Biomechanical Analysis of the Use of Stems in Revision Total Knee Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry
2.2. Analyzed Femoral Stem Configurations
- -
- Length (L)–Diameter (ϕ) [mm] (Figure 1):
- -
- Shape:
- -
- Cross-section:
- -
- Stem-end:
2.3. Analyzed Tibial Stem Configurations
2.4. Material Models and Properties
2.5. Load and Boundary Conditions
2.6. Finite Element Analysis
3. Results
3.1. Analysis of Femoral Stem
3.2. Analysis of Tibial Stem
4. Discussion
4.1. Limitation of the Study
4.2. Analysis of Femoral Stem
4.3. Analysis of Tibial Stem
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Indelli, P.F.; Giori, N.; Maloney, W. Level of constraint in revision knee arthroplasty. Curr. Rev. Musculoskelet. Med. 2015, 8, 390–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharkey, P.F.; Hozack, W.J.; Rothman, R.H.; Shastri, S.; Jacoby, S.M. Insall award paper: Why are total knee arthroplasty failing today? Clin. Orthop. Relat. Res. 2002, 404, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why Are Total Knee Arthroplasties Failing Today—Has Anything Changed After 10 Years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Hossain, F.; Patel, S.; Haddad, F.S. Midterm assessment of causes and results of revision total knee arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Mabry, T.M.; Vessely, M.B.; Schleck, C.D.; Harmsen, W.S.; Berry, D.J. Revision total knee arthroplasty with modular cemented stems: Long-term follow-up. J. Arthroplast. 2007, 22, 100–105. [Google Scholar] [CrossRef]
- Peters, C.L.; Erickson, J.; Kloepper, R.G.; Mohr, R.A. Revision total knee arthroplasty with modular components inserted with metaphyseal cement and stems without cement. J. Arthroplast. 2005, 20, 302–308. [Google Scholar] [CrossRef]
- Fehring, T.K.; Odum, S.; Olekson, C.; Griffin, W.L.; Mason, J.B.; McCoy, T.H. Stem fixation in revision total knee arthroplasty: A comparative analysis. Clin. Orthop. Relat. Res. 2003, 416, 217–224. [Google Scholar] [CrossRef]
- Shannon, B.D.; Klassen, J.F.; Rand, J.A.; Berry, D.J.; Trousdale, R.T. Revision total knee arthroplasty with cemented components and uncemented intramedullary stems. J. Arthroplast. 2003, 18, 27–32. [Google Scholar] [CrossRef]
- Sierra, R.J.; Cooney, W.P., 4th; Pagnano, M.W.; Trousdale, R.T.; Rand, J.A. Reoperations after 3200 revision TKAs: Rates, etiology, and lessons learned. Clin. Orthop. Relat. Res. 2004, 425, 200–206. [Google Scholar] [CrossRef]
- Whaley, A.L.; Trousdale, R.T.; Rand, J.A.; Hanssen, A.D. Cemented long-stem revision total knee arthroplasty. J. Arthroplast. 2003, 18, 592–599. [Google Scholar] [CrossRef]
- Wood, G.C.; Naudie, D.D.; MacDonald, S.J.; McCalden, R.W.; Bourne, R.B. Results of press-fit stems in revision knee arthroplasties. Clin. Orthop. Relat. Res. 2009, 467, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Grover, K.; Lin, L.; Hu, M.; Muir, J.; Qin, Y.X. Spatial distribution and remodeling of elastic modulus of bone in micro-regime as prediction of early stage osteoporosis. J. Biomech. 2016, 49, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Fehring, T.K. Use of Stems in Revision Total Knee Arthroplasty. In Revision Total Knee Arthroplasty; Bono, J.V., Scott, R.D., Eds.; Springer International Publishing: New York, NY, USA, 2005; pp. 137–144. [Google Scholar]
- Hirschmann, M.T.; Becker, R. (Eds.) The Unhappy Total Knee Replacement; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Brand, M.G.; Daley, R.J.; Ewald, F.C.; Scott, R.D. Tibial tray augmentation with modular metal wedges for tibial bone stock deficiency. Clin. Orthop. Relat. Res. 1989, 248, 71–79. [Google Scholar] [CrossRef]
- Completo, A.; Simões, J.A.; Fonseca, F.; Oliveira, M. The Influence of Different Tibial Stem Designs in Load Sharing and Stability at the Cement-Bone Interface in Revision TKA. Knee 2008, 15, 227–232. [Google Scholar] [CrossRef]
- Gililland, J.M.; Gaffney, C.J.; Odum, S.M.; Fehring, T.K.; Peters, C.L.; Beaver, W.B. Clinical & Radiographic Outcomes of Cemented vs. Diaphyseal Engaging Cementless Stems in Aseptic Revision TKA. J. Arthroplast. 2014, 29, 224–228. [Google Scholar]
- Mountney, J.; Wilson, D.R.; Paice, M.; Masri, B.A.; Greidanus, N.V. The Effect of an Augmentation Patella Prosthesis Versus Patelloplasty on Revision Patellar Kinematics and Quadriceps Tendon Force: An Ex Vivo Study. J. Arthroplast. 2008, 23, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Pagnano, M.W.; Trousdale, R.T.; Rand, J.A. Tibial Wedge Augmentation for Bone Deficiency in Total Knee Arthroplasty: A Follow-up Study. Clin. Orthop. Relat. Res. 1995, 321, 151–155. [Google Scholar] [CrossRef]
- Sarmah, S.S.; Patel, S.; Reading, G.; El-Husseiny, M.; Douglas, S.; Haddad, F.S. Periprosthetic fractures around total knee arthroplasty. Ann. R. Coll. Surg. Engl. 2012, 94, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Bori, E.; Armaroli, F.; Innocenti, B. Biomechanical analysis of femoral stems in hinged total knee arthroplasty in physiological and osteoporotic bone. Comput. Methods Programs Biomed. 2021, 213, 106499. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, B.; Bori, E.; Armaroli, F.; Schlager, B.; Jonas, R.; Wilke, H.-J.; Galbusera, F. The use of computational models in orthopedic biomechanical research. In Human Orthopaedic Biomechanics; Innocenti, B., Galbusera, F., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 681–712. ISBN 978-0-12-824481-4. [Google Scholar] [CrossRef]
- Pianigiani, S.; Innocenti, B. The use of finite element modeling to improve biomechanical research on knee prosthesis. In New Developments in Knee Prosthesis Research; Stewart, J., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2015. [Google Scholar]
- Andreani, L.; Pianigiani, S.; Bori, E.; Lisanti, M.; Innocenti, B. Analysis of biomechanical differences between condylar constrained knee and rotating hinged implants: A numerical study. J. Arthroplast. 2019, 35, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labey, L.; van Lenthe, G.H.; Sloten, J.V.; Catani, F. Load sharing and ligament strains in balanced, overstuffed and understuffed UKA. A validated finite element analysis. J. Arthroplast. 2014, 29, 1491–1498. [Google Scholar]
- McNamara, B.P.; Cristofolini, L.; Toni, A.; Taylor, D. Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. J. Biomech. 1997, 30, 621–630. [Google Scholar] [CrossRef]
- Innocenti, B.; Fekete, G.; Pianigiani, S. Biomechanical Analysis of Augments in Revision Total Knee Arthroplasty. J. Biomech. Eng. 2018, 140, 111006. [Google Scholar] [CrossRef] [Green Version]
- Rastetter, B.R.; Wright, S.J.; Gheduzzi, S.; Miles, A.W.; Clift, S.E. The influence of tibial component malalignment on bone strain in revision total knee replacement. Proc. H Inst. Mech. Eng. 2016, 230, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Soenen, M.; Baracchi, M.; De Corte, R.; Labey, L.; Innocenti, B. Stemmed TKA in a femur with a total hip arthroplasty. Is there a safe distance between the stem tips? J. Arthroplast. 2013, 28, 1437–1445. [Google Scholar] [CrossRef]
- Viceconti, M.; Casali, M.; Massari, B.; Cristofolini, L.; Bassini, S.; Toni, A. The ‘standardized femur program’. Proposal for a reference geometry to be used for the creation of finite element models of the femur. J. Biomech. 1996, 29, 1241. [Google Scholar] [CrossRef]
- Innocenti, B.; Pianigiani, S.; Labey, L.; Victor, J.; Bellemans, J. Contact Forces in Several TKA Designs During Squatting: A Numerical Sensitivity Analysis. J. Biomech. 2011, 44, 1573–1581. [Google Scholar] [CrossRef]
- Pianigiani, S.; Chevalier, Y.; Labey, L.; Pascale, V.; Innocenti, B. Tibio-Femoral Kinematics in Different Total Knee Arthroplasty Designs During a Loaded Squat: A Numerical Sensitivity Study. J. Biomech. 2012, 45, 2315–2323. [Google Scholar] [CrossRef]
- Victor, J.; Van Doninck, D.; Labey, L.; Innocenti, B.; Parizel, P.M.; Bellemans, J. How Precise Can Bony Landmarks Be Determined on a CT Scan of the Knee? Knee 2009, 16, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Innocenti, B.; Bellemans, J.; Catani, F. Deviations from Optimal Alignment in TKA: Is There a Biomechanical Difference Between Femoral or Tibial Component Alignment? J. Arthroplast. 2016, 31, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Parratte, S.; Pagnano, M.W.; Trousdale, R.T.; Berry, D.J. Effect of Postoperative Mechanical Axis Alignment on the Fifteen-Year Survival of Modern, Cemented Total Knee Replacements. J. Bone Jt. Surg. Am. 2010, 15, 2143–2149. [Google Scholar] [CrossRef]
- Ingrassia, T.; Nalbone, L.; Nigrelli, V.; Tumino, D.; Ricotta, V. Finite element analysis of two total knee prostheses. Int. J. Interact. Des. Manuf. 2013, 7, 91–101. [Google Scholar] [CrossRef]
- Rho, Y.J.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102. [Google Scholar] [CrossRef]
- Sarathi Kopparti, P.; Lewis, G. Influence of three variables on the stresses in a three-dimensional model of a proximal tibia-total knee implant construct. Biomed. Mater. Eng. 2007, 17, 19–28. [Google Scholar]
- Brihault, J.; Navacchia, A.; Pianigiani, S.; Labey, L.; De Corte, R.; Pascale, V.; Innocenti, B. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2550–2559. [Google Scholar] [CrossRef] [Green Version]
- Kayabasi, O.; Ekici, B. The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Mater. Des. 2007, 28, 2269–2277. [Google Scholar] [CrossRef]
- Innocenti, B.; Pianigiani, S.; Ramundo, G.; Thienpont, E. Biomechanical Effects of Different Varus and Valgus Alignments in Medial Unicompartmental Knee Arthroplasty. J. Arthroplast. 2017, 31, 2685–2691. [Google Scholar] [CrossRef]
- Galbusera, F.; Freutel, M.; Dürselen, L.; D’Aiuto, M.; Croce, D.; Villa, T.; Sansone, V.; Innocenti, B. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review. Front. Bioeng. Biotechnol. 2014, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- Vaninbroukx, M.; Labey, L.; Innocenti, B.; Bellemans, J. Cementing the femoral component in total arthroplasty: Which technique is the best? Knee 2009, 16, 265–268. [Google Scholar] [CrossRef]
- Pianigiani, S.; Labey, L.; Pascale, W.; Innocenti, B. Knee Kinetics and Kinematics: What Are the Effects of TKA Malconfigurations? Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2415–2421. [Google Scholar] [CrossRef] [Green Version]
- Vanlommel, J.; Luyckx, J.P.; Labey, L.; Innocenti, B.; De Corte, R.; Bellemans, J. Cementing the Tibial Component in Total Knee Arthroplasty: Which Technique Is the Best? J. Arthroplast. 2011, 26, 492–496. [Google Scholar] [CrossRef] [PubMed]
- El-Zayat, B.F.; Heyse, T.J.; Fanciullacci, N.; Labey, L.; Fuchs-Winkelmann, S.; Innocenti, B. Fixation techniques and stem dimensions in hinged total knee arthroplasty: A finite element study. Arch. Orthop. Trauma Surg. 2015, 136, 1741–1752. [Google Scholar] [CrossRef] [Green Version]
- Barrack, R.L.; Rorabeck, C.; Burt, M.; Sawhney, J. Pain at the end of the stem after revision total knee arthroplasty. Clin. Orthop. Relat. Res. 1999, 367, 216–225. [Google Scholar] [CrossRef]
- Barrack, R.L.; Stanley, T.; Burt, M.; Hopkins, S. The effect of stem design on end-of-stem pain in revision total knee arthroplasty. J. Arthroplast. 2004, 19, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.E.; Biant, L.C. The role of the design of tibial components and stems in knee replacement. J. Bone Joint Surg. Br. 2012, 94, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Han, C.D.; Shin, K.H.; Nguku, L.; Yang, I.H.; Lee, W.S.; Kim, K.I.; Park, K.K. Femur bowing could be a risk factor for implant flexion in conventional total knee arthroplasty and notching in navigated total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2476–2482. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kwon, O.S.; Kim, K. Analysis of biomechanical effect of stem-end design in revision TKA using Digital Korean model. Clin. Biomech. 2008, 23, 853–858. [Google Scholar] [CrossRef]
- Oldani, C.; Dominguez, A. Titanium as a Biomaterial for Implants. In Recent Advances in Arthroplasty; Fokter, S.K., Ed.; IntechOpen: London, UK, 2012; pp. 150–162. [Google Scholar]
- Plecko, M.; Sievert, C.; Andermatt, D.; Frigg, R.; Kronen, P.; Klein, K.; Stübinger, S.; Nuss, K.; Bürki, A.; Ferguson, S.; et al. Osseointegration and biocompatibility of different metal implants—A comparative experimental investigation in sheep. BMC Musculoskelet. Disord. 2012, 13, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jazrawi, L.M.; Bai, B.; Kummer, F.J.; Hiebert, R.; Stuchin, S.A. The effect of stem modularity and mode of fixation on tibial component stability in revision total knee arthroplasty. J. Arthroplast. 2001, 16, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Reilly, D.; Walker, P.S.; Ben-Dov, M.; Ewald, F.C. Effects of tibial components on load transfer in the upper tibia. Clin. Orthop. Relat. Res. 1982, 165, 273–282. [Google Scholar] [CrossRef]
- Stern, S.H.; Wills, D.; Gilbert, J.L. The effect of tibial stem design on component micromotion in knee arthroplasty. Clin. Orthop. Relat. Res. 1997, 345, 44–52. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innocenti, B.; Bori, E.; Pianigiani, S. Biomechanical Analysis of the Use of Stems in Revision Total Knee Arthroplasty. Bioengineering 2022, 9, 259. https://doi.org/10.3390/bioengineering9060259
Innocenti B, Bori E, Pianigiani S. Biomechanical Analysis of the Use of Stems in Revision Total Knee Arthroplasty. Bioengineering. 2022; 9(6):259. https://doi.org/10.3390/bioengineering9060259
Chicago/Turabian StyleInnocenti, Bernardo, Edoardo Bori, and Silvia Pianigiani. 2022. "Biomechanical Analysis of the Use of Stems in Revision Total Knee Arthroplasty" Bioengineering 9, no. 6: 259. https://doi.org/10.3390/bioengineering9060259
APA StyleInnocenti, B., Bori, E., & Pianigiani, S. (2022). Biomechanical Analysis of the Use of Stems in Revision Total Knee Arthroplasty. Bioengineering, 9(6), 259. https://doi.org/10.3390/bioengineering9060259