The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review
Abstract
:1. Introduction
Items | Quantities | Reference |
---|---|---|
Water content | 46.92–59.80% | [10,11] |
Organic matter | 92.5% * | [10,11] |
Starch | 32.2–33.1% * | [10,12] |
Neutral detergent fiber | 46.1% * | [12] |
Acid detergent fiber | 23.2% * | [12] |
Crude protein | 13.70–41.30% * | [10,11,13] |
Peptide | 16.8% * | [13] |
Bacteria | 8.4 × 104–1.0 × 105 CFU/g | [14,15] |
Mildew | 7.2 × 104–3.1 × 105 CFU/g | [14,15] |
Yeast | 0.7 × 103–1.8 × 103 CFU/g | [14,15] |
2. Application in Feed Production
2.1. Feed Production
2.2. Fermented Feeds
3. Potential Application in Food Processing
3.1. Artificial Food Additives
3.2. Soy Sauce and Vinegar
4. Other Huangjiu-Lees-Resourcing Approaches
4.1. Biogas Production
4.2. Cultivation of Edible Fungi
4.3. Skin Care Products
4.4. Biochar Production
5. Future Prospects
5.1. Focusing on Functional Component in Huangjiu Lees
5.2. Optimizing the Processes in Biological Functional Component Extraction
5.3. Designing a Comprehensive Cleaner Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giuntoli, J.; de Jong, W.; Arvelakis, S.; Spliethoff, H.; Verkooijen, A.H.M. Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: Dry distiller’s grains with solubles (DDGS) and chicken manure. J. Anal. Appl. Pyrolysis 2009, 85, 301–312. [Google Scholar] [CrossRef]
- Pattnaik, M.; Pandey, P.; Martin, G.J.O.; Mishra, H.N.; Ashokkumar, M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development. Foods 2021, 10, 279. [Google Scholar] [CrossRef]
- Gomez, L.; Tiwari, B.; Garcia-Vaquero, M. Emerging extraction techniques: Microwave-assisted extraction. In Sustainable Seaweed Technologies; Torres, M.D., Kraan, S., Dominguez, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 9; pp. 207–224. [Google Scholar]
- Ciğeroğlu, Z.; Bayramoğlu, M.; Kırbaşlar, Ş.İ.; Şahin, S. Comparison of microwave-assisted techniques for the extraction of antioxidants from Citrus paradisi Macf. biowastes. J. Food Sci. Technol. 2021, 58, 1190–1198. [Google Scholar] [CrossRef] [PubMed]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Méndez-Carmona, J.Y.; Ascacio-Valdes, J.A.; Alvarez-Perez, O.B.; Hernández-Almanza, A.Y.; Ramírez-Guzman, N.; Sepúlveda, L.; Aguilar-González, M.A.; Ventura-Sobrevilla, J.M.; Aguilar, C.N. Tomato waste as a bioresource for lycopene extraction using emerging technologies. Food Biosci. 2022, 49, 101966. [Google Scholar] [CrossRef]
- Arya, S.S.; Venkatram, R.; More, P.R.; Vijayan, P. The wastes of coffee bean processing for utilization in food: A review. J. Food Sci. Technol. 2022, 59, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, C.; Hieke, S.; Taper, C.; Siegrist, M. European consumer healthiness evaluation of ‘Free-from’ labelled food products. Food Qual. Prefer. 2018, 68, 377–388. [Google Scholar] [CrossRef]
- Mao, J. Process of Huangjiu Brewing. In Key Technology & Engineering Application in Huangjiu Brewing; Chemical Industry Press Co., Ltd.: Beijing, China, 2020; Volume 1, p. 199. [Google Scholar]
- Zhu, W.; He, Q.; Gao, H.; Nitayavardhana, S.; Khanal, S.K.; Xie, L. Bioconversion of yellow wine wastes into microbial protein via mixed yeast-fungus cultures. Bioresour. Technol. 2020, 299, 122565. [Google Scholar] [CrossRef]
- Yao, K.Y.; Wei, Z.H.; Xie, Y.Y.; Wang, D.M.; Liu, H.Y.; Fang, D.; Ma, M.R.; Liu, J.X. Lactation performance and nitrogen utilization of dairy cows on diets including unfermented or fermented yellow wine lees mix. Livest. Sci. 2020, 236, 104025. [Google Scholar] [CrossRef]
- Yao, K.Y.; Gu, F.F.; Liu, J.X. In vitro rumen fermentation characteristics of substrate mixtures with soybean meal partially replaced by microbially fermented yellow wine lees. Ital. J. Anim. Sci. 2020, 19, 18–24. [Google Scholar] [CrossRef]
- Milani, N.C.; de Paula, V.R.C.; Azevedo, C.P.F.; Sedano, A.A.; Scarpim, L.B.; Moreira Junior, H.; Duarte, D.H.A.; Carciofi, A.C.; da Trindade Neto, M.A.; dos Santos Ruiz, U. Effects of extrusion on ileal and total tract nutrient and energy digestibility of untoasted soybean meal in weanling pigs. Anim. Feed Sci. Technol. 2022, 284, 115206. [Google Scholar] [CrossRef]
- Yao, K. Optimization of Fermentation Process of Yellow Wine Lees and Its Utilization in Lactating Dairy Cows. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Huang, Z.-R.; Guo, W.-L.; Zhou, W.-B.; Li, L.; Xu, J.-X.; Hong, J.-L.; Liu, H.-P.; Zeng, F.; Bai, W.-D.; Liu, B.; et al. Microbial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine. Food Res. Int. 2019, 121, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Peng, Q.; Zhang, H.; Sun, J.; Shen, C.; Han, X. The volatile profiles and microbiota structures of the wheat Qus used as traditional fermentation starters of Chinese rice wine from Shaoxing region. LWT 2022, 154, 112649. [Google Scholar] [CrossRef]
- Weinrich, R.; Busch, G. Consumer knowledge about protein sources and consumers’ openness to feeding micro-algae and insects to pigs and poultry. Future Foods 2021, 4, 100100. [Google Scholar] [CrossRef]
- Kaewtapee, C.; Thongprajukaew, K.; Jittanoon, T.; Nuntapong, N.; Preedaphol, K.; Saekhow, S. Mixed feeding schedule switching between high and low protein diets for Asian seabass (Lates calcarifer). Anim. Feed Sci. Technol. 2022, 284, 115204. [Google Scholar] [CrossRef]
- Hu, Y.; Pan, L.; Dun, Y.; Peng, N.; Liang, Y.; Zhao, S. Conversion of yellow wine lees into high-protein yeast culture by solid-state fermentation. Biotechnol. Biotechnol. Equip. 2014, 28, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Liu, X.; Xu, Z.R.; Lu, Y.P.; Liu, Y.Y. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol. 2007, 134, 295–303. [Google Scholar] [CrossRef]
- Irfan, M.; Nadeem, M.; Syed, Q. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 2014, 7, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Chai, S.Y.; Abu Bakar, F.D.; Mahadi, N.M.; Murad, A.M.A. A thermotolerant Endo-1,4-β-mannanase from Trichoderma virens UKM1: Cloning, recombinant expression and characterization. J. Mol. Catal. B Enzym. 2016, 125, 49–57. [Google Scholar] [CrossRef]
- Sun, X.; Debeni Devi, N.; Urriola, P.E.; Tiffany, D.G.; Jang, J.-C.; Shurson, G.G.; Hu, B. Feeding value improvement of corn-ethanol co-product and soybean hull by fungal fermentation: Fiber degradation and digestibility improvement. Food Bioprod. Process. 2021, 130, 143–153. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Yin, Y.; Wang, C.; Lu, Z.; Wang, F.; Feng, J.; Wang, Y. Amino acid and phosphorus digestibility of fermented corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium fed to pigs. J. Anim. Sci. 2017, 95, 3996–4004. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Li, S.; Zheng, H.; Wei, Z.; Liu, D.; Raza, W.; Shen, Q.; Xu, Y. A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2: Cloning, characterization and functional expression in Pichia pastoris. BMC Biotechnol. 2014, 14, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuly, J.A.; Zabed, H.M.; Nizami, A.-S.; Mehedi Hassan, M.; Roknul Azam, S.M.; Kumar Awasthi, M.; Janet, Q.; Chen, G.; Dzidzorgbe Kwaku Akpabli-Tsigbe, N.; Ma, H. Bioconversion of agro-food industrial wastes into value-added peptides by a Bacillus sp. Mutant through solid-state fermentation. Bioresour. Technol. 2022, 346, 126513. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, W.; Tian, X.; Hu, X.; Wu, Z. Brewer’s spent grain fermentation improves its soluble sugar and protein as well as enzymatic activities using Bacillus velezensis. Process Biochem. 2021, 111, 12–20. [Google Scholar] [CrossRef]
- Suprayogi, W.P.S.; Ratriyanto, A.; Akhirini, N.; Hadi, R.F.; Setyono, W.; Irawan, A. Changes in nutritional and antinutritional aspects of soybean meals by mechanical and solid-state fermentation treatments with Bacillus subtilis and Aspergillus oryzae. Bioresour. Technol. Rep. 2022, 17, 100925. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Kong, Q.; Cotty, P.J. Biotransformation of aflatoxin B1 by Lactobacillus helviticus FAM22155 in wheat bran by solid-state fermentation. Food Chem. 2021, 341, 128180. [Google Scholar] [CrossRef]
- Cherdthong, A.; Suntara, C.; Khota, W.; Wanapat, M. Feed utilization and rumen fermentation characteristics of Thai-indigenous beef cattle fed ensiled rice straw with Lactobacillus casei TH14, molasses, and cellulase enzymes. Livest. Sci. 2021, 245, 104405. [Google Scholar] [CrossRef]
- Gao, Y.-L.; Wang, C.-S.; Zhu, Q.-H.; Qian, G.-Y. Optimization of Solid-State Fermentation with Lactobacillus brevis and Aspergillus oryzae for Trypsin Inhibitor Degradation in Soybean Meal. J. Integr. Agric. 2013, 12, 869–876. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, X.; Qiao, S. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Anim. Nutr. 2021, 7, 905–916. [Google Scholar] [CrossRef]
- Zheng, G.; Qian, H. Ingredients and flavor analysis of yellow wine lees and study of its feasibility of making condiments. China Condiment 2007, 4, 20–25. [Google Scholar]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, decanoic acid, CAS Registry Number 334-48-5. Food Chem. Toxicol. 2020, 144, 111465. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, octanoic acid, CAS Registry Number 124-07-2. Food Chem. Toxicol. 2020, 138, 111271. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, acetic acid, (1-oxopropoxy)-, 1-(3,3-dimethylcyclohexyl)ethyl ester, CAS Registry Number 236391-76-7. Food Chem. Toxicol. 2020, 141, 111342. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, M.; Dong, Z.; Zhu, Y.; Shi, J.; Ma, W.; Lin, Z.; Lv, H. Volatile components and key odorants of Chinese yellow tea (Camellia sinensis). LWT 2021, 146, 111512. [Google Scholar] [CrossRef]
- Rong, L.; Peng, L.-J.; Ho, C.-T.; Yan, S.-H.; Meurens, M.; Zhang, Z.-Z.; Li, D.-X.; Wan, X.-C.; Bao, G.-H.; Gao, X.-L.; et al. Brewing and volatiles analysis of three tea beers indicate a potential interaction between tea components and lager yeast. Food Chem. 2016, 197, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, X.; Xie, G. A review of utilization of functional components in Huangjiu lees. Food Ferment. Ind. 2022, 1, 10–15. [Google Scholar] [CrossRef]
- You, H.; Mao, J.; Zhou, Z. Characteristics of Chinese Rice Wine with Different Varieties of Rice. J. Food Sci. Biotechnol. 2019, 38, 39–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Shi, H.; Ding, K.; Zhou, X.; Zhao, G.; Hadiatullah, H. Impact of steam explosion pretreatment of defatted soybean meal on the flavor of soy sauce. LWT 2022, 156, 113034. [Google Scholar] [CrossRef]
- Pashazadeh, H.; Özdemir, N.; Zannou, O.; Koca, I. Antioxidant capacity, phytochemical compounds, and volatile compounds related to aromatic property of vinegar produced from black rosehip (Rosa pimpinellifolia L.) juice. Food Biosci. 2021, 44, 101318. [Google Scholar] [CrossRef]
- Gu, H.; Zhou, J. Studies on very tasty soybean sauce made from yellow Wine via enzymatic hydrolysis. China Condiment 2003, 3, 9–12. [Google Scholar]
- Wan, J.; Leng, Y.; Wu, G.; Zhang, X. Comprehensive utilization of Chinese rice wine vinasse for vinegar production. China Brew. 2016, 35, 170–173. [Google Scholar] [CrossRef]
- Wang, P.; Mao, J.; Meng, X.; Li, X.; Liu, Y.; Feng, H. Changes in flavour characteristics and bacterial diversity during the traditional fermentation of Chinese rice wines from Shaoxing region. Food Control 2014, 44, 58–63. [Google Scholar] [CrossRef]
- Ladole, M.R.; Mevada, J.S.; Pandit, A.B. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresour. Technol. 2017, 239, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Kapdan, I.K.; Kargi, F. Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Fu, S.; Xu, X.; Shi, X.; Wang, Y.; Qiao, J.; Guo, R. Basic research on utilization of stillage for biogas production. J. Chem. Ind. Eng. 2014, 65, 1913–1919. [Google Scholar]
- Sargsyan, H.; Trchounian, K.; Gabrielyan, L.; Trchounian, A. Novel approach of ethanol waste utilization: Biohydrogen production by mixed cultures of dark- and photo-fermentative bacteria using distillers grains. Int. J. Hydrogen Energy 2016, 41, 2377–2382. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Mishra, P.K.; Kausar, M.A.; Saeed, M.; Gupta, V.K.; Singh, R.; Ramteke, P.W. Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresour. Technol. 2020, 307, 123094. [Google Scholar] [CrossRef]
- Chuang, Y.-S.; Huang, C.-Y.; Lay, C.-H.; Chen, C.-C.; Sen, B.; Lin, C.-Y. Fermentative bioenergy production from distillers grains using mixed microflora. Int. J. Hydrogen Energy 2012, 37, 15547–15555. [Google Scholar] [CrossRef]
- Chen, H.; Wu, J.; Huang, R.; Zhang, W.; He, W.; Deng, Z.; Han, Y.; Xiao, B.; Luo, H.; Qu, W. Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. Chemosphere 2022, 286, 131655. [Google Scholar] [CrossRef]
- Sun, K. Experimental Research on Resourceful Treatment of Distillers’ Grains. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2014. [Google Scholar]
- Da Ros, C.; Cavinato, C.; Pavan, P.; Bolzonella, D. Winery waste recycling through anaerobic co-digestion with waste activated sludge. Waste Manag. 2014, 34, 2028–2035. [Google Scholar] [CrossRef]
- Du, M.; Li, J.; Chen, X.; Zhu, S.; Wei, S.; Yang, R. Effects of Moutai-flavor Liquor Distiller’s Grains on Mycelial Growth and Fruit Body Traits of Flammulina velutipes. Edible Fungi China 2016, 35, 29–32. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, S.; Wang, T. Research status of edible fungi cultivated by distillers’ grains. China Brew. 2017, 36, 5–9. [Google Scholar]
- Joy, J.; George, N.; Chirayil, C.J.; Maria, H.J.; Thomas, S. Microbial extraction of micro and nanofibers from plant fibers. In Microbial and Natural Macromolecules; Das, S., Dash, H.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; Chapter 12; pp. 301–315. [Google Scholar]
- Wang, Y.-J.; Wu, P.; Bolan, N.S.; Wang, H.-L. The potential agronomic and environmental applications of biochar: Prospects and challenges. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of biochar from food and wood waste as green admixture for cement mortar. Sci. Total Environ. 2018, 619–620, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Leininger, A.; Ren, Z.J. Circular utilization of food waste to biochar enhances thermophilic co-digestion performance. Bioresour. Technol. 2021, 332, 125130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xiao, D.; Liu, Y.; Xu, H.; Nan, H.; Li, D.; Kan, Y.; Cao, X. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater. Water Res. 2020, 172, 115494. [Google Scholar] [CrossRef]
- Tisserant, A.; Morales, M.; Cavalett, O.; O’Toole, A.; Weldon, S.; Rasse, D.P.; Cherubini, F. Life-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agriculture. Resour. Conserv. Recycl. 2022, 179, 106030. [Google Scholar] [CrossRef]
- James, A.; Sánchez, A.; Prens, J.; Yuan, W. Biochar from agricultural residues for soil conditioning: Technological status and life cycle assessment. Curr. Opin. Environ. Sci. Health 2022, 25, 100314. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Li, L.-Q.; Zhao, L.; Chen, C.; Yang, S.-S.; Ren, N.-Q. Comparative life cycle assessment of biochar-based lignocellulosic biohydrogen production: Sustainability analysis and strategy optimization. Bioresour. Technol. 2022, 344, 126261. [Google Scholar] [CrossRef]
- Puettmann, M.; Sahoo, K.; Wilson, K.; Oneil, E. Life cycle assessment of biochar produced from forest residues using portable systems. J. Clean. Prod. 2020, 250, 119564. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Xu, T.; Qiu, W.; Zhang, Y.; Zhang, L.; Xu, F.; Liu, H. Rice Protein Extracted by Different Methods Affects Cholesterol Metabolism in Rats Due to Its Lower Digestibility. Int. J. Mol. Sci. 2011, 12, 7594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, Y.; He, X.; Mao, Y.; Yu, J. Analysis of the Antioxidant Activities of Yellow Rice Wine Lees. Liquor-Mak. Sci. Technol. 2014, 4, 38–41. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Fu, X.; Li, S.; Wei, J. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT 2017, 75, 93–99. [Google Scholar] [CrossRef]
- Lv, J.; Ao, X.; Li, Q.; Cao, Y.; Chen, Q.; Xie, Y. Steam co-gasification of different ratios of spirit-based distillers’ grains and anthracite coal to produce hydrogen-rich gas. Bioresour. Technol. 2019, 283, 59–66. [Google Scholar] [CrossRef]
- Yan, Q.-J.; Huang, L.-H.; Sun, Q.; Jiang, Z.-Q.; Wu, X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chem. 2015, 179, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Qian, M.; Dong, H.; Liu, X.; Bai, W.; Liu, G.; Lv, X.-C. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. LWT 2022, 160, 113264. [Google Scholar] [CrossRef]
- Feng, Z.; Dong, L.; Zhang, R.; Chi, J.; Liu, L.; Zhang, M.; Jia, X. Structural elucidation, distribution and antioxidant activity of bound phenolics from whole grain brown rice. Food Chem. 2021, 358, 129872. [Google Scholar] [CrossRef]
- Ding, C.; Liu, Q.; Li, P.; Pei, Y.; Tao, T.; Wang, Y.; Yan, W.; Yang, G.; Shao, X. Distribution and quantitative analysis of phenolic compounds in fractions of Japonica and Indica rice. Food Chem. 2019, 274, 384–391. [Google Scholar] [CrossRef]
- Massaretto, I.L.; Madureira Alves, M.F.; Mussi de Mira, N.V.; Carmona, A.K.; Lanfer Marquez, U.M. Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. J. Cereal Sci. 2011, 54, 236–240. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Y.; Dong, L.; Jia, X.; Liu, L.; Huang, F.; Chi, J.; Xiao, J.; Zhang, M.; Zhang, R. Extrusion and fungal fermentation change the profile and antioxidant activity of free and bound phenolics in rice bran together with the phenolic bioaccessibility. LWT 2019, 115, 108461. [Google Scholar] [CrossRef]
- Khan, S.A.; Zhang, M.; Liu, L.; Dong, L.; Ma, Y.; Wei, Z.; Chi, J.; Zhang, R. Co-culture submerged fermentation by lactobacillus and yeast more effectively improved the profiles and bioaccessibility of phenolics in extruded brown rice than single-culture fermentation. Food Chem. 2020, 326, 126985. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Xiong, H.; Selomulya, C.; Chen, X.D.; Zhong, H.; Wang, S.; Sun, W.; Zhou, Q. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chem. 2012, 134, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem. 2015, 169, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Applying ultrasound-assisted processing to obtain cellulose fibres from rice straw to be used as reinforcing agents. Innov. Food Sci. Emerg. Technol. 2022, 76, 102932. [Google Scholar] [CrossRef]
- Alberts, J.F.; Davids, I.; Moll, W.-D.; Schatzmayr, G.; Burger, H.-M.; Shephard, G.S.; Gelderblom, W.C.A. Enzymatic detoxification of the fumonisin mycotoxins during dry milling of maize. Food Control 2020, 123, 107726. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, X.; Zheng, Y.; Wang, D.; Deng, Y.; Zhao, Y. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates. Food Hydrocoll. 2021, 112, 106355. [Google Scholar] [CrossRef]
- Chi, C.-F.; Wang, B.; Wang, Y.-M.; Zhang, B.; Deng, S.-G. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J. Funct. Foods 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Peng, L.; Kong, X.; Wang, Z.; Ai-lati, A.; Ji, Z.; Mao, J. Baijiu vinasse as a new source of bioactive peptides with antioxidant and anti-inflammatory activity. Food Chem. 2021, 339, 128159. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Huang, C.; Ge, X.; Xi, B.; Mao, J. Chinese Baijiu distiller’s grains resourcing: Current progress and future prospects. Resour. Conserv. Recycl. 2022, 176, 105900. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Anderson, T.J.; Ilankovan, P.; Lamsal, B.P. Two fraction extraction of α-zein from DDGS and its characterization. Ind. Crops Prod. 2012, 37, 466–472. [Google Scholar] [CrossRef]
- Benito-Román, O.; Varona, S.; Sanz, M.T.; Beltrán, S. Valorization of rice bran: Modified supercritical CO2 extraction of bioactive compounds. J. Ind. Eng. Chem. 2019, 80, 273–282. [Google Scholar] [CrossRef]
- Mateus, A.; Torres, J.; Marimon-Bolivar, W.; Pulgarín, L. Implementation of magnetic bentonite in food industry wastewater treatment for reuse in agricultural irrigation. Water Resour. Ind. 2021, 26, 100154. [Google Scholar] [CrossRef]
- Liu, T.; Wang, K.; Xue, W.; Wang, L.; Zhang, C.; Zhang, X.; Chen, Z. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. LWT 2021, 142, 111008. [Google Scholar] [CrossRef]
- Boonterm, M.; Sunyadeth, S.; Dedpakdee, S.; Athichalinthorn, P.; Patcharaphun, S.; Mungkung, R.; Techapiesancharoenkij, R. Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal steam explosion. J. Clean. Prod. 2016, 134, 592–599. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Tian, H.; Ai, L.; Yu, H. Metagenomic analysis reveals the impact of JIUYAO microbial diversity on fermentation and the volatile profile of Shaoxing-jiu. Food Microbiol. 2020, 86, 103326. [Google Scholar] [CrossRef]
- Mao, Q. Microbial Changes and Functions in the Production of Wine Starter. Liquor-Mak. Sci. Technol. 2004, 5, 44–46. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Zhang, J.; Pan, J. Using tobacco waste extract in pre-culture medium to improve xylose utilization for l-lactic acid production from cellulosic waste by Rhizopus oryzae. Bioresour. Technol. 2016, 218, 344–350. [Google Scholar] [CrossRef]
- Ma, L.; Yang, L.; Liu, W.; Zhang, Y.; Zhou, Q.; Wu, Z.; He, F. Environmental factors and microbial communities jointly regulate biological dephosphorization process in pond-ditch circulation systems (PDCSs) for rural wastewater treatment. Sci. Total Environ. 2021, 758, 143629. [Google Scholar] [CrossRef]
- Kotia, A.; Rutu, P.; Singh, V.; Kumar, A.; Dhoke, S.; Kumar, P.; Singh, D.K. Rheological analysis of rice husk-starch suspended in water for sustainable agriculture application. Mater. Today Proc. 2021, 50, 1962–1966. [Google Scholar] [CrossRef]
- Dispat, N.; Poompradub, S.; Kiatkamjornwong, S. Synthesis of ZnO/SiO2-modified starch-graft-polyacrylate superabsorbent polymer for agricultural application. Carbohydr. Polym. 2020, 249, 116862. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, S.; Subbaiya, R.; Saravanan, M.; Ponraj, M.; Selvam, M.; Pugazhendhi, A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 2022, 289, 132867. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Kang, H.; Haidar, G.; Wang, W.; Malghani, S. The impact of biochar on the activities of soil nutrients acquisition enzymes is potentially controlled by the pyrolysis temperature: A meta-analysis. Geoderma 2022, 411, 115692. [Google Scholar] [CrossRef]
Dry Matter (%) | Energy (Macl/kg) * | Curb Protein (%) * | Curb Fat (%) * | Starch (%) * | Reference | |
---|---|---|---|---|---|---|
Soybean meal | 87.70–91.90 | 2.02–3.79 | 39.80–48.31 | 5.9- 39.80 | 0–3.50 | [12,18] |
Corn | 30.25–31.83 | 2.66–3.94 | 9.00–9.07 | 4.07–5.50 | 61.70–77.06 | [10,11] |
HL ** | 88.90 | 3.10–3.52 | 13.70–41.30 | 4.51–5.10 | 32.20–33.10 | [10,12,14] |
Fermented HL | 88.40 | - | 67.40–69.40 | 4.00–4.40 | 18.30–22.30 | [12,13] |
Strain Classification | Fermentation Strain | Enzymes | Enriched Components | Application | Reference |
---|---|---|---|---|---|
Fungal strains | Aspergillus | D-xylosidase, Mannosidase, b-fructofuranase | Soluble sugar, Crude Protein, Ferulic acid, Short chain fatty acids | Wheat straw, Wheat bran, Soybean meal | [20] |
Trichoderma | Acetylesterase, Glucomannanase, Cellulase, Xylanase | Short chain fatty acids, Lactic acid, Mannan oligosaccharide | Wheat bran, Corn-ethanol lees | [21,22,23] | |
Enterococcus | Mannosidase, Glucomannanase | Short chain fatty acids, Mannose | Corn-soybean mixed meal | [22,24] | |
Penicillium | Pectin methylesterase, Polygalacturonas | Soluble sugar, Organic acids | Soybean | [25] | |
Bacteria | Bacillus | Keratinase, Cellulase, Xylanase, Fructofuranosidase | Peptides, Protein and amino acids, Soluble sugar and protein | Okara, Soybean meals, Brewer’s spent grain | [26,27,28] |
Lactobacillus | Cellulase, Glycoside hydrolases | Lactic acid, Proteins | Rice straw, Wheat bran, Soybean meal | [29,30,31] |
Huangjiu Fermented Broth (%) * | Huangjiu Lees (%) * | ||
---|---|---|---|
Sweet amino acid | Serine | 2.63 | 0.61 |
Glycine | 3.84 | 0.96 | |
Threonine | 3.58 | 0.60 | |
Alanine | 6.76 | 0.69 | |
Proline | 13.76 | 0.52 | |
Methionine | 4.95 | 0.15 | |
Sum | 35.54 | 3.53 | |
Bitter amino acid | Histidine | 6.95 | 0.26 |
Arginine | 11.42 | 0.73 | |
Valine | 4.51 | 0.63 | |
Isoleucine | 2.21 | 0.15 | |
Leucine | 7.03 | 1.04 | |
Phenylalanine | 9.68 | 0.63 | |
Lysine | 4.61 | 0.45 | |
Tryptophan | 2.62 | / | |
Sum | 49.02 | 3.89 | |
Delicious amino acids | Aspartic acid | 2.44 | 0.96 |
Glutamate | 5.00 | 1.97 | |
Sum | 7.45 | 2.93 | |
Astringent amino acid | Tyrosine | 5.41 | 0.53 |
Other amino acid | γ-aminobutyric acid | 2.58 | / |
Flavor Components | Correlated Microgames |
---|---|
Malic acid, Lactic acid, Acetic acid, Citric acid | Lactobacillus, Leuconostoc and Enterobacter |
Isobutyl acetate, Isoamyl acetate, Hexyl acetate, Phenylethyl acetate, Isobutanol, N-octanol, N-decanol | Thermomyces, Cryptococcus, and Fusarium |
Ethyl phenylacetate, 2-propenyl phenylacetate, Ethyl stearate, 2-methyl-4-octanol | Candida |
Ethyl caproate, Ethyl caproate, 1-octene-3-ol, Benzaldehyde, Phenylacetaldehyde | Saccharomyces |
Ethyl caprate | Aspergillus |
Isoamyl acetate, Ethyl valerate, Ethyl caproate, Ethyl propylene carbonate, isobutanol | Pseudomonas |
1-octene-3-ol, benzaldehyde, Phenylacetaldehyde | Lactococcus |
Hexyl acetate, Ethyl heptanoate, Phenylethyl acetate, Ethyl dodecanoate | Bacillus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Liu, Y.; Liu, S.; Mao, J. The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review. Bioengineering 2022, 9, 695. https://doi.org/10.3390/bioengineering9110695
Zhang R, Liu Y, Liu S, Mao J. The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review. Bioengineering. 2022; 9(11):695. https://doi.org/10.3390/bioengineering9110695
Chicago/Turabian StyleZhang, Rongbin, Yizhou Liu, Shuangping Liu, and Jian Mao. 2022. "The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review" Bioengineering 9, no. 11: 695. https://doi.org/10.3390/bioengineering9110695
APA StyleZhang, R., Liu, Y., Liu, S., & Mao, J. (2022). The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review. Bioengineering, 9(11), 695. https://doi.org/10.3390/bioengineering9110695