Effect of Cold-Plasma-Treated Phosphate Solution to Substitute Partial Nitrite on the Color, Texture, and Flavor of Smoked Sausage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Smoked Sausage Manufacture
2.3. Instrumental Color Evaluation
2.4. Texture Profile Analysis (TPA)
2.5. Analysis of Residual Nitrite
2.6. Analysis of Volatile Compounds
2.6.1. E-Nose Analysis
2.6.2. GC-IMS Analysis
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results
3.1. Color of Smoked Sausage
3.2. Texture of the Smoked Sausages
3.3. Residual Nitrite in the Smoked Sausage
3.4. Volatile Compounds
3.4.1. Electronic Nose Analysis
3.4.2. Analysis of Gas Phase Ion Migration Spectrum of Smoked Sausage Flavor Substances in the Different Treatment Groups
3.5. Effect of Adding Cold Plasma Treated Phosphate Solution on the Sensory Quality of Smoked Sausage
3.6. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malarut, J.-A.; Vangnai, K. Influence of wood types on quality and carcinogenic polycyclic aromatic hydrocarbons (PAHs) of smoked sausages. Food Control 2018, 85, 98–106. [Google Scholar] [CrossRef]
- Yang, D.; He, Z.; Gao, D.; Qin, F.; Deng, S.; Wang, P.; Xu, X.; Chen, J.; Zeng, M. Effects of smoking or baking procedures during sausage processing on the formation of heterocyclic amines measured using UPLC-MS/MS. Food Chem. 2019, 276, 195–201. [Google Scholar] [CrossRef]
- Afraei, M.; Soleimanian-Zad, S.; Fathi, M. Improvement the texture of nitrite-free fermented sausages using microencapsulation of fermenting bacteria. Food Biosci. 2022, 50, 102010. [Google Scholar] [CrossRef]
- Gao, X.; Xia, L.; Fan, Y.; Jin, C.; Xiong, G.; Hao, X.; Fu, L.; Lian, W. Evaluation of coloration, nitrite residue and antioxidant capacity of theaflavins, tea polyphenols in cured sausage. Meat Sci. 2022, 192, 108877. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.-S.; Jung, S. Nitrite sources for cured meat products. Lwt-Food Sci. Technol. 2020, 129, 109583. [Google Scholar] [CrossRef]
- Guembe-Garcia, M.; Gonzalez-Ceballos, L.; Arnaiz, A.; Fernandez-Muino, M.A.; Sancho, M.T.; Oses, S.M.; Ibeas, S.; Rovira, J.; Melero, B.; Represa, C.; et al. Easy Nitrite Analysis of Processed Meat with Colorimetric Polymer Sensors and a Smartphone App. ACS Appl. Mater. Interfaces 2022, 14, 37051–37058. [Google Scholar] [CrossRef] [PubMed]
- Sallan, S.; Kaban, G.; Oğraş, Ş.Ş.; Çelik, M.; Kaya, M. Nitrosamine formation in a semi-dry fermented sausage: Effects of nitrite, ascorbate and starter culture and role of cooking. Meat Sci. 2020, 159, 107917. [Google Scholar] [CrossRef]
- Kadach, S.; Piknova, B.; Black, M.I.; Park, J.W.; Wylie, L.J.; Stoyanov, Z.; Thomas, S.M.; McMahon, N.F.; Vanhatalo, A.; Schechter, A.N. Time course of human skeletal muscle nitrate and nitrite concentration changes following dietary nitrate ingestion. Nitric. Oxide 2022, 121, 1–10. [Google Scholar] [CrossRef]
- Oliveira, W.A.; Rodrigues, A.R.; Oliveira, F.A.; Oliveira, V.S.; Laureano-Melo, R.; Stutz, E.T.; Junior, W.J.L.; Paula, B.P.; Esmerino, E.A.; Corich, V. Potentially probiotic or postbiotic pre-converted nitrite from celery produced by an axenic culture system with probiotic lacticaseibacilli strain. Meat Sci. 2021, 174, 108408. [Google Scholar] [CrossRef]
- Ozaki, M.M.; Munekata, P.E.; Jacinto-Valderrama, R.A.; Efraim, P.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Sci. 2021, 171, 108275. [Google Scholar] [CrossRef]
- Li, P.; Kong, B.; Chen, Q.; Zheng, D.; Liu, N. Formation and identification of nitrosylmyoglobin by Staphylococcus xylosus in raw meat batters: A potential solution for nitrite substitution in meat products. Meat Sci. 2013, 93, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, C.; Sirtori, F.; Flores, M.; Bozzi, R.; Lebret, B.; Pugliese, C. Effect of natural antioxidants from grape seed and chestnut in combination with hydroxytyrosol, as sodium nitrite substitutes in Cinta Senese dry-fermented sausages. Meat Sci. 2018, 145, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Ekezie, F.G.C.; Sun, D.W.; Cheng, J.H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017, 69, 46–58. [Google Scholar] [CrossRef]
- Xiang, Q.; Huangfu, L.; Dong, S.; Ma, Y.; Li, K.; Niu, L.; Bai, Y. Feasibility of atmospheric cold plasma for the elimination of food hazards: Recent advances and future trends. Crit Rev. Food Sci. Nutr. 2021, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Zhuang, H.; Nasiru, M.M.; Yuan, Y.; Zhang, J.; Yan, W. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Sci. 2021, 176, 108456. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, D.; Liu, H.; Wang, Z.; Hui, T. Potential alternative to nitrite in roasted lamb for sensory attributes: Atmospheric nonthermal plasma treatment. Foods 2021, 10, 1234. [Google Scholar] [CrossRef]
- Luo, J.; Xu, W.; Liu, Q.; Zou, Y.; Wang, D.; Zhang, J.J.L. Dielectric barrier discharge cold plasma treatment of pork loin: Effects on muscle physicochemical properties and emulsifying properties of pork myofibrillar protein. Lwt-Food Sci. Technol. 2022, 162, 113484. [Google Scholar] [CrossRef]
- Jung, S.; Kim, H.J.; Park, S.; Yong, H.I.; Choe, J.H.; Jeon, H.-J.; Choe, W.; Jo, C. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Sci. 2015, 108, 132–137. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Xin, J.; Li, Z.; Li, G.; Zhang, Y.; Du, M.; Shen, Q.W.; Zhang, D. Effects of protein phosphorylation on color stability of ground meat. Food Chem. 2017, 219, 304–310. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Gan, X.; Li, H. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Sci. 2018, 146, 131–139. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, Y.; Yu, Z.; Wu, T.; Bennett, L.E. Effects of high pressure processing on microbial, textural and sensory properties of low-salt emulsified beef sausage. Food Control 2022, 133, 108596. [Google Scholar] [CrossRef]
- Li, S.; Xiang, C.; Ge, Y.; Liu, H.; Zhang, D.; Wang, Z. Differences in eating quality and electronic sense of meat samples as a function of goat breed and postmortem rigor state. Food Res. Int. 2022, 152, 110923. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Cai, Y.; Liu, D.; Chen, Y.; Li, J.; Zhang, M.; Chen, N.; Zhang, H. Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS). Food Chem. 2022, 370, 130989. [Google Scholar] [CrossRef] [PubMed]
- Kehlet, U.; Pagter, M.; Aaslyng, M.D.; Raben, A. Meatballs with 3% and 6% dietary fibre from rye bran or pea fibre-Effects on sensory quality and subjective appetite sensations. Meat Sci. 2017, 125, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Tan, C.; Huang, M.; Liu, P.; Eric, K.; Zhang, X.; Xia, S.; Jia, C. Transglutaminase cross-linking effect on sensory characteristics and antioxidant activities of Maillard reaction products from soybean protein hydrolysates. Food Chem. 2013, 136, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Meng, Z.; Shao, L.; Dai, R.; Li, X.; Jia, F. Employment of cold atmospheric plasma in chilled chicken breasts and the analysis of microbial diversity after the shelf-life storage. Food Res. Int. 2022, 162, 111934. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhang, Y.; Lü, X.; Zhao, L.; Song, Y.; Zhang, L.; Jiang, H.; Zhang, J.; Ge, W. Processing sheep milk by cold plasma technology: Impacts on the microbial inactivation, physicochemical characteristics, and protein structure. LWT 2022, 153, 112573. [Google Scholar] [CrossRef]
- Moutiq, R.; Misra, N.; Mendonça, A.; Keener, K.J. In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Sci. 2020, 159, 107942. [Google Scholar] [CrossRef]
- Patra, A.; Prasath, V.A.; Pandiselvam, R.; Sutar, P.P.; Jeevarathinam, G. Effect of Plasma activated water (PAW) on physicochemical and functional properties of foods. Food Control 2022, 142, 109268. [Google Scholar] [CrossRef]
- Cui, H.; Wang, Q.; Rai, R.; Salvi, D.; Nitin, N. DNA-based surrogatesfor the validation of microbial inactivation using cold atmospheric pressure plasma and plasma-activated water processing. J. Food Eng. 2022, 339, 111267. [Google Scholar] [CrossRef]
- Marcinkowska-Lesiak, M.; Wojtasik-Kalinowska, I.; Onopiuk, A.; Stelmasiak, A.; Wierzbicka, A.; Poltorak, A. Plasma-activated milk powder as a sodium nitrite alternative in pork sausages. Meat Sci. 2022, 192, 108880. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowska-Lesiak, M.; Wojtasik-Kalinowska, I.; Onopiuk, A.; Stelmasiak, A.; Wierzbicka, A.; Poltorak, A. Application of atmospheric pressure cold plasma activated plant protein preparations solutions as an alternative curing method for pork sausages. Meat Sci. 2022, 187, 108751. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, J.; Lim, Y.; Choe, W.; Yong, H.I.; Jo, C. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 113–118. [Google Scholar] [CrossRef]
- Jo, K.; Lee, S.; Jo, C.; Jeon, H.J.; Choe, J.H.; Choi, Y.-S.; Jung, S. Utility of winter mushroom treated by atmospheric non-thermal plasma as an alternative for synthetic nitrite and phosphate in ground ham. Meat Sci. 2020, 166, 108151. [Google Scholar] [CrossRef]
- Li, Y.; Kojtari, A.; Friedman, G.; Brooks, A.D.; Fridman, A.; Ji, H.F. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma. J. Phys. Chem. B 2014, 118, 1612–1620. [Google Scholar] [CrossRef]
- Faria, G.; Souza, M.; Oliveira, J.; Costa, C.; Collares, M.; Prentice, C. Effect of ultrasound-assisted cold plasma pretreatment to obtain sea asparagus extract and its application in Italian salami. Food Res. Int. 2020, 137, 109435. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Oliveira, M.; Burgess, C.M.; Kerry, J.P.; Tiwari, B.K. Plasma-activated water as an alternative nitrite source for the curing of beef jerky: Influence on quality and inactivation of Listeria innocua. Innov. Food Sci. Emerg. Technol. 2020, 59, 102276. [Google Scholar] [CrossRef]
- Sitz, B.; Calkins, C.R.; Feuz, D.M.; Umberger, W.J.; Eskridge, K.M. Consumer sensory acceptance and value of wet-aged and dry-aged beef steaks. J. Anim. Sci. 2006, 84, 1221–1226. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, H.B.; Annapure, U. Consequences of non-thermal cold plasma treatment on meat and dairy lipids–A review. Future Foods 2021, 4, 100095. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, G.; Ding, Y.; Zhao, L.; Song, Y.; Duan, X.; Ge, W. Changes of bacterial microbiota and volatile flavor compounds in ewe milk during dielectric barrier discharge cold plasma processing. Food Res. Int. 2022, 159, 111607. [Google Scholar] [CrossRef]
- de Lima Alves, L.; Donadel, J.Z.; Athayde, D.R.; da Silva, M.S.; Klein, B.; Fagundes, M.B.; de Menezes, C.R.; Barin, J.S.; Campagnol, P.C.B.; Wagner, R.; et al. Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. Ultrason. Sonochem. 2020, 67, 105161. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Corral, S.; Cano-García, L.; Salvador, A.; Belloch, C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int. J. Food Microbiol. 2015, 212, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Z.; Bai, Y.; Bai, Y.; Chu, Y.; Gu, S.; Xiang, X.; Ding, Y.; Zhou, X. Cold plasma treated air improves the characteristic flavor of Dry-cured black carp through facilitating lipid oxidation. Food Chem. 2022, 377, 131932. [Google Scholar] [CrossRef] [PubMed]
Treatment Groups 1 | Sodium Nitrite/(mg/kg) | 0.067 mol/L Phosphate Solution/(g/kg) | |
---|---|---|---|
CP 2 | N-CP 3 | ||
Control group | - | - | 150.0 |
Nitrite group | 75.0 | - | 150.0 |
10% NI + CP-PBS | 7.5 | 150.0 | - |
30% NI + CP-PBS | 22.5 | 150.0 | - |
50% NI + CP-PBS | 37.5 | 150.0 | - |
70% NI + CP-PBS | 52.5 | 150.0 | - |
90% NI + CP-PBS | 67.5 | 150.0 | - |
CP-PBS | - | 150.0 | - |
Name | Sensor Performance |
---|---|
W1C | aromatic |
W5S | broad range |
W3C | aromatic |
W6S | hydrogen |
W5C | arom-aliph |
W1S | broad-methane |
W1W | sulphur-organic |
W2S | broad-alcohol |
W2W | sulph-chlor |
W3S | methane-aliph |
L* | a* | b* | |
---|---|---|---|
Control group | 57.07 ± 0.38 a | 5.64 ± 0.52 d | 14.18 ± 0.62 a |
Nitrite group | 54.00 ± 1.60 b | 9.63 ± 0.41 a | 11.58 ± 0.99 bc |
10% NI + CP-PBS | 54.22 ± 0.93 b | 7.96 ± 0.18 bc | 10.97 ± 0.43 c |
30% NI + CP-PBS | 53.53 ± 3.07 b | 8.81 ± 1.02 abc | 11.16 ± 0.94 c |
50% NI + CP-PBS | 55.36 ± 2.18 ab | 8.83 ± 1.63 abc | 12.71 ± 0.52 b |
70% NI + CP-PBS | 54.52 ± 1.90 b | 9.16 ± 1.20 ab | 11.62 ± 0.79 bc |
90% NI + CP-PBS | 54.66 ± 0.83 ab | 8.81 ± 1.42 abc | 12.01 ± 1.72 bc |
CP-PBS | 55.47 ± 1.41 ab | 7.71 ± 0.10 c | 12.31 ± 1.03 bc |
Treatment | Hardness/g | Springiness | Cohesiveness | Resilience |
---|---|---|---|---|
Control group | 8171.58 ± 2333.24 ab | 0.80 ± 0.09 a | 0.29 ± 0.08 ab | 0.09 ± 0.03 ab |
Nitrite group | 10388.44 ± 1742.99 a | 0.81 ± 0.05 a | 0.33 ± 0.07 ab | 0.12 ± 0.03 ab |
10% NI + CP-PBS | 7768.63 ± 1682.04 ab | 0.76 ± 0.12 a | 0.29 ± 0.04 ab | 0.09 ± 0.01 ab |
30% NI + CP-PBS | 8363.80 ± 2935.30 ab | 0.88 ± 0.13 a | 0.29 ± 0.09 ab | 0.10 ± 0.04 ab |
50% NI + CP-PBS | 8070.14 ± 2889.10 ab | 0.82 ± 0.27 a | 0.31 ± 0.10 ab | 0.11 ± 0.05 ab |
70% NI + CP-PBS | 9923.35 ± 3471.28 ab | 0.79 ± 0.15 a | 0.38 ± 0.07 a | 0.14 ± 0.04 a |
90% NI + CP-PBS | 7671.15 ± 3028.31 ab | 0.79 ± 0.08 a | 0.28 ± 0.09 ab | 0.10 ± 0.02 ab |
CP-PBS | 6274.01 ± 1387.86 b | 0.75 ± 0.10 a | 0.26 ± 0.03 b | 0.09 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, D.; Yang, X.; Liu, H.; Zhang, D.; Hou, C.; Wang, Z. Effect of Cold-Plasma-Treated Phosphate Solution to Substitute Partial Nitrite on the Color, Texture, and Flavor of Smoked Sausage. Bioengineering 2022, 9, 794. https://doi.org/10.3390/bioengineering9120794
Meng D, Yang X, Liu H, Zhang D, Hou C, Wang Z. Effect of Cold-Plasma-Treated Phosphate Solution to Substitute Partial Nitrite on the Color, Texture, and Flavor of Smoked Sausage. Bioengineering. 2022; 9(12):794. https://doi.org/10.3390/bioengineering9120794
Chicago/Turabian StyleMeng, Dejuan, Xinyu Yang, Huan Liu, Dequan Zhang, Chengli Hou, and Zhenyu Wang. 2022. "Effect of Cold-Plasma-Treated Phosphate Solution to Substitute Partial Nitrite on the Color, Texture, and Flavor of Smoked Sausage" Bioengineering 9, no. 12: 794. https://doi.org/10.3390/bioengineering9120794
APA StyleMeng, D., Yang, X., Liu, H., Zhang, D., Hou, C., & Wang, Z. (2022). Effect of Cold-Plasma-Treated Phosphate Solution to Substitute Partial Nitrite on the Color, Texture, and Flavor of Smoked Sausage. Bioengineering, 9(12), 794. https://doi.org/10.3390/bioengineering9120794