An Optimized Thermal Feedback Methodology for Accurate Temperature Control and High Amplification Efficiency during Fluorescent qPCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Homemade Real-Time PCR System
2.2. Commercial PCR Instruments
2.3. Temperature Measurement
2.4. Amplification Program
2.5. Reagents
3. Results
3.1. Temperature Curve of PCR Amplification Program
3.1.1. Commercial PCR (LifeECO)
3.1.2. Homemade PCR
3.2. The Deviation between the Actual Temperature Amplification Program
Commercial PCR (LifeECO)
3.3. Results of DNA Amplification after Upgrade
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustin, S. INVITED REVIEW Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Lage, J.M.; Leamon, J.H.; Pejovic, T.; Hamann, S.; Lacey, M.; Dillon, D.; Segraves, R.; Vossbrinck, B.; González, A.; Pinkel, D.; et al. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array–CGH. Genome Res. 2003, 13, 294–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, A.V.; Fuery, C.J.; Impey, H.L.; Applegate, T.L.; Haughton, M.A. DzyNA-PCR: Use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clin. Chem. 2000, 46, 625–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, E.D.; Moore, C.L.; Dankbar, D.M.; Mehlmann, M.; Townsend, M.B.; Smagala, J.A.; Smith, C.B.; Cox, N.J.; Kuchta, R.D.; Rowlen, K.L. Identification of A/H5N1 influenza viruses using a single gene diagnostic microarray. Anal. Chem. 2007, 79, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Valasek, M.A.; Repa, J.J. The power of real-time PCR. Adv. Physiol. Educ. 2005, 29, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crews, N.; Wittwer, C.; Gale, B. Continuous-flow thermal gradient PCR. Biomed. Microdevices 2008, 10, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.M.; Dirks, D.C.; Poulter, M.D.; Mills, S.E.; Stoler, M.H. HR-HPV E6/E7 mRNA in situ hybridization. Am. J. Surg. Pathol. 2017, 41, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Arya, M.; Shergill, I.S.; Williamson, M.; Gommersall, L.; Arya, N.; Patel, H.R. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 2005, 5, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, S.; Wang, M.; Zou, Y. The software system design model based on digital PCR fluorescence detector. Clust. Comput. 2019, 22, 8623–8627. [Google Scholar] [CrossRef]
- Bustin, S.; Benes, V.; Nolan, T.; Pfaffl, M. Quantitative real-time RT-PCR–a perspective. J. Mol. Endocrinol. 2005, 34, 597–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Li, B.; Wu, W. Application of automatic feedback photographing by portable smartphone in PCR. Sens. Actuators B Chem. 2019, 298, 126782. [Google Scholar] [CrossRef]
- Kolukirik, M.; Yılmaz, M.; Ince, O.; Ketre, C.; Tosun, A.I.; Ince, B.K. Development of a fast and low-cost qPCR assay for diagnosis of acute gas pharyngitis. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, K.; Gan, K.; Then, S.-M. 2017 International Conference on Robotics, Automation and Sciences (ICORAS); IEEE: Piscataway, NJ, USA, 2017; ISBN 978-1-5386-1909-4. [Google Scholar]
- Qiu, X.; Ge, S.; Gao, P.; Li, K.; Yang, Y.; Zhang, S.; Ye, X.; Xia, N.; Qian, S. A low-cost and fast real-time PCR system based on capillary convection. SLAS Technol. 2017, 22, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Carballo, B.L.; McGuiness, I.; McBeth, C.; Kalashnikov, M.; Borrós, S.; Sharon, A.; Sauer-Budge, A.F. Low-cost, real-time, continuous flow PCR system for pathogen detection. Biomed. Microdevices 2016, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Mærkedahl, R.B.; Frøkiær, H.; Lauritzen, L.; Metzdorff, S.B. Evaluation of a low-cost procedure for sampling, long-term storage, and extraction of RNA from blood for qPCR analyses. Clin. Chem. Lab. Med. 2015, 53, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, Y.; Yao, S.; Wei, Y. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS ONE 2014, 9, e98282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebrikov, D.; Trofimov, D.Y. Real-time PCR: A review of approaches to data analysis. Appl. Biochem. Microbiol. 2006, 42, 455–463. [Google Scholar] [CrossRef]
- Yoon, D.S.; Lee, Y.S.; Lee, Y.; Cho, H.J.; Sung, S.W.; Oh, K.W.; Cha, J.; Lim, G. Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. J. Micromech. Microeng. 2002, 12, 813. [Google Scholar] [CrossRef]
Target | Primer Sequences |
---|---|
SARS-CoV-2 | F: GGG GAA CTT CTC CTG CTA GAA T |
R: CAG ACA TTT TGC TCT CAA GCT G | |
Escherichia Coli | F: AGA GTT TGA TCC TGG CTC AG |
R: GWA TTA CCG CGG CKG CTG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Jiang, Y.; Guo, Y.; Geng, M.; Wu, W. An Optimized Thermal Feedback Methodology for Accurate Temperature Control and High Amplification Efficiency during Fluorescent qPCR. Bioengineering 2022, 9, 237. https://doi.org/10.3390/bioengineering9060237
Wang K, Jiang Y, Guo Y, Geng M, Wu W. An Optimized Thermal Feedback Methodology for Accurate Temperature Control and High Amplification Efficiency during Fluorescent qPCR. Bioengineering. 2022; 9(6):237. https://doi.org/10.3390/bioengineering9060237
Chicago/Turabian StyleWang, Kangning, Yangyang Jiang, Yu Guo, Mingkun Geng, and Wenming Wu. 2022. "An Optimized Thermal Feedback Methodology for Accurate Temperature Control and High Amplification Efficiency during Fluorescent qPCR" Bioengineering 9, no. 6: 237. https://doi.org/10.3390/bioengineering9060237
APA StyleWang, K., Jiang, Y., Guo, Y., Geng, M., & Wu, W. (2022). An Optimized Thermal Feedback Methodology for Accurate Temperature Control and High Amplification Efficiency during Fluorescent qPCR. Bioengineering, 9(6), 237. https://doi.org/10.3390/bioengineering9060237