.; O’Brien, B.; O’Grady, L.; Shalloo, L. Estimating the Effect of Mastitis on the Profitability of Irish Dairy Farms. J. Dairy Sci. 2012, 95, 3662–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors Associated with Profitability in Pasture-Based Systems of Milk Production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robichaud, M.V.; Rushen, J.; de Passillé, A.M.; Vasseur, E.; Orsel, K.; Pellerin, D. Associations between On-Farm Animal Welfare Indicators and Productivity and Profitability on Canadian Dairies: I. On Freestall Farms. J. Dairy Sci. 2019, 102, 4341–4351. [Google Scholar] [CrossRef]
- Hagnestam-Nielsen, C.; Emanuelson, U.; Berglund, B.; Strandberg, E. Relationship between Somatic Cell Count and Milk Yield in Different Stages of Lactation. J. Dairy Sci. 2009, 92, 3124–3133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, S.; Williamson, J.; Gohary, K.; Lacy-Hulbert, J. Detecting Intramammary Infection at the End of Lactation in Dairy Cows. J. Dairy Sci. 2021, 104, 10232–10249. [Google Scholar] [CrossRef]
- Fox, P.F. Milk|Bovine Milk. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2011; pp. 478–483. [Google Scholar]
- Priyashantha, H.; Lundh, Å.; Höjer, A.; Bernes, G.; Nilsson, D.; Hetta, M.; Saedén, K.H.; Gustafsson, A.H.; Johansson, M. Composition and Properties of Bovine Milk: A Study from Dairy Farms in Northern Sweden; Part I. Effect of Dairy Farming System. J. Dairy Sci. 2021, 104, 8582–8594. [Google Scholar] [CrossRef]
- Mushtaq, S.; Shah, A.M.; Shah, A.; Lone, S.A.; Hussain, A.; Hassan, Q.P.; Ali, M.N. Bovine Mastitis: An Appraisal of Its Alternative Herbal Cure. Microb. Pathog. 2018, 114, 357–361. [Google Scholar] [CrossRef]
- El-Sayed, A.; Kamel, M. Bovine Mastitis Prevention and Control in the Post-Antibiotic Era. Trop. Anim. Health Prod. 2021, 53, 236. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.S.; Fontoura, P.S.; Oliveira, A.; Rizzo, F.A.; Silveira, S.; Streck, A.F. Use of Plant Extracts and Essential Oils in the Control of Bovine Mastitis. Res. Vet. Sci. 2020, 131, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Krömker, V.; Leimbach, S. Mastitis Treatment-Reduction in Antibiotic Usage in Dairy Cows. Reprod. Domest. Anim. 2017, 52, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobbo, T.; Ruegg, P.L.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between Pathogen-Specific Cases of Subclinical Mastitis and Milk Yield, Quality, Protein Composition, and Cheese-Making Traits in Dairy Cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martí-De Olives, A.; Peris, C.; Molina, M.P. Effect of Subclinical Mastitis on the Yield and Cheese-Making Properties of Ewe’s Milk. Small Rumin. Res. 2020, 184, 106044. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitienė, V.; Jonike, V.; Baumgartner, W.; Paulauskas, A. Milk Lactose as a Biomarker of Subclinical Mastitis in Dairy Cows. Animals 2021, 11, 1736. [Google Scholar] [CrossRef] [PubMed]
- Berthe, F.; Hugas, M.; Makela, P. Integrating Surveillance of Animal Health, Food Pathogens and Foodborne Disease in the European Union. Rev. Sci. Tech. De L’oie 2013, 32, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Ibarra, R.; Rich, K.M.; Adasme, M.; Kamp, A.; Singer, R.S.; Atlagich, M.; Estrada, C.; Jacob, R.; Zimin-Veselkoff, N.; Escobar-Dodero, J.; et al. Animal Production, Animal Health and Food Safety: Gaps and Challenges in the Chilean Industry. Food Microbiol. 2018, 75, 114–118. [Google Scholar] [CrossRef]
- Iannetti, L.; Neri, D.; Torresi, M.; Acciari, V.A.; di Marzio, V.; Centorotola, G.; Scattolini, S.; Pomilio, F.; di Giannatale, E.; Vulpiani, M.P. Can Animal Welfare Have an Impact on Food Safety? A Study in the Poultry Production Chain. Eur. J. Public Health 2020, 30, ckaa166-202. [Google Scholar] [CrossRef]
- Infascelli, L.; Tudisco, R.; Iommelli, P.; Capitanio, F. Milk Quality and Animal Welfare as a Possible Marketing Lever for the Economic Development of Rural Areas in Southern Italy. Animals 2021, 11, 1059. [Google Scholar] [CrossRef]
- Sora, V.M.; Panseri, S.; Nobile, M.; di Cesare, F.; Meroni, G.; Chiesa, L.M.; Zecconi, A. Milk Quality and Safety in a One Health Perspective: Results of a Prevalence Study on Dairy Herds in Lombardy (Italy). Life 2022, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Licitra, F.; Perillo, L.; Antoci, F.; Piccione, G.; Giannetto, C.; Salonia, R.; Giudice, E.; Monteverde, V.; Cascone, G. Management Factors Influence Animal Welfare and the Correlation to Infectious Diseases in Dairy Cows. Animals 2021, 11, 3321. [Google Scholar] [CrossRef] [PubMed]
- Spigarelli, C.; Berton, M.; Corazzin, M.; Gallo, L.; Pinterits, S.; Ramanzin, M.; Ressi, W.; Sturaro, E.; Zuliani, A.; Bovolenta, S. Animal Welfare and Farmers’ Satisfaction in Small-Scale Dairy Farms in the Eastern Alps: A “One Welfare” Approach. Front. Vet. Sci. 2021, 8, 741497. [Google Scholar] [CrossRef] [PubMed]
- Gieseke, D.; Lambertz, C.; Gauly, M. Effects of Housing and Management Factors on Selected Indicators of the Welfare Quality® Protocol in Loose-Housed Dairy Cows. Vet. Sci. 2022, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Richoux, R.; Boutinaud, M.; Martin, P.; Gagnaire, V. Role of Somatic Cells on Dairy Processes and Products: A Review. Dairy Sci. Technol. 2014, 94, 517–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidanarachchi, J.K.; Li, S.; Lundh, Å.S.; Johansson, M. Short Communication: Lipolytic Activity on Milk Fat by Staphylococcus Aureus and Streptococcus Agalactiae Strains Commonly Isolated in Swedish Dairy Herds. J. Dairy Sci. 2015, 98, 8560–8564. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, P.; Faccia, M.; Malacarne, M.; Formaggioni, P.; Summer, A. Quantification of Cheese Yield Reduction in Manufacturing Parmigiano Reggiano from Milk with Non-Compliant Somatic Cells Count. Foods 2020, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Charismiadou, M.; Karla, G.; Theodorou, G.; Goliomytis, M.; Politis, I. The Effect of Health Status of the Udder on Plasminogen Activator Activity of Milk Somatic Cells in Ovine Milk. Small Rumin. Res. 2015, 133, 54–57. [Google Scholar] [CrossRef]
- Ivanova, I.; Ivanova, M.; Ivanov, G.; Bilgucu, E. Effect of Somatic Cells Count in Cow Milk on the Formation of Biogenic Amines in Cheese. J. Food Sci. Technol. 2021, 58, 3409–3416. [Google Scholar] [CrossRef]
- Ma, Y.; Ryan, C.; Barbano, D.M.; Galton, D.M.; Rudan, M.A.; Boor, K.J. Effects of Somatic Cell Count on Quality and Shelf-Life of Pasteurized Fluid Milk. J. Dairy Sci. 2000, 83, 264–274. [Google Scholar] [CrossRef]
- Dufour, S.; Fréchette, A.; Barkema, H.W.; Mussell, A.; Scholl, D.T. Invited Review: Effect of Udder Health Management Practices on Herd Somatic Cell Count. J. Dairy Sci. 2011, 94, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. New Perspectives in Udder Health Management. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 149–163. [Google Scholar] [CrossRef] [PubMed]
- McMullen, C.K.; Sargeant, J.M.; Kelton, D.F.; Churchill, K.J.; Cousins, K.S.; Winder, C.B. Modifiable Management Practices to Improve Udder Health in Dairy Cattle during the Dry Period and Early Lactation: A Scoping Review. J. Dairy Sci. 2021, 104, 10143–10157. [Google Scholar] [CrossRef]
- Jamali, H.; Barkema, H.W.; Jacques, M.; Lavallée-Bourget, E.-M.; Malouin, F.; Saini, V.; Stryhn, H.; Dufour, S. Invited Review: Incidence, Risk Factors, and Effects of Clinical Mastitis Recurrence in Dairy Cows. J. Dairy Sci. 2018, 101, 4729–4746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnitt, A.; Tenhagen, B.-A. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus Aureus in Dairy Herds: An Update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, D.A.; Ruegg, P.L. Relationship Between Udder and Leg Hygiene Scores and Subclinical Mastitis. J. Dairy Sci. 2003, 86, 3460–3465. [Google Scholar] [CrossRef]
- Sordillo, L.M. Nutritional Strategies to Optimize Dairy Cattle Immunity. J. Dairy Sci. 2016, 99, 4967–4982. [Google Scholar] [CrossRef] [Green Version]
- Petzer, I.-M.; Karzis, J.; Donkin, E.F.; Webb, E.C.; Etter, E.M.C. Somatic Cell Count Thresholds in Composite and Quarter Milk Samples as Indicator of Bovine Intramammary Infection Status. Onderstepoort J. Vet. Res. 2017, 84, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Manzat, R.M. Strategy, Test and Apparatus for Improving Milk Quality through Detection and Elimination of Mastitis (Strategie, Test Și Aparat, Pentru Creșterea Calității Laptelui, Prin Detectarea Și Eliminarea Mastitelor- Ro Title). Available online: https://www.radumogamanzat.ro/profesional-stiintific/strategie-test-cow-side-si-aparat-pentru-un-lapte-de-inalta-calitate-cu-minimum-de-efort-si-cheltuieli/ (accessed on 22 August 2022).
- Robles, I.; Kelton, D.F.; Barkema, H.W.; Keefe, G.P.; Roy, J.P.; von Keyserlingk, M.A.G.; DeVries, T.J. Bacterial Concentrations in Bedding and Their Association with Dairy Cow Hygiene and Milk Quality. Animal 2020, 14, 1052–1066. [Google Scholar] [CrossRef]
- Kelly, A.L.; Leitner, G.; Merin, U. Milk Quality and Udder Health: Test Methods and Standards. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- The European Parliament and The Council of the European Union Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for on the Hygiene of Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0055:0205:en:PDF (accessed on 11 October 2022).
- The Commission Of The European Communities Commission Regulation (EC) No 1664/2006 of 6 November 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1664&from=en (accessed on 11 October 2022).
- Blum, S.E.; Heller, D.E.; Jacoby, S.; Krifuks, O.; Merin, U.; Silanikove, N.; Lavon, Y.; Edery, N.; Leitner, G. Physiological Response of Mammary Glands to Escherichia Coli Infection: A Conflict between Glucose Need for Milk Production and Immune Response. Sci. Rep. 2020, 10, 9602. [Google Scholar] [CrossRef]
- Halasa, T.; Kirkeby, C. Differential Somatic Cell Count: Value for Udder Health Management. Front. Vet. Sci. 2020, 7, 609055. [Google Scholar] [CrossRef] [PubMed]
- Markusson, H. Total Bacterial Count as an Attribute for Raw Milk Quality; SLU, Department of Molecular Sciences: Uppsala, Sweden, 2021. [Google Scholar]
- Riveros-Galán, D.S.; Obando-Chaves, M. Mastitis, Somatic Cell Count, and Its Impact on Dairy-Product Quality… An Omission in Colombia? A Review. Rev. Colomb. Cienc. Pecu. 2020, 34, 241–253. [Google Scholar] [CrossRef]
- Bezerra, J.d.S.; Sales, D.C.; de Oliviera, J.P.F.; Silva, Y.M.d.O.; Urbano, S.A.; de Lima, D.M., Jr.; Borba, L.H.F.; Macedo, C.S.; Anaya, K.; Rangel, A.H.d.N. Effect of High Somatic Cell Counts on the Sensory Acceptance and Consumption Intent of Pasteurized Milk and Coalho Cheese. Food Sci. Technol. 2021, 41, 423–431. [Google Scholar] [CrossRef]
- Ivanov, G.Y.; Bilgucu, E.; Dimitrova, M.R.; Ivanova, I.v. Microbiological and Sensory Quality of Farmers Cheese Produced from Milk with Different Somatic Cells Count. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1031, 012104. [Google Scholar] [CrossRef]
- Abebe, R.; Hatiya, H.; Abera, M.; Megersa, B.; Asmare, K. Bovine Mastitis: Prevalence, Risk Factors and Isolation of Staphylococcus Aureus in Dairy Herds at Hawassa Milk Shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef] [Green Version]
- Naing, Y.W.; Wai, S.S.; Lin, T.N.; Thu, W.P.; Htun, L.L.; Bawm, S.; Myaing, T.T. Bacterial Content and Associated Risk Factors Influencing the Quality of Bulk Tank Milk Collected from Dairy Cattle Farms in Mandalay Region. Food Sci. Nutr. 2019, 7, 1063–1071. [Google Scholar] [CrossRef]
- Velázquez-Ordoñez, V.; Valladares-Carranza, B.; Tenorio-Borroto, E.; Talavera-Rojas, M.; Varela-Guerrero, J.A.; Acosta-Dibarrat, J.; Puigvert, F.; Grille, L.; Revello, Á.G.; Pareja, L. Microbial Contamination in Milk Quality and Health Risk of the Consumers of Raw Milk and Dairy Products. In Nutrition in Health and Disease—Our Challenges Now and Forthcoming Time; IntechOpen: London, UK, 2019. [Google Scholar]
- Berhe, G.; Wasihun, A.G.; Kassaye, E.; Gebreselasie, K. Milk-Borne Bacterial Health Hazards in Milk Produced for Commercial Purpose in Tigray, Northern Ethiopia. BMC Public Health 2020, 20, 894. [Google Scholar] [CrossRef]
- de Klerk, J.N.; Robinson, P.A. Drivers and Hazards of Consumption of Unpasteurised Bovine Milk and Milk Products in High-Income Countries. PeerJ 2022, 10, e13426. [Google Scholar] [CrossRef]
- Ohnstad, I. Teat Condition Scoring as a Management Tool. Livestock 2012, 17, 34–40. [Google Scholar] [CrossRef]
- Zigo, F.; Vasil’, M.; Ondrašovičová, S.; Výrostková, J.; Bujok, J.; Pecka-Kielb, E. Maintaining Optimal Mammary Gland Health and Prevention of Mastitis. Front. Vet. Sci. 2021, 8, 607311. [Google Scholar] [CrossRef]
- Odorčić, M.; Rasmussen, M.D.; Paulrud, C.O.; Bruckmaier, R.M. Review: Milking Machine Settings, Teat Condition and Milking Efficiency in Dairy Cows. Animal 2019, 13, s94–s99. [Google Scholar] [CrossRef] [PubMed]
- Okkema, C.; Grandin, T. Graduate Student Literature Review: Udder Edema in Dairy Cattle—A Possible Emerging Animal Welfare Issue. J. Dairy Sci. 2021, 104, 7334–7341. [Google Scholar] [CrossRef] [PubMed]
- Ohnstad, I. Teat Condition Scoring. Available online: https://www.nadis.org.uk/disease-a-z/cattle/teat-condition-scoring/ (accessed on 10 October 2022).
- Pantoja, J.C.F.; Correia, L.B.N.; Rossi, R.S.; Latosinski, G.S. Association between Teat-End Hyperkeratosis and Mastitis in Dairy Cows: A Systematic Review. J. Dairy Sci. 2020, 103, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.R.; Smith, J.; Andersen, S.; Kelton, D.F.; Godden, S. Diagnosing Intramammary Infections: Evaluation of Definitions Based on a Single Milk Sample. J. Dairy Sci. 2011, 94, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Inzaghi, V.; Zucali, M.; Thompson, P.D.; Penry, J.F.; Reinemann, D.J. Changes in Electrical Conductivity, Milk Production Rate and Milk Flow Rate Prior to Clinical Mastitis Confirmation. Ital. J. Anim. Sci. 2021, 20, 1554–1561. [Google Scholar] [CrossRef]
- Khatun, M.; Thomson, P.C.; García, S.C.; Bruckmaier, R.M. Suitability of Milk Lactate Dehydrogenase and Serum Albumin for Pathogen-Specific Mastitis Detection in Automatic Milking Systems. J. Dairy Sci. 2022, 105, 2558–2571. [Google Scholar] [CrossRef]
- Tiwari, S.; Mohanty, T.; Patbandha, T.; Kumaresan, A.; Bhakat, M.; Kumar, N.; Baithalu, R. Critical Thresholds of Milk SCC, EC and PH for Detection of Sub-Clinical Mastitis in Crossbred Cows Reared under Subtropical Agroclimatic Condition. Int. J. Livest. Res. 2018, 8, 152. [Google Scholar] [CrossRef]
- Mollenhorst, H.; Rijkaart, L.J.; Hogeveen, H. Mastitis Alert Preferences of Farmers Milking with Automatic Milking Systems. J. Dairy Sci. 2012, 95, 2523–2530. [Google Scholar] [CrossRef] [Green Version]
- Kamphuis, C.; Sherlock, R.; Jago, J.; Mein, G.; Hogeveen, H. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count. J. Dairy Sci. 2008, 91, 4560–4570. [Google Scholar] [CrossRef] [Green Version]
- Hovinen, M.; Aisla, A.-M.; Pyörälä, S. Accuracy and Reliability of Mastitis Detection with Electrical Conductivity and Milk Colour Measurement in Automatic Milking. Acta Agric. Scand. A Anim. Sci. 2006, 56, 121–127. [Google Scholar] [CrossRef]
- Khatun, M.; Thomson, P.C.; Kerrisk, K.L.; Lyons, N.A.; Clark, C.E.F.; Molfino, J.; García, S.C. Development of a New Clinical Mastitis Detection Method for Automatic Milking Systems. J. Dairy Sci. 2018, 101, 9385–9395. [Google Scholar] [CrossRef] [PubMed]
- Galfi, A.; Radinovic, M.; Davidov, I.; Erdeljan, M.; Kovacevic, Z. Detection of Subclinical Mastitis in Dairy Cows Using California and Draminski Mastitis Test. Biotechnol. Anim. Husb. 2017, 33, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Martins, S.A.M.; Martins, V.C.; Cardoso, F.A.; Germano, J.; Rodrigues, M.; Duarte, C.; Bexiga, R.; Cardoso, S.; Freitas, P.P. Biosensors for On-Farm Diagnosis of Mastitis. Front. Bioeng. Biotechnol. 2019, 7, 186. [Google Scholar] [CrossRef]
- Hovinen, M.; Simojoki, H.; Pösö, R.; Suolaniemi, J.; Kalmus, P.; Suojala, L.; Pyörälä, S. N-Acetyl-β-D-Glucosaminidase Activity in Cow Milk as an Indicator of Mastitis. J. Dairy Res. 2016, 83, 219–227. [Google Scholar] [CrossRef]
- Iraguha, B.; Hamudikuwanda, H.; Mushonga, B.; Kandiwa, E.; Mpatswenumugabo, J.P. Comparison of Cow-Side Diagnostic Tests for Subclinical Mastitis of Dairy Cows in Musanze District, Rwanda. J. S. Afr. Vet. Assoc. 2017, 88, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, S.; Godden, S.; Nydam, D.v.; Gorden, P.; Lago, A.; Vasquez, A.; Royster, E.; Timmerman, J.; Thomas, M. Evaluation of Rapid Culture, a Predictive Algorithm, Esterase Somatic Cell Count and Lactate Dehydrogenase to Detect Intramammary Infection in Quarters of Dairy Cows at Dry-Off. Prev. Vet. Med. 2020, 179, 104982. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.C.; Geraghty, T.; Simões, P.B.A.; Mshelbwala, F.M.; Haining, H.; Eckersall, P.D. A Pilot Study of Acute Phase Proteins as Indicators of Bovine Mastitis Caused by Different Pathogens. Res. Vet. Sci. 2018, 119, 176–181. [Google Scholar] [CrossRef]
- Akhtar, M.; Guo, S.; Guo, Y.; Zahoor, A.; Shaukat, A.; Chen, Y.; Umar, T.; Deng, P.G.; Guo, M. Upregulated-Gene Expression of pro-Inflammatory Cytokines (TNF-α, IL-1β and IL-6) via TLRs Following NF-ΚB and MAPKs in Bovine Mastitis. Acta Trop. 2020, 207, 105458. [Google Scholar] [CrossRef]
- Dalanezi, F.M.; Schmidt, E.M.S.; Joaquim, S.F.; Guimarães, F.F.; Guerra, S.T.; Lopes, B.C.; Cerri, R.L.A.; Chadwick, C.; Langoni, H. Concentrations of Acute-Phase Proteins in Milk from Cows with Clinical Mastitis Caused by Different Pathogens. Pathogens 2020, 9, 706. [Google Scholar] [CrossRef]
- El-Deeb, W.; Fayez, M.; Alhumam, N.; Elsohaby, I.; Quadri, S.A.; Mkrtchyan, H. The Effect of Staphylococcal Mastitis Including Resistant Strains on Serum Procalcitonin, Neopterin, Acute Phase Response and Stress Biomarkers in Holstein Dairy Cows. PeerJ 2021, 9, e11511. [Google Scholar] [CrossRef]
- Raj, A.; Kulangara, V.; Vareed, T.P.; Melepat, D.P.; Chattothayil, L.; Chullipparambil, S. Variations in the Levels of Acute-Phase Proteins and Lactoferrin in Serum and Milk during Bovine Subclinical Mastitis. J. Dairy Res. 2021, 88, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Giagu, A.; Penati, M.; Traini, S.; Dore, S.; Addis, M.F. Milk Proteins as Mastitis Markers in Dairy Ruminants—A Systematic Review. Vet. Res. Commun. 2022, 46, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.P. How Milk Quality Is Assessed. Available online: https://dairy-cattle.extension.org/how-milk-quality-is-assessed/ (accessed on 25 July 2022).
- Costa, A.; de Marchi, M.; Neglia, G.; Campanile, G.; Penasa, M. Milk Somatic Cell Count-Derived Traits as New Indicators to Monitor Udder Health in Dairy Buffaloes. Ital. J. Anim. Sci. 2021, 20, 548–558. [Google Scholar] [CrossRef]
- Kaskous, S. Physiological Aspects of Milk Somatic Cell Count in Dairy Cattle. Int. J. Livest. Res. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Rychtarova, J.; Krupova, Z.; Brzakova, M.; Borkova, M.; Elich, O.; Dragounova, H.; Seydlova, R.; Sztankoova, Z. Milk Quality, Somatic Cell Count, and Economics of Dairy Goats Farm in the Czech Republic. In Goat Science—Environment, Health and Economy [Working Title]; IntechOpen: London, UK, 2021. [Google Scholar]
- Ferronatto, J.A.; Ferronatto, T.C.; Schneider, M.; Pessoa, L.F.; Blagitz, M.G.; Heinemann, M.B.; Libera, A.M.M.P.d.; Souza, F.N. Diagnosing Mastitis in Early Lactation: Use of Somaticell ®, California Mastitis Test and Somatic Cell Count. Ital. J. Anim. Sci. 2018, 17, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Schukken, Y.H.; Wilson, D.J.; Welcome, F.; Garrison-Tikofsky, L.; Gonzalez, R.N. Monitoring Udder Health and Milk Quality Using Somatic Cell Counts. Vet. Res. 2003, 34, 579–596. [Google Scholar] [CrossRef] [Green Version]
- Tomanić, D.; Božin, B.; Kladar, N.; Stanojević, J.; Čabarkapa, I.; Stilinović, N.; Apić, J.; Božić, D.D.; Kovačević, Z. Environmental Bovine Mastitis Pathogens: Prevalence, Antimicrobial Susceptibility, and Sensitivity to Thymus vulgaris L., Thymus serpyllum L., and Origanum vulgare L. Essent. Oils. Antibiot. 2022, 11, 1077. [Google Scholar] [CrossRef]
- Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine Mastitis Disease/Pathogenicity: Evidence of the Potential Role of Microbial Biofilms. Pathog. Dis. 2016, 74, ftw006. [Google Scholar] [CrossRef] [Green Version]
- Dufour, S.; Labrie, J.; Jacques, M. The Mastitis Pathogens Culture Collection. Microbiol Resour. Announc. 2019, 8, e00133-19. [Google Scholar] [CrossRef] [Green Version]
- Zaragoza, C.S.; Olivares, R.A.C.; Watty, A.E.D.; de la Peña Moctezuma, A.; Tanaca, L.V. Yeasts Isolation from Bovine Mammary Glands under Different Mastitis Status in the Mexican High Plateu. Rev. Iberoam. Micol. 2011, 28, 79–82. [Google Scholar] [CrossRef]
- Dworecka-Kaszak, B.; Krutkiewicz, A.; Szopa, D.; Kleczkowski, M.; Biegańska, M. High Prevalence of Candida Yeast in Milk Samples from Cows Suffering from Mastitis in Poland. Sci. World J. 2012, 2012, 196347. [Google Scholar] [CrossRef]
- Pachauri, S.; Varshney, P.; Dash, S.; Gupta, M. Involvement of Fungal Species in Bovine Mastitis in and around Mathura, India. Vet. World 2013, 6, 393. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.-C.; Wang, Y.; Li, H.; Wang, X.-M.; Wu, Y.; Zhang, D.-R.; Gao, S.; Qi, Z. Impact of Yeast and Lactic Acid Bacteria on Mastitis and Milk Microbiota Composition of Dairy Cows. AMB Express 2020, 10, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanov, D.; Petrović, T.; Polaček, V.; Suvajdžić, L.; Bojkovski, J. Mastitis Associated with Prototheca Zopfii—An Emerging Health and Economic Problem on Dairy Farms. J. Vet. Res. 2016, 60, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Jagielski, T.; Roeske, K.; Bakuła, Z.; Piech, T.; Wlazło, Ł.; Bochniarz, M.; Woch, P.; Krukowski, H. A Survey on the Incidence of Prototheca Mastitis in Dairy Herds in Lublin Province, Poland. J. Dairy Sci. 2019, 102, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Cobo, E.R.; Chen, L.; Cavalcante, P.A.; Barkema, H.W.; Gao, J.; Xu, S.; Liu, Y.; Knight, C.G.; Kastelic, J.P.; et al. Prototheca Zopfii Genotype II Induces Mitochondrial Apoptosis in Models of Bovine Mastitis. Sci. Rep. 2020, 10, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, A.; Imran, M. Diagnosis of Bovine Mastitis: From Laboratory to Farm. Trop. Anim. Health Prod. 2018, 50, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- University of Minnesota. Veterinary Diagnostic Lab Minnesota Easy®Culture SystemUser’s Guide. Available online: https://dairyknow.umn.edu/topics/milk-quality/minnesota-easy-culture-system-user-s-guide/ (accessed on 30 August 2022).
- LabMediaServis s.r.o. ClearMilk Test. Available online: https://www.clearmilk.cz/ (accessed on 30 August 2022).
- Ferreira, J.C.; Gomes, M.S.; Bonsaglia, E.C.R.; Canisso, I.F.; Garrett, E.F.; Stewart, J.L.; Zhou, Z.; Lima, F.S. Comparative Analysis of Four Commercial On-Farm Culture Methods to Identify Bacteria Associated with Clinical Mastitis in Dairy Cattle. PLoS ONE 2018, 13, e0194211. [Google Scholar] [CrossRef] [Green Version]
- Sipka, A.; Wieland, M.; Biscarini, F.; Rossi, R.M.; Roman, N.; Santisteban, C.; Moroni, P.; Nydam, D.V. Short Communication: Comparative Performance of 3 on-Farm Culture Systems for Detection of Mastitis Pathogens Interpreted by Trained and Untrained Observers. J. Dairy Sci. 2021, 104, 4936–4941. [Google Scholar] [CrossRef]
- Keane, O.M.; Budd, K.E.; Flynn, J.; McCoy, F. Increased Detection of Mastitis Pathogens by Real-Time PCR Compared to Bacterial Culture. Vet. Rec. 2013, 173, 268. [Google Scholar] [CrossRef] [Green Version]
- Hiitiö, H.; Riva, R.; Autio, T.; Pohjanvirta, T.; Holopainen, J.; Pyörälä, S.; Pelkonen, S. Performance of a Real-Time PCR Assay in Routine Bovine Mastitis Diagnostics Compared with in-Depth Conventional Culture. J. Dairy Res. 2015, 82, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Imran, M.; Yaqub, T.; Tayyab, M.; Shehzad, W.; Thomson, P.C. A Novel Multiplex PCR Assay for Simultaneous Detection of Nine Clinically Significant Bacterial Pathogens Associated with Bovine Mastitis. Mol. Cell. Probes 2017, 33, 57–64. [Google Scholar] [CrossRef]
- Ding, T.; Suo, Y.; Zhang, Z.; Liu, D.; Ye, X.; Chen, S.; Zhao, Y. A Multiplex RT-PCR Assay for S. Aureus, L. Monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-Enrichment. Front. Microbiol. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaas, I.C.; Zadoks, R.N. An Update on Environmental Mastitis: Challenging Perceptions. Transbound Emerg. Dis. 2018, 65, 166–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, K.; Aly, S.S.; Lehenbauer, T.W.; Tonooka, K.H.; Glenn, K.; Rossitto, P.; Marco, M.L. Development of a Multiplex QPCR Assay for the Simultaneous Detection of Mycoplasma Bovis, Mycoplasma Species, and Acholeplasma Laidlawii in Milk. PeerJ 2021, 9, e11881. [Google Scholar] [CrossRef]
- Pascual-Garrigos, A.; Maruthamuthu, M.K.; Ault, A.; Davidson, J.L.; Rudakov, G.; Pillai, D.; Koziol, J.; Schoonmaker, J.P.; Johnson, T.; Verma, M.S. On-Farm Colorimetric Detection of Pasteurella Multocida, Mannheimia Haemolytica, and Histophilus Somni in Crude Bovine Nasal Samples. Vet. Res. 2021, 52, 126. [Google Scholar] [CrossRef] [PubMed]
- Khangembam, R.; Tóth, M.; Vass, N.; Várady, M.; Czeglédi, L.; Farkas, R.; Antonopoulos, A. Point of Care Colourimetric and Lateral Flow LAMP Assay for the Detection of Haemonchus Contortus in Ruminant Faecal Samples. Parasite 2021, 28, 82. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, P.; Zhou, S.; Zhang, L. Loop-Mediated Isothermal Amplification (LAMP): A Novel Rapid Detection Platform for Pathogens. Microb. Pathog. 2017, 107, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-P.; Othman, S.; Lau, Y.-L.; Radu, S.; Chee, H.-Y. Loop-Mediated Isothermal Amplification (LAMP): A Versatile Technique for Detection of Micro-Organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, B.A.; Kim, S. Recent Trends in the Utilization of LAMP for the Diagnosis of Viruses, Bacteria, and Allergens in Food. In Recent Developments in Applied Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 291–297. [Google Scholar]
- Garg, N.; Ahmad, F.J.; Kar, S. Recent Advances in Loop-Mediated Isothermal Amplification (LAMP) for Rapid and Efficient Detection of Pathogens. Curr. Res. Microb. Sci. 2022, 3, 100120. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.-J.; Lee, S.-Y.; Oh, S.-W. A Review of Isothermal Amplification Methods and Food-Origin Inhibitors against Detecting Food-Borne Pathogens. Foods 2022, 11, 322. [Google Scholar] [CrossRef]
- Bosward, K.L.; House, J.K.; Deveridge, A.; Mathews, K.; Sheehy, P.A. Development of a Loop-Mediated Isothermal Amplification Assay for the Detection of Streptococcus Agalactiae in Bovine Milk. J. Dairy Sci. 2016, 99, 2142–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.L.M. DNA Amplification in the Field: Move over PCR, Here Comes LAMP. Mol. Ecol. Resour. 2017, 17, 138–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelissen, J.B.W.J.; de Greeff, A.; Heuvelink, A.E.; Swarts, M.; Smith, H.E.; van der Wal, F.J. Rapid Detection of Streptococcus Uberis in Raw Milk by Loop-Mediated Isothermal Amplification. J. Dairy Sci. 2016, 99, 4270–4281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheet, O.H.; Grabowski, N.T.; Klein, G.; Abdulmawjood, A. Development and Validation of a Loop Mediated Isothermal Amplification (LAMP) Assay for the Detection of Staphylococcus Aureus in Bovine Mastitis Milk Samples. Mol. Cell. Probes 2016, 30, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, K.; Cornelissen, J.; Heuvelink, A.; Adusei, D.; Mevius, D.; van der Wal, F.J. Development and Evaluation of 4 Loop-Mediated Isothermal Amplification Assays to Detect Mastitis-Causing Bacteria in Bovine Milk Samples. J. Dairy Sci. 2020, 103, 8407–8420. [Google Scholar] [CrossRef] [PubMed]
- Anis, E.; Hawkins, I.K.; Ilha, M.R.S.; Woldemeskel, M.W.; Saliki, J.T.; Wilkes, R.P. Evaluation of Targeted Next-Generation Sequencing for Detection of Bovine Pathogens in Clinical Samples. J. Clin. Microbiol. 2018, 56, e00399-18. [Google Scholar] [CrossRef] [Green Version]
- Miura, A.; Kurumisawa, T.; Kano, R.; Ito, T.; Suzuki, K.; Kamata, H. Next-Generation Sequencing Analysis of Bacterial Flora in Bovine Protothecal Mastitic Milk and Feces. J. Vet. Med. Sci. 2019, 81, 1547–1551. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Li, Z.; Lin, X.; Li, F.; Xu, H.; Yu, X.; Liu, L.; Liang, Y.; Xu, Z.; Wang, J.; et al. Etiology of Granulomatous Lobular Mastitis Based on Metagenomic Next-Generation Sequencing. Int. J. Infect. Dis. 2021, 113, 243–250. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Mohd, I.Y.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R.; et al. Advances in Therapeutic and Managemental Approaches of Bovine Mastitis: A Comprehensive Review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef]
- Duarte, C.M.; Freitas, P.P.; Bexiga, R. Technological Advances in Bovine Mastitis Diagnosis. J. Vet. Diagn. Investig. 2015, 27, 665–672. [Google Scholar] [CrossRef]
- Neethirajan, S.; Tuteja, S.K.; Huang, S.-T.; Kelton, D. Recent Advancement in Biosensors Technology for Animal and Livestock Health Management. Biosens. Bioelectron. 2017, 98, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, S.; Melendez, P.; Manriquez, D.; Velasquez-Munoz, A.; Pena, G.; Roman-Muniz, I.N.; Pinedo, P.J. Use of Milk Electrical Conductivity for the Differentiation of Mastitis Causing Pathogens in Holstein Cows. Animal 2020, 14, 588–596. [Google Scholar] [CrossRef]
- Porter, A.V.; Xercavins, A. Biosensors: The Future of Sensors for Dairy Health Management? Available online: https://4d4f.eu/content/biosensors-future-sensors-dairy-health-management (accessed on 27 July 2022).
- Alhadrami, H.A. Biosensors: Classifications, Medical Applications, and Future Prospective. Biotechnol. Appl. Biochem. 2018, 65, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical Biosensors for Fast Detection of Food Contaminants—Trends and Perspective. TrAC Trends Anal. Chem. 2016, 79, 80–87. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Yang, Q.; Yuan, N.; Zhang, W. Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens. Sensors 2019, 19, 4916. [Google Scholar] [CrossRef] [Green Version]
- Mungroo, N.A.; Neethirajan, S. Optical Biosensors for the Detection of Food Borne Pathogens. In Nanobiosensors for Personalized and Onsite Biomedical Diagnosis; Institution of Engineering and Technology: London, UK, 2016; pp. 181–208. [Google Scholar]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-Free Optical Biosensors for Food and Biological Sensor Applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, H.; Li, M.; Sun, C.; Ren, D.; Li, Y. Fiber Optic Surface Plasmon Resonance Sensor for Detection of E. coli O157:H7 Based on Antimicrobial Peptides and AgNPs-RGO. Biosens. Bioelectron. 2018, 117, 347–353. [Google Scholar] [CrossRef]
- Balbinot, S.; Srivastav, A.M.; Vidic, J.; Abdulhalim, I.; Manzano, M. Plasmonic Biosensors for Food Control. Trends Food Sci. Technol. 2021, 111, 128–140. [Google Scholar] [CrossRef]
- Park, J.-H.; Cho, Y.-W.; Kim, T.-H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors 2022, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Narita, F.; Wang, Z.; Kurita, H.; Li, Z.; Shi, Y.; Jia, Y.; Soutis, C. A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID-19 and Other Viruses. Adv. Mater. 2021, 33, 2005448. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, W.B.; Dudley, E.G.; Doores, S.; Cutter, C.N. Commercially Available Rapid Methods for Detection of Selected Food-Borne Pathogens. Crit. Rev. Food Sci. Nutr. 2016, 56, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Umesha, S.; Manukumar, H.M. Advanced Molecular Diagnostic Techniques for Detection of Food-Borne Pathogens: Current Applications and Future Challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 84–104. [Google Scholar] [CrossRef]
- Pérez-López, B.; Merkoçi, A. Nanoparticles for the Development of Improved (Bio)Sensing Systems. Anal. Bioanal. Chem. 2011, 399, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Fernandes, A.C.; Cardoso, F.A.; Bexiga, R.; Cardoso, S.F.; Freitas, P.J.P. Magnetic Counter for Group B Streptococci Detection in Milk. IEEE Trans Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Deb, R.; Pal, P.; Chaudhary, P.; Bhadsavle, S.; Behera, M.; Parmanand; Gautam, D.; Roshan, M.; Vats, A.; Ludri, A.; et al. Development of Gold Nanoparticle-Based Visual Assay for Rapid Detection of Escherichia Coli Specific DNA in Milk of Cows Affected with Mastitis. LWT 2022, 155, 112901. [Google Scholar] [CrossRef]
- Coatrini-Soares, A.; Coatrini-Soares, J.; Neto, M.P.; de Mello, S.S.; Pinto, D.D.S.C.; Carvalho, W.A.; Gilmore, M.S.; Piazzetta, M.H.O.; Gobbi, A.L.; Brandão, H.d.M.; et al. Microfluidic E-Tongue to Diagnose Bovine Mastitis with Milk Samples Using Machine Learning with Decision Tree Models. Chem. Eng. J. 2023, 451, 138523. [Google Scholar] [CrossRef]
- Jones, G.; Bork, O.; Ferguson, S.A.; Bates, A. Comparison of an On-Farm Point-of-Care Diagnostic with Conventional Culture in Analysing Bovine Mastitis Samples. J. Dairy Res. 2019, 86, 222–225. [Google Scholar] [CrossRef]
- Malcata, F.B.; Pepler, P.T.; Zadoks, R.N.; Viora, L. Laboratory-Based Evaluation of a Simplified Point-of-Care Test Intended to Support Treatment Decisions in Non-Severe Bovine Clinical Mastitis. J. Dairy Res. 2021, 88, 170–175. [Google Scholar] [CrossRef]
- Era-Learn. 1st Icrad Joint Cofund Call Project: Channel-Based Biosensors to Support a Precision Agriculture Approach for Improved Bovine Mastitis Management. Available online: https://www.era-learn.eu/network-information/networks/icrad/1st-icrad-call-2019/channel-based-biosensors-to-support-a-precision-agriculture-approach-for-improved-bovine-mastitis-management (accessed on 28 August 2022).
- Ngo Milk Cluster MAVAS—Biosensor Development for the Detection of Mastitis. Available online: https://enrd.ec.europa.eu/projects-practice/mavas-biosensor-development-detection-mastitis_en (accessed on 10 August 2022).
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared Thermography in Animal Production: An Overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Jayaprakash, G.; Pushpadass, H.A.; Sivaram, M.; Ramesha, K.P.; Das, D.N.; Kataktalware, M.A.; Prakash, M.A.; et al. Infrared Thermography: A Potential Noninvasive Tool to Monitor Udder Health Status in Dairy Cows. Vet. World 2016, 9, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bhakat, C.; Ghosh, M.K.; Dutta, T.K. Technologies Used at Advanced Dairy Farms for Optimizing the Performance of Dairy Animals: A Review. Span. J. Agric. Res. 2021, 19, e05R01. [Google Scholar] [CrossRef]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bronzo, V.; Mitchell, M.; Dell’Orto, V.; Bontempo, V.; Cattaneo, D.; Savoini, G. First Evaluation of Infrared Thermography as a Tool for the Monitoring of Udder Health Status in Farms of Dairy Cows. Sensors 2018, 18, 862. [Google Scholar] [CrossRef] [Green Version]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Pushpadass, H.A.; Sivaram, M.; Ramesha, K.P.; Das, D.N.; Kataktalware, M.A.; Jayaprakash, G.; Patbandha, T.K. Investigation of Body and Udder Skin Surface Temperature Differentials as an Early Indicator of Mastitis in Holstein Friesian Crossbred Cows Using Digital Infrared Thermography Technique. Vet. World 2016, 9, 1386–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neculai-Valeanu, A.-S.; Ariton, A.-M. Applications of Infrared Thermography for Bovine Mastitis Prevention and Sustainable Dairy Cattle Production in Romania. In Proceedings of the The 2nd International Electronic Conference on Animals—Global Sustainability and Animals: Welfare, Policies and Technologies, Online, 29 November–13 December 2021; Phillips, J.C., Pezzuolo, A., Eds.; MDPI: Basel, Switzerland. [Google Scholar]
- Machado, N.A.F.; da Costa, L.B.S.; Barbosa-Filho, J.A.D.; de Oliveira, K.P.L.; de Sampaio, L.C.; Peixoto, M.S.M.; Damasceno, F.A. Using Infrared Thermography to Detect Subclinical Mastitis in Dairy Cows in Compost Barn Systems. J. Biol. 2021, 97, 102881. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Bolaños, J.; Ceballes-Serrano, C.C.; Velásquez-Mejía, D.; Riaño-Rojas, J.C.; Giraldo, C.E.; Carmona, J.U.; Ceballos-Márquez, A. Application of Udder Surface Temperature by Infrared Thermography for Diagnosis of Subclinical Mastitis in Holstein Cows Located in Tropical Highlands. J. Dairy Sci. 2021, 104, 10310–10323. [Google Scholar] [CrossRef]
Method | Type (on Farm/ on Laboratory) | Principle | Advantages | Drawbacks |
---|---|---|---|---|
Teat-end scoring | On-farm | Assessment of teat hyperkeratosis using a four-grade chart: Normal—normal appearance, with no ring around the teat canal; Smooth—slightly visible ring with no keratin strands; Rough—a thickened ring that extends between one and three millimeters from the orifice. Scattered fragments of old keratin and disintegrated epithelial cells are visible; Very Rough—a high ring with scattered fragments of old keratin reaching more than 4 mm is visible. The edge of the ring is uneven and shattered, creating a look similar to that of a flower. |
|
|
Electric conductivity | On-farm | Changes in the ionic content of milk caused by tissue injury induced by mastitis are measured. |
|
|
pH | Lab | The pH in milk samples assessed. Normal milk has a pH of 6.8, while in udder inflammation, the pH tends to become alkaline. |
|
|
California Mastitis test | On-farm | The number of somatic cells (SC) in milk is estimated using an indirect indicator. The test reagent (Bromocresol-purple in the detergent used as a reagent) forms a gel by reacting with the DNA of the cell. The gel viscosity is linked to the amount of SC in the milk sample. The thicker the gel, the larger the number of cells in the milk sample |
|
|
Detection of enzymatic activity | Lab/ On-farm | Detects variations in color as a means of determining the level of LDH activity. |
|
|
Direct microscopic determination of somatic cells | Laboratory | Identifying epithelial and leucocyte cells discharged into the milk by specific staining |
|
|
Automatic determination of somatic cells (fluoro optoelectronic method) | Laboratory | The nuclear DNA of somatic cells is stained using a fluorescent dye |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neculai-Valeanu, A.-S.; Ariton, A.-M. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering 2022, 9, 608. https://doi.org/10.3390/bioengineering9110608
Neculai-Valeanu A-S, Ariton A-M. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering. 2022; 9(11):608. https://doi.org/10.3390/bioengineering9110608
Chicago/Turabian StyleNeculai-Valeanu, Andra-Sabina, and Adina-Mirela Ariton. 2022. "Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality" Bioengineering 9, no. 11: 608. https://doi.org/10.3390/bioengineering9110608
APA StyleNeculai-Valeanu, A. -S., & Ariton, A. -M. (2022). Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering, 9(11), 608. https://doi.org/10.3390/bioengineering9110608