The Natural Cryoprotectant Honey for Fertility Cryopreservation
Abstract
:1. Introduction
2. Methods
3. Honey
Adulteration Detection
4. Cryopreservation Related Properties
4.1. Rheological Property
4.2. Thermal Property
4.3. Antioxidant Property
5. Traditional Applications of Honey
5.1. Wound Healing
5.2. Tissue Regeneration
5.3. Fixation
6. Honey in Cryopreservation
6.1. Extenders
6.2. Non-Permeating Natural Cryoprotectant
6.3. Fertility Cryopreservation
7. Conclusions and Future Prospective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saba, Z.; Suzana, M.; My, Y.A. Honey: Food or medicine. Med. Health 2013, 8, 3–18. [Google Scholar]
- Bambang, N.; Ikhsan, M.; Sukri, N. Rheological Properties of Honey and its Application on Honey Flow Simulation through Vertical Tube. IOP Conf. Ser. Earth Environ. Sci. 2018, 334, 012041. [Google Scholar] [CrossRef]
- Simsek, A.; Bilsel, M.; Goren, A.C. 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chem. 2012, 130, 1115–1121. [Google Scholar] [CrossRef]
- Wu, L.; Du, B.; Vander Heyden, Y.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent advancements in detecting sugar-based adulterants in honey—A challenge. TrAC Trends Anal. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Smanalieva, J.; Senge, B. Analytical and rheological investigations into selected unifloral German honey. Eur. Food Res. Technol. 2009, 229, 107–113. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Tatlisu, N.B.; Toker, O.S.; Karaman, S.; Dertli, E.; Sagdic, O.; Arici, M. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Res. Int. 2014, 64, 634–646. [Google Scholar] [CrossRef]
- Shrestha, S.; Bhattarai, S.; Mahat, S.; Jha, M.; Amgain, K. Embalming–History to its Recent Advancements. Eur. J. Med. Sci. 2019, 1, 62–68. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Mediterr. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Fuller, B.J. Cryoprotectants: The essential antifreezes to protect life in the frozen state. CryoLetters 2004, 25, 375–388. [Google Scholar]
- Nwosu, C.L. Cryopreservation of Plant Cells; Northwestern Oklahoma State University: Alva, OK, USA, 2015; Available online: https://www.academia.edu/download/37898406/CeeNonso_Seminar_-_Copy.pdf (accessed on 7 December 2021).
- Bhattacharya, M.S. A review on cryoprotectant and its modern implication in cryonics. Asian J. Pharm. 2016, 10, 154–159. [Google Scholar]
- Best, B.P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheepa, F.F.; Zhao, G.; Panhwar, F.; Memon, K. Controlled Release of Cryoprotectants by Near-Infrared Irradiation for Improved Cell Cryopreservation. ACS Biomater. Sci. Eng. 2021, 7, 2520–2529. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Imai, K.; Tomizawa, M. Effect of sugars-addition on the survival of vitrified bovine blastocysts produced in vitro. Theriogenology 1994, 41, 1053–1060. [Google Scholar] [CrossRef]
- Pérez, R.A.; Iglesias, M.T.; Pueyo, E.; González, M.; de Lorenzo, C. Amino acid composition and antioxidant capacity of Spanish honeys. J. Agric. Food Chem. 2007, 55, 360–365. [Google Scholar] [CrossRef]
- Bogdanov, S. Honey as nutrient and functional food. Proteins 2012, 1100, 1400–2700. [Google Scholar]
- Manyi-Loh, C.E.; Clarke, A.M.; Ndip, N. An overview of honey: Therapeutic properties and contribution in nutrition and human health. Afr. J. Microbiol. Res. 2011, 5, 844–852. [Google Scholar]
- Makhloufi, C.; Kerkvliet, J.D.; D’albore, G.R.; Choukri, A.; Samar, R. Characterization of Algerian honeys by palynological and physico-chemical methods. Apidologie 2010, 41, 509–521. [Google Scholar] [CrossRef]
- Brudzynski, K.; Miotto, D. The relationship between the content of Maillard reaction-like products and bioactivity of Canadian honeys. Food Chem. 2011, 124, 869–874. [Google Scholar] [CrossRef]
- Abdel-Latif, M.M.; Windle, H.J.; Homasany, B.S.E.; Sabra, K.; Kelleher, D. Caffeic acid phenethyl ester modulates Helicobacter pylori-induced nuclear factor-kappa B and activator protein-1 expression in gastric epithelial cells. Br. J. Pharmacol. 2005, 146, 1139–1147. [Google Scholar] [CrossRef] [Green Version]
- El-Sheshtawy, R.I.; El-Badry, D.A.; Gamal, A.; El-Nattat, W.S.; Almaaty, A.M.A. Natural honey as a cryoprotectant to improve Arab stallion post-thawing sperm parameters. Asian Pac. J. Reprod. 2016, 5, 331–334. [Google Scholar] [CrossRef]
- Sarmadi, F.; Kazemi, P.; Tirgar, P.; Fayazi, S.; Esfandiari, S.; Sotoodeh, L.; Molaeian, S.; Dashtizad, M. Using natural honey as an anti-oxidant and thermodynamically efficient cryoprotectant in embryo vitrification. Cryobiology 2019, 91, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Maidin, M.S.; Padlan, M.; Azuan, S.; Jonit, R.; Mohammed, N.; Abdullah, R. Supplementation of Nigella sativa oil and honey prolong the survival rate of fresh and post-thawed goat sperms. Trop. Anim. Sci. J. 2018, 41, 94–99. [Google Scholar] [CrossRef]
- Abinawanto, A.; Pratiwi, I.A.; Lestari, R. Sperm motility of giant gourami (Osphronemus goramy, Lacepede, 1801) at several concentrations of honey combined with DMSO after short-term storage. Aquac. Aquar. Conserv. Legis. 2017, 10, 156–163. [Google Scholar]
- El-Sheshtawy, R.I.; El-Nattat, W.S.; Sabra, H.A.; Ali, A.H. Effect of honey solution on semen preservability of local breeds of cattle bulls. World Appl. Sci. J. 2014, 32, 2076–2078. [Google Scholar]
- Za, M.; Wn, N.; Mn, S.A. Exploration of natural cryoprotectants for cryopreservation of African catfish, Clarias gariepinus, Burchell 1822 (Pisces: Clariidae) spermatozoa. Chezch J. Anim. Sci. 2015, 60, 10–15. [Google Scholar]
- Alfoteisy, B.; Singh, J.; Anzar, M. Natural honey acts as a nonpermeating cryoprotectant for promoting bovine oocyte vitrification. PLoS ONE 2020, 15, e0238573. [Google Scholar]
- Kuropatnicki, A.K.; Kłósek, M.; Kucharzewski, M. Honey as medicine: Historical perspectives. J. Apic. Res. 2018, 57, 113–118. [Google Scholar] [CrossRef]
- White, J.; Doner, L.W. Honey composition and properties. Agric. Handb. 1980, 335, 82–91. [Google Scholar]
- Saranraj, P.; Sivasakthi, S. Comprehensive review on honey: Biochemical and medicinal properties. J. Acad. Ind. Res 2018, 6, 165. [Google Scholar]
- M Alvarez-Suarez, J.; Giampieri, F.; Battino, M. Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem. 2013, 20, 621–638. [Google Scholar] [CrossRef]
- De La Fuente, E.; Ruiz-Matute, A.; Valencia-Barrera, R.; Sanz, J.; Castro, I.M. Carbohydrate composition of Spanish unifloral honeys. Food Chem. 2011, 129, 1483–1489. [Google Scholar] [CrossRef] [Green Version]
- Hermosín, I.; Chicon, R.M.; Cabezudo, M.D. Free amino acid composition and botanical origin of honey. Food Chem. 2003, 83, 263–268. [Google Scholar] [CrossRef]
- Iglesias, M.T.; Martín-Álvarez, P.J.; Polo, M.C.; de Lorenzo, C.; González, M.; Pueyo, E. Changes in the free amino acid contents of honeys during storage at ambient temperature. J. Agric. Food Chem. 2006, 54, 9099–9104. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, A.B.; García, Z.H.; Galdón, B.R.; Rodríguez, E.R.; Romero, C.D. Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT-Food Sci. Technol. 2014, 55, 572–578. [Google Scholar] [CrossRef]
- Truzzi, C.; Annibaldi, A.; Illuminati, S.; Finale, C.; Scarponi, G. Determination of proline in honey: Comparison between official methods, optimization and validation of the analytical methodology. Food Chem. 2014, 150, 477–481. [Google Scholar] [CrossRef]
- Ajibola, A.; Chamunorwa, J.P.; Erlwanger, K.H. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr. Metab. 2012, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Barra, M.G.; Ponce-Díaz, M.C.; Venegas-Gallegos, C. Volatile compounds in honey produced in the central valley of Ñuble province, Chile. Chil. J. Agric. Res. 2010, 70, 75–84. [Google Scholar]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [Green Version]
- Vorlova, L.; Pridal, A. Invertase and diastase activity in honeys of Czech provenience. Acta Univ. Agric. Et Silvic. Sb. Mendelovy Zemed. Lesn. Mendel. Brun. 2002, 5, 57–66. [Google Scholar]
- Ribeiro, R.d.O.R.; Mársico, E.T.; da Silva Carneiro, C.; Monteiro, M.L.G.; Júnior, C.C.; de Jesus, E.F.O. Detection of honey adulteration of high fructose corn syrup by Low Field Nuclear Magnetic Resonance (LF 1H NMR). J. Food Eng. 2014, 135, 39–43. [Google Scholar] [CrossRef]
- Ruiz-Matute, A.I.; Soria, A.C.; Martínez-Castro, I.; Sanz, M.L. A new methodology based on GC−MS to detect honey adulteration with commercial syrups. J. Agric. Food Chem. 2007, 55, 7264–7269. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.; Bek, Y.; Kement, V. Verification test of sensory analyses of comb and strained honeys produced as pure and feeding intensively with sucrose (Saccharum officinarum L.) syrup. Food Chem. 2008, 109, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Croft, L. Stable isotope mass spectrometry in honey analysis. TrAC Trends Anal. Chem. 1987, 6, 206–209. [Google Scholar] [CrossRef]
- Puscas, A.; Hosu, A.; Cimpoiu, C. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J. Chromatogr. A 2013, 1272, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Corradini, C.; Bianchi, F.; Matteuzzi, D.; Amoretti, A.; Rossi, M.; Zanoni, S. High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin. J. Chromatogr. A 2004, 1054, 165–173. [Google Scholar] [CrossRef]
- Doner, L.W.; White Jr, J.W.; Phillips, J.G. Gas-liquid chromatographic test for honey adulteration by high fructose corn sirup. J. Assoc. Off. Anal. Chem. 1979, 62, 186–189. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Ziena, H.; Youssef, M. Adulteration of honey with high-fructose corn syrup: Detection by different methods. Food Chem. 1993, 48, 209–212. [Google Scholar] [CrossRef]
- Contal, L.; León, V.; Downey, G. Detection and quantification of apple adulteration in strawberry and raspberry purees using visible and near infrared spectroscopy. J. Near Infrared Spectrosc. 2002, 10, 289–299. [Google Scholar] [CrossRef]
- Cazor, A.; Deborde, C.; Moing, A.; Rolin, D.; This, H. Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements. J. Agric. Food Chem. 2006, 54, 4681–4686. [Google Scholar] [CrossRef]
- Baeten, V.; Meurens, M.; Morales, M.T.; Aparicio, R. Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 1996, 44, 2225–2230. [Google Scholar] [CrossRef]
- Sopade, P.; Halley, P.; Bhandari, B.; D’arcy, B.; Doebler, C.; Caffin, N. Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. J. Food Eng. 2003, 56, 67–75. [Google Scholar] [CrossRef]
- Ahmed, J.; Prabhu, S.; Raghavan, G.; Ngadi, M. Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. J. Food Eng. 2007, 79, 1207–1213. [Google Scholar] [CrossRef]
- Juszczak, L.; Fortuna, T. Rheology of selected Polish honeys. J. Food Eng. 2006, 75, 43–49. [Google Scholar] [CrossRef]
- Bakier, S. Influence of temperature and water content on the rheological properties of Polish honeys. Pol. J. Food Nutr. Sci. 2007, 57, 17–23. [Google Scholar]
- Gómez-Díaz, D.; Navaza, J.M.; Quintáns-Riveiro, L.C. Effect of temperature on the viscosity of honey. Int. J. Food Prop. 2009, 12, 396–404. [Google Scholar] [CrossRef]
- Maldonado, G.E.; Navarro, A.S.; Yamul, D.K. A comparative study of texture and rheology of Argentinian honeys from two regions. J. Text. Stud. 2018, 49, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Al-Malah, K.I.; Abu-Jdayil, B.; Zaitoun, S.; Ghzawi, A.A.M. Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. J. Food Process Eng. 2001, 24, 341–357. [Google Scholar] [CrossRef]
- Recondo, M.; Elizalde, B.; Buera, M. Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. J. Food Eng. 2006, 77, 126–134. [Google Scholar] [CrossRef]
- Bakier, S. Rheological properties of honey in a liquid and crystallized state. In Honey Analysis; IntechOpen: Vienna, Austria, 2017; pp. 115–137. [Google Scholar]
- Silva, V.M.d.; Torres Filho, R.d.A.; Resende, J.V.d. Rheological properties of selected Brazilian honeys as a function of temperature and soluble solid concentration. Int. J. Food Prop. 2017, 20, S2481–S2494. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, B.; D’Arcy, B.; Chow, S. Rheology of selected Australian honeys. J. Food Eng. 1999, 41, 65–68. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G.; Bacandritsos, N.; Sabatini, A.G. Composition, thermal and rheological behaviour of selected Greek honeys. J. Food Eng. 2004, 64, 9–21. [Google Scholar] [CrossRef]
- Zaitoun, S.; Ghzawi, A.A.-M.; Al-Malah, K.I.; Abu-Jdayil, B. Rheological properties of selected light colored Jordanian honey. Int. J. Food Prop. 2001, 4, 139–148. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Navaza, J.M.; Quintáns-Riveiro, L.C. Rheological behaviour of Galician honeys. Eur. Food Res. Technol. 2006, 222, 439–442. [Google Scholar] [CrossRef]
- Mossel, B.; Bhandari, B.; D’Arcy, B.; Caffin, N. Use of an Arrhenius model to predict rheological behaviour in some Australian honeys. LWT-Food Sci. Technol. 2000, 33, 545–552. [Google Scholar] [CrossRef]
- Ahmed, J. Advances in rheological measurements of food products. Curr. Opin. Food Sci. 2018, 23, 127–132. [Google Scholar] [CrossRef]
- Ahmed, J.; Ptaszek, P.; Basu, S. Food rheology: Scientific development and importance to food industry. In Advances in Food Rheology and Its Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–4. [Google Scholar]
- Karasu, S.; Toker, O.S.; Yilmaz, M.T.; Karaman, S.; Dertli, E. Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. J. Food Eng. 2015, 150, 90–98. [Google Scholar] [CrossRef]
- Yanniotis, S.; Skaltsi, S.; Karaburnioti, S. Effect of moisture content on the viscosity of honey at different temperatures. J. Food Eng. 2006, 72, 372–377. [Google Scholar] [CrossRef]
- Asoiro, F.U.; Simeon, M.I.; Ohagwu, C.J.; Abada, U.C. Evaluation of the physicochemical and thermal properties of honey samples from different floral locations in Enugu North senatorial zone, Nigeria. In Proceedings of the 12th CIGR Section VI International Symposium, Ibadan, Nigeria, 22–25 October 2018; pp. 28–41. [Google Scholar]
- Venir, E.; Spaziani, M.; Maltini, E. Crystallization in “Tarassaco” Italian honey studied by DSC. Food Chem. 2010, 122, 410–415. [Google Scholar] [CrossRef]
- Ouchemoukh, S.; Schweitzer, P.; Bey, M.B.; Djoudad-Kadji, H.; Louaileche, H. HPLC sugar profiles of Algerian honeys. Food Chem. 2010, 121, 561–568. [Google Scholar] [CrossRef]
- Dobre, I.; Georgescu, L.A.; Alexe, P.; Escuredo, O.; Seijo, M.C. Rheological behavior of different honey types from Romania. Food Res. Int. 2012, 49, 126–132. [Google Scholar] [CrossRef]
- Mehaisen, G.M.; Saeed, A.M.; Gad, A.; Abass, A.O.; Arafa, M.; El-Sayed, A. Antioxidant capacity of melatonin on preimplantation development of fresh and vitrified rabbit embryos: Morphological and molecular aspects. PLoS ONE 2015, 10, e0139814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrick, J.R.; Wang, C.; Machaty, Z. The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes. Reprod. Fertil. Dev. 2016, 28, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Nohales-Córcoles, M.; Sevillano-Almerich, G.; Di Emidio, G.; Tatone, C.; Cobo, A.; Dumollard, R.; De Los Santos Molina, M. Impact of vitrification on the mitochondrial activity and redox homeostasis of human oocyte. Hum. Reprod. 2016, 31, 1850–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Martín, M.; Bonet, S.; Morató, R.; Yeste, M. Comparative effects of adding β-mercaptoethanol or L-ascorbic acid to culture or vitrification–warming media on IVF porcine embryos. Reprod. Fertil. Dev. 2014, 26, 875–882. [Google Scholar] [CrossRef]
- Gupta, M.K.; Uhm, S.J.; Lee, H.T. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 2010, 93, 2602–2607. [Google Scholar] [CrossRef]
- Zhao, X.M.; Hao, H.S.; Du, W.H.; Zhao, S.J.; Wang, H.Y.; Wang, N.; Wang, D.; Liu, Y.; Qin, T.; Zhu, H.B. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Res. 2016, 60, 132–141. [Google Scholar] [CrossRef]
- Gül, A.; Pehlivan, T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef]
- Khalafi, R.; Goli, S.A.H.; Behjatian, M. Characterization and classification of several monofloral Iranian honeys based on physicochemical properties and antioxidant activity. Int. J. Food Prop. 2016, 19, 1065–1079. [Google Scholar] [CrossRef]
- Roby, M.H.; Abdelaliem, Y.F.; Esmail, A.-H.M.; Mohdaly, A.A.; Ramadan, M.F. Evaluation of Egyptian honeys and their floral origins: Phenolic compounds, antioxidant activities, and antimicrobial characteristics. Environ. Sci. Pollut. Res. 2020, 27, 20748–20756. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Grune, T. Free Radicals and Diseases: Gene Expression, Cellular Metabolism and Pathophysiology; IOS Press: Amsterdam, The Netherlands, 2005; Volume 367. [Google Scholar]
- Poli, G. Free Radicals in Brain Pathophysiology; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Milner, J.A.; Romagnolo, D.F.; Connor, J.; Lee, S. Bioactive Compounds and Cancer; Springer, Humana Press: New York, NY, USA, 2010. [Google Scholar]
- Al-Waili, N.S.; Haq, A. Effect of honey on antibody production against thymus-dependent and thymus-independent antigens in primary and secondary immune responses. J. Med. Food 2004, 7, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Medhi, B.; Pandhi, P. Honey—A remedy rediscovered and its therapeutic utility. Kathmandu Univ. Med. J. (KUMJ) 2005, 3, 305–309. [Google Scholar]
- Lu, C.-Y.; Lu, P.-C.; Chen, P.-C. Utilization trends in traditional Chinese medicine for acute myocardial infarction. J. Ethnopharmacol. 2019, 241, 112010. [Google Scholar] [CrossRef] [PubMed]
- Cirik, V.A.; Aksoy, B. Determination of Pediatric Nurses’knowledge, Attitudes, and Experiences on Apitherapy: A Cross-Sectional Multicenter Study. Uludağ Arıcılık Derg. 2020, 20, 157–171. [Google Scholar]
- Alfarisi, H.A.H.; Ibrahim, M.B.; Mohamed, Z.B.H.; Hamdan, A.H.B.; Mohamad, C.A.C. Honey and its Role in Medical Disorders. Bull. Env. Pharmacol. Life Sci. 2021, 10, 250–256. [Google Scholar]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731. [Google Scholar]
- Meo, S.A.; Al-Asiri, S.A.; Mahesar, A.L.; Ansari, M.J. Role of honey in modern medicine. Saudi J. Biol. Sci. 2017, 24, 975–978. [Google Scholar] [CrossRef]
- Zaid, S.S.M.; Othman, S.; Kassim, N.M. Potential protective effect of Tualang honey on BPA-induced ovarian toxicity in prepubertal rat. BMC Complement. Altern. Med. 2014, 14, 509. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacogn. Res. 2017, 9, 121. [Google Scholar]
- Van den Berg, A.J.J.; Van den Worm, E.; Quarles van Ufford, H.C.; Halkes, S.B.A.; Hoekstra, M.J.; Beukelman, C.J. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J. Wound Care 2008, 17, 172–178. [Google Scholar] [CrossRef] [Green Version]
- French, V.M.; Cooper, R.A.; Molan, P.C. The antibacterial activity of honey against coagulase-negative staphylococci. J. Antimicrob. Chemother. 2005, 56, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, R.A.; Molan, P.C.; Harding, K. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.K.J.; Hoekstra, M.J.; Hage, J.J.; Karim, R.B. Honey-medicated dressing: Transformation of an ancient remedy into modern therapy. Ann. Plast. Surg. 2003, 50, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Williamson, D.; Grey, J.; Harding, K.; Cooper, R. Healing of an MRSA-colonized, hydroxyurea-induced leg ulcer with honey. J. Dermatol. Treat. 2001, 12, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, D.; Beazley, J.; Ostapowicz, F. Radical operation for carcinoma of the vulva. J. Obstet. Gynaecol. Br. Commonw. 1970, 77, 1037–1040. [Google Scholar] [CrossRef]
- Dunford, C.; Cooper, R.; Molan, P. Using honey as a dressing for infected skin lesions. Nurs. Times 2000, 96, 7–9. [Google Scholar]
- Lusby, P.E.; Coombes, A.L.; Wilkinson, J.M. Bactericidal activity of different honeys against pathogenic bacteria. Arch. Med. Res. 2005, 36, 464–467. [Google Scholar] [CrossRef]
- Gal, P.; Kilik, R.; Mokry, M.; Vidinsky, B.; Vasilenko, T.; Mozes, S.; Bobrov, N.; Tomori, Z.; Bober, J.; Lenhardt, L. Simple method of open skin wound healing model in corticosteroid-treated and diabetic rats: Standardization of semi-quantitative and quantitative histological assessments. Vet. Med. 2008, 53, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Forrest, R.D. Early history of wound treatment. J. R. Soc. Med. 1982, 75, 198. [Google Scholar]
- Beck, B.F.; Smedley, D. Honey and Your Health; RM McBride: New York, NY, USA, 1944. [Google Scholar]
- English, H.; Pack, A.; Molan, P.C. The effects of manuka honey on plaque and gingivitis: A pilot study. J. Int. Acad. Periodontol. 2004, 6, 63–67. [Google Scholar]
- Jull, A.B.; Cullum, N.; Dumville, J.C.; Westby, M.J.; Deshpande, S.; Walker, N. Honey as a topical treatment for wounds. Cochrane Database Syst. Rev. 2015, CD005083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speer, S.L.; Schreyack, G.E.; Bowlin, G.L. Manuka honey: A tissue engineering essential ingredient. J. Tissue Sci. Eng. 2015, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Hixon, K.R.; Lu, T.; Carletta, M.N.; McBride-Gagyi, S.H.; Janowiak, B.E.; Sell, S.A. A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1918–1933. [Google Scholar] [CrossRef] [PubMed]
- Matassi, F.; Nistri, L.; Paez, D.C.; Innocenti, M. New biomaterials for bone regeneration. Clin. Cases Miner. Bone Metab. 2011, 8, 21. [Google Scholar] [PubMed]
- Bakhshpour, M.; Idil, N.; Perçin, I.; Denizli, A. Biomedical applications of polymeric cryogels. Appl. Sci. 2019, 9, 553. [Google Scholar] [CrossRef] [Green Version]
- Hixon, K.R.; Lu, T.; McBride-Gagyi, S.H.; Janowiak, B.E.; Sell, S.A. A comparison of tissue engineering scaffolds incorporated with Manuka honey of varying UMF. BioMed Res. Int. 2017, 2017, 4843065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giusto, G.; Vercelli, C.; Comino, F.; Caramello, V.; Tursi, M.; Gandini, M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complement. Altern. Med. 2017, 17, 266. [Google Scholar] [CrossRef] [Green Version]
- Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci. 2011, 2011, 290602. [Google Scholar] [CrossRef]
- Molan, P.; Betts, J. Clinical usage of honey as a wound dressing: An update. J. Wound Care 2004, 13, 353–356. [Google Scholar] [CrossRef]
- Maleki, H.; Gharehaghaji, A.; Dijkstra, P. A novel honey-based nanofibrous scaffold for wound dressing application. J. Appl. Polym. Sci. 2013, 127, 4086–4092. [Google Scholar] [CrossRef]
- Memic, A.; Colombani, T.; Eggermont, L.J.; Rezaeeyazdi, M.; Steingold, J.; Rogers, Z.J.; Navare, K.J.; Mohammed, H.S.; Bencherif, S.A. Latest advances in cryogel technology for biomedical applications. Adv. Ther. 2019, 2, 1800114. [Google Scholar] [CrossRef] [Green Version]
- Neres Santos, A.M.; Duarte Moreira, A.P.; Piler Carvalho, C.W.; Luchese, R.; Ribeiro, E.; McGuinness, G.B.; Fernandes Mendes, M.; Nunes Oliveira, R. Physically cross-linked gels of PVA with natural polymers as matrices for manuka honey release in wound-care applications. Materials 2019, 12, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineerng. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Su, K.; Wang, C. Recent advances in the use of gelatin in biomedical research. Biotechnol. Lett. 2015, 37, 2139–2145. [Google Scholar] [CrossRef]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Yacoob, C.; Liu, W.; Adanur, S. Properties and flammability of electrospun PVA and PVA/Laponite® membranes. J. Ind. Text. 2010, 40, 33–48. [Google Scholar] [CrossRef]
- Kang, Y.O.; Yoon, I.S.; Lee, S.Y.; Kim, D.D.; Lee, S.J.; Park, W.H.; Hudson, S.M. Chitosan-coated poly (vinyl alcohol) nanofibers for wound dressings. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2010, 92, 568–576. [Google Scholar] [CrossRef]
- Minden-Birkenmaier, B.A.; Bowlin, G.L. Honey-based templates in wound healing and tissue engineering. Bioengineering 2018, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Fan, L.; Ma, L.; Wang, Y.; Lin, S.; Yu, F.; Pan, X.; Luo, G.; Zhang, D.; Wang, H. Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater. Des. 2017, 119, 76–84. [Google Scholar] [CrossRef]
- Mackova, H.; Plichta, Z.K.; Hlidkova, H.; Sedlácek, O.E.; Konefal, R.; Sadakbayeva, Z.; Duskova-Smrckova, M.; Horak, D.; Kubinova, S. Reductively degradable poly (2-hydroxyethyl methacrylate) hydrogels with oriented porosity for tissue engineering applications. ACS Appl. Mater. Interfaces 2017, 9, 10544–10553. [Google Scholar] [CrossRef]
- El-Kased, R.F.; Amer, R.; Attia, D.; Elmazar, M.M. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing. Sci. Rep. 2017, 7, 9692. [Google Scholar] [CrossRef] [Green Version]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone: London, UK; Elsevier: Amsterdam, The Netherlands, 2008; pp. 451–477. [Google Scholar]
- Challis, D. Handbook of Surgical Pathology; Anthony, S.-Y.L., Craig, L.J., Anthony, C.T., Eds.; Churchill Livingstone: New York, NY, USA, 1996; p. x + 322. ISBN 0-443-05121-6. [Google Scholar]
- Al-Maaini, R.; Bryant, P. The effectiveness of honey as a substitute for formalin in the histological fixation of tissue. J. Histotechnol. 2006, 29, 173–176. [Google Scholar] [CrossRef]
- Avwioro, G.; Bankole, J.; Iyiola, S.; Avwioro, T.; Akinola, G. One of the properties of honey in wound healing is prevention of autolysis. Der Pharm. Lett. 2010, 2, 321–325. [Google Scholar]
- Muchlisin, Z.A. Current status of extenders and cryoprotectants on fish spermatozoa cryopreservation. Biodiversitas J. Biol. Divers. 2005, 6, 66–69. [Google Scholar]
- Layek, S.; Mohanty, T.; Kumaresan, A.; Parks, J. Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Anim. Reprod. Sci. 2016, 172, 1–9. [Google Scholar] [CrossRef]
- Al-Daraji, H.J. Effect of adding orange juice into semen diluents on quality and storage ability of cocks’ semen. Res. Opin. Anim. Vet. Sci. 2012, 2, 485–489. [Google Scholar]
- Gunawan, M.; Setiorini, S.; Fitri, H.; Kaiin, E. The effect of siam orange juice (Citrus nobilis Lour.) in extender on Garut Ram (Ovis aries L.) spermatozoa quality post-cryopreservation. J. Phys. Conf. Ser. 2020, 1442, 012068. [Google Scholar] [CrossRef]
- Adekunle, E.O.; Daramola, J.O.; Sowande, O.S.; Abiona, J.A.; Abioja, M.O. Effects of apple and orange juices on quality of refrigerated goat semen. J. Agric. Sci. Belgrade 2018, 63, 53–65. [Google Scholar] [CrossRef]
- Khoshvaght, A.; Towhidi, A.; Zare-Shahneh, A.; Noruozi, M.; Zhandi, M.; Davachi, N.D.; Karimi, R. Dietary n-3 PUFAs improve fresh and post-thaw semen quality in Holstein bulls via alteration of sperm fatty acid composition. Theriogenology 2016, 85, 807–812. [Google Scholar] [CrossRef]
- Amin, B.Y.; Prasad, J.K.; Ghosh, S.K.; Lone, S.A.; Kumar, A.; Mustapha, A.R.; Din, O.; Kumar, A. Effect of various levels of dissolved oxygen on reactive oxygen species and cryocapacitation-like changes in bull sperm. Reprod. Domest. Anim. 2018, 53, 1033–1040. [Google Scholar] [CrossRef]
- Malik, A. Effects of honey supplementation into the extender on the motility, abnormality and viability of frozen thawed of Bali bull spermatozoa. Asian J. Anim. Vet. Adv. 2019, 13, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Fakhrildin, M.-B.M.; Alsaadi, R.A. Honey Supplementation to semen-freezing medium improveshuman sperm parameters post-thawing. J. Fam. Reprod. Health 2014, 8, 27–31. [Google Scholar]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Jerez-Ebensperger, R.; Luno, V.; Olaciregui, M.; Gonzalez, N.; de Blas, I.; Gil, L. Effect of pasteurized egg yolk and rosemary honey supplementation on quality of cryopreserved ram semen. Small Rumin. Res. 2015, 130, 153–156. [Google Scholar] [CrossRef]
- Ögretmen, F.; İnanan, B.E. Evaluation of cryoprotective effect ofturkish pine honey on common carp (Cyprinus Carpio) Spermatozoa. CryoLetters 2014, 35, 427–437. [Google Scholar]
- Chung, E.; Nayan, N.; Nasir, N.; Hing, P.; Ramli, S.; Rahman, M.; Kamalludin, M. Effect of honey as an additive for cryopreservation on bull semen quality from different cattle breeds under tropical condition. J. Anim. Health Prod. 2019, 7, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Yimer, N.; Muhammad, N.; Sarsaifi, K.; Rosnina, Y.; Wahid, H.; Khumran, A.; Kaka, A. Effect of honey supplementation into Tris Extender on Cryopreservation of Bull Spermatozoa. Malays. J. Anim. Sci. 2015, 18, 47–54. [Google Scholar]
- Zaghloul, A. Relevance of honey bee in semen extender on the quality of chilled-stored ram semen. J. Anim. Poult. Prod. 2017, 8, 1–5. [Google Scholar] [CrossRef]
- Hussain, M.; Begum, S.S.; Kalita, M.K.; Ahmed, K.U.; Nath, R. Additives used in semen preservation in animals: A short review. Int. J. Chem. Stud. 2018, 6, 354–361. [Google Scholar]
- Dorado, J.; Hidalgo, M.; Acha, D.; Ortiz, I.; Bottrel, M.; Azcona, F.; Carrasco, J.J.; Gómez-Arrones, V.; Demyda-Peyrás, S. Cryopreservation of Andalusian donkey (Equus asinus) spermatozoa: Use of alternative energy sources in the freezing extender affects post-thaw sperm motility patterns but not DNA stability. Anim. Reprod. Sci. 2019, 208, 106126. [Google Scholar] [CrossRef]
- Liu, C.-H.; Dong, H.-B.; Ma, D.-L.; Li, Y.-W.; Han, D.; Luo, M.-J.; Chang, Z.-L.; Tan, J.-H. Effects of pH during liquid storage of goat semen on sperm viability and fertilizing potential. Anim. Reprod. Sci. 2016, 164, 47–56. [Google Scholar] [CrossRef]
- Ghaniei, A.; Eslami, M.; Zadeh Hashem, E.; Rezapour, R.; Talebi, A. Quercetin attenuates H2O2-induced toxicity of rooster semen during liquid storage at 4 °C. J. Anim. Physiol. Anim. Nutr. 2019, 103, 713–722. [Google Scholar] [CrossRef]
- Calixto-Campos, C.s.; Carvalho, T.T.; Hohmann, M.S.; Pinho-Ribeiro, F.A.; Fattori, V.; Manchope, M.F.; Zarpelon, A.C.; Baracat, M.M.; Georgetti, S.R.; Casagrande, R. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J. Nat. Prod. 2015, 78, 1799–1808. [Google Scholar] [CrossRef]
- Cummings, J.; Stephen, A. Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 2007, 61, S5–S18. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.A.; Klein, P. Determination of sugars in honey by liquid chromatography. Saudi J. Biol. Sci. 2011, 18, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Jaganathan, S.K. Growth inhibition by caffeic acid, one of the phenolic constituents of honey, in HCT 15 colon cancer cells. Sci. World J. 2012, 2012, 372345. [Google Scholar] [CrossRef] [Green Version]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Amorim, C.A.; Curaba, M.; Van Langendonckt, A.; Dolmans, M.-M.; Donnez, J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod. Biomed. Online 2011, 23, 160–186. [Google Scholar] [CrossRef] [Green Version]
- Levine, H.; Slade, L. Thermomechanical properties of small-carbohydrate–water glasses and ‘rubbers’. Kinetically metastable systems at sub-zero temperatures. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1988, 84, 2619–2633. [Google Scholar] [CrossRef]
- Quan, G.B.; Hong, Q.H.; Lan, Z.G.; Yang, H.Y.; Wu, S.S. Comparison of the effect of various disaccharides on frozen goat spermatozoa. Biopreserv. Biobank. 2012, 10, 439–445. [Google Scholar] [CrossRef]
- McWilliams, R.; Gibbons, W.; Leibo, S. Fertilization and early embryology: Osmotic and physiological responses of mouse zygotes and human oocytes to mono-and disaccharides. Hum. Reprod. 1995, 10, 1163–1171. [Google Scholar] [CrossRef]
- Mazni, O.A.; Valdez, C.; Takahashi, Y.; Hishinuma, M.; Kanagawa, H. Quick freezing of mouse embryos using ethylene glycol with lactose or sucrose. Anim. Reprod. Sci. 1990, 22, 161–169. [Google Scholar] [CrossRef]
- Kuleshova, L.; Macfarlane, D.R.; Trounson, A.O.; Shaw, J.M. Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology 1999, 38, 119–130. [Google Scholar] [CrossRef]
- Saha, S.; Rajamahendran, R.; Boediono, A.; Sumantri, C.; Suzuki, T. Viability of bovine blastocysts obtained after 7, 8 or 9 days of culture in vitro following vitrification and one-step rehydration. Theriogenology 1996, 46, 331–343. [Google Scholar] [CrossRef]
- Fernández-Santos, M.; Martínez-Pastor, F.; García-Macías, V.; Esteso, M.; Soler, A.; De Paz, P.; Anel, L.; Garde, J. Extender osmolality and sugar supplementation exert a complex effect on the cryopreservation of Iberian red deer (Cervus elaphus hispanicus) epididymal spermatozoa. Theriogenology 2007, 67, 738–753. [Google Scholar] [CrossRef]
- Yildiz, C.; Kaya, A.; Aksoy, M.; Tekeli, T. Influence of sugar supplementation of the extender on motility, viability and acrosomal integrity of dog spermatozoa during freezing. Theriogenology 2000, 54, 579–585. [Google Scholar] [CrossRef]
- Koshimoto, C.; Mazur, P. The effect of the osmolality of sugar-containing media, the type of sugar, and the mass and molar concentration of sugar on the survival of frozen-thawed mouse sperm. Cryobiology 2002, 45, 80–90. [Google Scholar] [CrossRef]
- Takeya, S.; Hori, A.; Hondoh, T.; Uchida, T. Freezing-memory effect of water on nucleation of CO2 hydrate crystals. J. Phys. Chem. B 2000, 104, 4164–4168. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S. Honey: A novel antioxidant. Molecules 2012, 17, 4400–4423. [Google Scholar] [CrossRef]
- Saragusty, J.; Arav, A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 2011, 141, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.; Seki, S.; Pinn, I.L.; Kleinhans, F.; Edashige, K. Extra-and intracellular ice formation in mouse oocytes. Cryobiology 2005, 51, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Papis, K.; Shimizu, M.; Izaike, Y. Factors affecting the survivability of bovine oocytes vitrified in droplets. Theriogenology 2000, 54, 651–658. [Google Scholar] [CrossRef]
- Han, X.; Critser, J.K. Measurement of the size of intracellular ice crystals in mouse oocytes using a melting point depression method and the influence of intracellular solute concentrations. Cryobiology 2009, 59, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Leibo, S. A one-step method for direct nonsurgical transfer of frozen-thawed bovine embryos. Theriogenology 1984, 21, 767–790. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Zhao, R.; Li, W.; Han, Z.; Chen, X.; Xiao, B.; Wu, S.; Jiang, Z.; Hu, J. Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes. Anim. Reprod. Sci. 2008, 106, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Massip, A. Cryopreservation of bovine oocytes: Current status and recent developments. Reprod. Nutr. Dev. 2003, 43, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Bogliolo, L.; Ariu, F.; Fois, S.; Rosati, I.; Zedda, M.T.; Leoni, G.; Succu, S.; Pau, S.; Ledda, S. Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells. Theriogenology 2007, 68, 1138–1149. [Google Scholar] [CrossRef]
- Rojas, C.; Palomo, M.J.; Albarracín, J.L.; Mogas, T. Vitrification of immature and in vitro matured pig oocytes: Study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology 2004, 49, 211–220. [Google Scholar] [CrossRef]
- Estudillo, E.; Jiménez, A.; Bustamante-Nieves, P.E.; Palacios-Reyes, C.; Velasco, I.; López-Ornelas, A. Cryopreservation of Gametes and Embryos and Their Molecular Changes. Int. J. Mol. Sci. 2021, 22, 10864. [Google Scholar] [CrossRef]
- Mazur, P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys. 1990, 17, 53–92. [Google Scholar] [CrossRef]
- Mazur, P. Principles of cryobiology. In Life in the Frozen State; CRC Press: Boca Raton, FL, USA, 2004; pp. 29–92. [Google Scholar]
- Vincent, C.; Turner, K.; Pickering, S.; Johnson, M. Zona pellucida modifications in the mouse in the absence of oocyte activation. Mol. Reprod. Dev. 1991, 28, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Fahy, G.M. Cryoprotectant toxicity neutralization. Cryobiology 2010, 60, S45–S53. [Google Scholar] [CrossRef] [PubMed]
- Rall, W.; Wood, M. High in vitro and in vivo survival of day 3 mouse embryos vitrified or frozen in a non-toxic solution of glycerol and albumin. Reproduction 1994, 101, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rall, W.F.; Fahy, G.M. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 1985, 313, 573–575. [Google Scholar] [CrossRef]
- Jomha, N.M.; Weiss, A.D.; Forbes, J.F.; Law, G.K.; Elliott, J.A.; McGann, L.E. Cryoprotectant agent toxicity in porcine articular chondrocytes. Cryobiology 2010, 61, 297–302. [Google Scholar] [CrossRef]
- Ali, J.; Shelton, J. Design of vitrification solutions for the cryopreservation of embryos. Reproduction 1993, 99, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Chao, N. Fish sperm cryopreservation in Taiwan: Technology advancement and extension efforts. B. Inst. Zo. Acad. Sin. Monogr. 1991, 16, 263–283. [Google Scholar]
- Pereira, C.S.; Hünenberger, P.H. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: A comparative molecular dynamics study. J. Phys. Chem. B 2006, 110, 15572–15581. [Google Scholar] [CrossRef]
- Lazarević, K.B.; Andrić, F.; Trifković, J.; Tešić, Ž.; Milojković-Opsenica, D. Characterisation of Serbian unifloral honeys according to their physicochemical parameters. Food Chem. 2012, 132, 2060–2064. [Google Scholar] [CrossRef]
- Putri, N.M.; Kreshanti, P.; Tunjung, N.; Indania, A.; Basuki, A.; Sukasah, C.L. Efficacy of honey dressing versus hydrogel dressing for wound healing. AIP Conf. Proc. 2021, 2344, 020022. [Google Scholar]
- Elkhawagah, A.R.M. Effect of honey supplementation on Egyptian buffalo semen. Anim. Reprod. 2018, 14, 1103–1109. [Google Scholar]
Natural CPA | Combination with Other CPAs | Cell or Tissue Type | Example of Species | Technique | Replacement Due to | Outcome | References |
---|---|---|---|---|---|---|---|
Natural honey | TCM-199 + EG + DMSO + CS | Bovine Oocytes | Cow | Vitrification | To investigate in vitro maturation (IVM), fertilization (IVF), and embryo development (IVC) of GV-stage oocytes vitrified in honey and sucrose solutions. | 1. Natural honey acted as a non-permeating CPA in vitrification solution. 2. Improved post-warm oocyte viability and embryonic development. 3. It shows better blastocyst development than sucrose (13% vs. 3%). | Bilal Alfoteisy (2020) [27] |
Natural honey | 7.5% EG + 7.5% DMSO | Embryo | Mouse | Vitrification | Replace sucrose with honey to reduce the chance of ice crystal formation and cryo damage. | Natural honey makes it more thermodynamically favorable by reducing the ROS level of vitrified embryos and decreasing the chances of cryodamage. | Fatemeh Sarmadia (2019) [22] |
Natural honey | Nigella sativa | Sperm | Goat | Slow freezing | Compared it with a control group without any supplement. | The combination of honey and nigella sativa gives a better effect on post-thawed sperms than fresh sperms and prevents ice crystal formation. | Maidin (2018) [23] |
Natural honey | N/A | Spermatozoa | Gourami | Slow freezing | To check the suitable concentration for gourami spermatozoa. | The combination of honey and DMSO gives the highest motility in comparison with the control group (0% honey solution). | Abinawanto (2017) [24] |
Natural honey | DMSO | Semen (sperm motality) | Arabian Stallion | Slow freezing | To investigate the effect of different concentrations of natural honey on post-thawed sperm motility, viability index, membrane and acrosome integrities. | Supplementation with honey (2%, 3%, and 4%) significantly improved post-thaw sperm motility, viability index. Additionally, it had a positive effect on membrane integrity and intact acrosome percentage at 0, 1, 2, 3, and 4h post-thawing. | Reda I. El-Sheshtawy (2016) [25] |
Natural honey | Extender (mINRA-82 aliquots) | Sperm | African catfish | Slow freezing | To find out the cryopreservable effect of natural non-permeating cryoprotactent with frican catfish sperm, in comparison to DMSO. | A total of 10% honey allowed African catfish sperm to preserve into liquid nitrogen for 45 days. | Z.A. Muchlisin (2015) [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheepa, F.F.; Liu, H.; Zhao, G. The Natural Cryoprotectant Honey for Fertility Cryopreservation. Bioengineering 2022, 9, 88. https://doi.org/10.3390/bioengineering9030088
Cheepa FF, Liu H, Zhao G. The Natural Cryoprotectant Honey for Fertility Cryopreservation. Bioengineering. 2022; 9(3):88. https://doi.org/10.3390/bioengineering9030088
Chicago/Turabian StyleCheepa, Faryal Farooq, Huilan Liu, and Gang Zhao. 2022. "The Natural Cryoprotectant Honey for Fertility Cryopreservation" Bioengineering 9, no. 3: 88. https://doi.org/10.3390/bioengineering9030088
APA StyleCheepa, F. F., Liu, H., & Zhao, G. (2022). The Natural Cryoprotectant Honey for Fertility Cryopreservation. Bioengineering, 9(3), 88. https://doi.org/10.3390/bioengineering9030088