BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images
Abstract
:1. Introduction
- We used BM-Net to detect the ROI (region of interest) in breast cancer WSIs. The network was lightweight and stable because of its simple structure and small number of parameters.
- We constructed an end-to-end network to process WSIs instead of a series of network cascades. This reduced computational resources and instability factors in the clinical setting.
- We adopted the focal loss method to alleviate the imbalance between different classes. In the patch dataset, the number of invasive carcinoma patches was far larger than the others, therefore focal loss adjusted the model to study the remaining carcinomas.
- For postprocessing, we applied majority voting to consider the effect of neighboring patches by analyzing prediction values from the spatial features.
2. Materials and Methods
2.1. Dataset Description
2.2. Methods
2.2.1. Preprocessing
2.2.2. Network Architecture and Training
- (1)
- The proposed method
- (2)
- Bilinear structure
- (3)
- MobileNet-V3
- (4)
- Focal loss function
2.3. Postprocessing
2.4. Evaluation Metric
2.5. Hyperparameter Setting
3. Results
3.1. Ablation Experiment
3.2. Performance
3.3. Quantitative Evaluation
3.4. Comparison with Existing Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Elmore, J.G.; Longton, G.M.; Carney, P.A.; Geller, B.M.; Onega, T.; Tosteson, A.N.A.; Nelson, H.D.; Pepe, M.S.; Allison, K.H.; Schnitt, S.J.; et al. Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens. JAMA 2015, 313, 1122–1132. [Google Scholar] [CrossRef]
- Rakha, E.A.; Aleskandarani, M.; Toss, M.S.; Green, A.R.; Ball, G.; Ellis, I.O.; Dalton, L.W. Breast cancer histologic grading using digital microscopy: Concordance and outcome association. J. Clin. Pathol. 2018, 71, 680–686. [Google Scholar] [CrossRef]
- Senousy, Z.; Abdelsamea, M.M.; Mohamed, M.M.; Gaber, M.M. 3E-Net: Entropy-Based Elastic Ensemble of Deep Convolutional Neural Networks for Grading of Invasive Breast Carcinoma Histopathological Microscopic Images. Entropy 2021, 23, 620. [Google Scholar] [CrossRef]
- Metter, D.M.; Colgan, T.J.; Leung, S.T.; Timmons, C.F.; Park, J.Y. Trends in the US and Canadian Pathologist Workforces from 2007 to 2017. JAMA Netw. Open 2019, 2, e194337. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.H.; Sangoi, A.R.; Leung, S.; Marinelli, R.J.; Nielsen, T.O.; Van De Vijver, M.J.; West, R.B.; Van De Rijn, M.; Koller, D. Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival. Sci. Transl. Med. 2011, 3, 108ra113. [Google Scholar] [CrossRef] [Green Version]
- Kanavati, F.; Tsuneki, M. Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning. Cancers 2021, 13, 5368. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Shen, X.; Zhou, Y.; Xiao, B.; Li, T.Q. Detection of Cervical Cancer Cells in Whole Slide Images Using Deformable and Global Context Aware Faster RCNN-FPN. Curr. Oncol. 2021, 28, 3585–3601. [Google Scholar] [CrossRef]
- Xie, Q.; Faust, K.; Van Ommeren, R.; Sheikh, A.; Djuric, U.; Diamandis, P. Deep learning for image analysis: Personalizing medicine closer to the point of care. Crit. Rev. Clin. Lab. Sci. 2019, 56, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Chintalapudi, N.; Battineni, G.; Hossain, M.A.; Amenta, F. Cascaded Deep Learning Frameworks in Contribution to the Detection of Parkinson’s Disease. Bioengineering 2022, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Bizzego, A.; Gabrieli, G.; Neoh, M.J.Y.; Esposito, G. Improving the Efficacy of Deep-Learning Models for Heart Beat Detection on Heterogeneous Datasets. Bioengineering 2021, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, X.; Shen, S. Stereo R-CNN Based 3D Object Detection for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7644–7652. [Google Scholar]
- Liu, C.; Xie, H.; Zhang, Y. Self-Supervised Attention Mechanism for Pediatric Bone Age Assessment with Efficient Weak Annotation. IEEE Trans. Med. Imaging 2020, 40, 2685–2697. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Poly, T.N.; Walther, B.A.; Lin, M.C.; Li, Y.C. Artificial Intelligence in Gastric Cancer: Identifying Gastric Cancer Using Endoscopic Images with Convolutional Neural Network. Cancers 2021, 13, 5253. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, R.; Suvarna, K.; Yamada, M.; Kobayashi, K.; Shinkai, N.; Miyake, M.; Takahashi, M.; Jinnai, S.; Shimoyama, R.; Sakai, A.; et al. Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. Cancers 2020, 12, 3532. [Google Scholar] [CrossRef] [PubMed]
- Adedigba, A.P.; Adeshina, S.A.; Aibinu, A.M. Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset. Bioengineering 2022, 9, 161. [Google Scholar] [CrossRef]
- Christgen, M.; Länger, F.; Kreipe, H. Histological grading of breast cancer. Pathologe 2016, 37, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.; Hoogi, A.; Depeursinge, A.; Rubin, D.L. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Med. Image Anal. 2016, 30, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iizuka, O.; Kanavati, F.; Kato, K.; Rambeau, M.; Arihiro, K.; Tsuneki, M. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Sci. Rep. 2020, 10, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidyarthi, A.; Shad, J.; Sharma, S.; Agarwal, P. Classification of Breast Microscopic Imaging using Hybrid CLAHE-CNN Deep Architecture. In Proceedings of the 2019 Twelfth International Conference on Contemporary Computing, Noida, India, 8–10 August 2019; pp. 1–5. [Google Scholar]
- Araújo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Polónia, A.; Campilho, A. Classification of breast cancer histology images using Convolutional Neural Networks. PLoS ONE 2017, 12, e0177544. [Google Scholar] [CrossRef] [PubMed]
- Vesal, S.; Ravikumar, N.; Davari, A.; Ellmann, S.; Maier, A. Classification of Breast Cancer Histology Images Using Transfer Learning. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 6 June 2018; pp. 812–819. [Google Scholar]
- Ferreira, C.A.; Melo, T.; Sousa, P.; Meyer, M.I.; Shakibapour, E.; Costa, P.; Campilho, A. Classification of Breast Cancer Histology Images Through Transfer Learning Using a Pre-trained Inception Resnet V2. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 6 June 2018; pp. 763–770. [Google Scholar]
- Anupama, M.; Sowmya, V.; Soman, K. Breast Cancer Classification using Capsule Network with Preprocessed Histology Images. In Proceedings of the 2019 International Conference on Communication and Signal Processing, Chennai, India, 4–6 April 2019; pp. 0143–0147. [Google Scholar]
- Huang, Y.; Chung, A.C.S. Improving High Resolution Histology Image Classification with Deep Spatial Fusion Network. In Proceedings of the Computational Pathology and Ophthalmic Medical Image Analysis, Granada, Spain, 16–20 September 2018; pp. 19–26. [Google Scholar]
- Ni, H.; Liu, H.; Wang, K.; Wang, X.; Zhou, X.; Qian, Y. WSI-Net: Branch-Based and Hierarchy-Aware Network for Segmentation and Classification of Breast Histopathological Whole-Slide Images. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Shenzhen, China, 13 October 2019; pp. 36–44. [Google Scholar]
- Patil, S.M.; Tong, L.; Wang, M.D. Generating Region of Interests for Invasive Breast Cancer in Histopathological Whole-Slide-Image. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 723–728. [Google Scholar]
- Das, K.; Conjeti, S.; Chatterjee, J.; Sheet, D. Detection of Breast Cancer from Whole Slide Histopathological Images Using Deep Multiple Instance CNN. IEEE Access 2020, 8, 213502–213511. [Google Scholar] [CrossRef]
- Galal, S.; Sanchez-Freire, V. Candy Cane: Breast Cancer Pixel-Wise Labeling with Fully Convolutional Densenets. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 6 June 2018; pp. 820–826. [Google Scholar]
- Aresta, G.; Araújo, T.; Kwok, S.; Chennamsetty, S.S.; Safwan, M.; Alex, V.; Marami, B.; Prastawa, M.; Chan, M.; Donovan, M.; et al. BACH: Grand challenge on breast cancer histology images. Med. Image Anal. 2019, 56, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Kohl, M.; Walz, C.; Ludwig, F.; Braunewell, S.; Baust, M. Assessment of Breast Cancer Histology Using Densely Connected Convolutional Networks. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 27–29 June 2018; pp. 903–913. [Google Scholar]
- Marami, B.; Prastawa, M.; Chan, M.; Donovan, M.; Fernandez, G.; Zeineh, J. Ensemble Network for Region Identification in Breast Histopathology Slides. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 27–29 June 2018; pp. 861–868. [Google Scholar]
- Ciga, O.; Chen, J.; Martel, A. Multi-layer Domain Adaptation for Deep Convolutional Networks. In Proceedings of the Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data, Shenzhen, China, 13–17 October 2019; pp. 20–27. [Google Scholar]
- Kwok, S. Multiclass Classification of Breast Cancer in Whole-Slide Images. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 27–29 June 2018; pp. 931–940. [Google Scholar]
- ICIAR 2018 Challenge Grand Challenge. Available online: https://iciar2018-challenge.grand-challenge.org/ (accessed on 12 April 2022).
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-Grained Visual Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1449–1457. [Google Scholar]
- Xue, J.; Zhang, H.; Dana, K. Deep Texture Manifold for Ground Terrain Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 558–567. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Aral, R.A.; Keskin, S.R.; Kaya, M.; Hacıömeroğlu, M. Classification of TrashNet Dataset Based on Deep Learning Models. In Proceedings of the 2018 IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; pp. 2058–2062. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 8–14 December 2019; pp. 8024–8035. [Google Scholar]
- Vu, Q.D.; To, M.N.N.; Kim, E.; Kwak, J.T. Micro and Macro Breast Histology Image Analysis by Partial Network Re-use. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 27–29 June 2018; pp. 895–902. [Google Scholar]
Operator Type | Kernel Size | Expand | Out | Stride | SE | NL |
---|---|---|---|---|---|---|
Conv2d | 3 × 3 | - | 16 | 2 | - | h-swish |
Bottleneck | 3 × 3 | 16 | 16 | 2 | √ | ReLU |
Bottleneck | 3 × 3 | 72 | 24 | 2 | - | ReLU |
Bottleneck | 3 × 3 | 88 | 40 | 1 | - | ReLU |
Bottleneck | 5 × 5 | 96 | 40 | 2 | √ | h-swish |
Bottleneck | 5 × 5 | 240 | 40 | 1 | √ | h-swish |
Bottleneck | 5 × 5 | 240 | 40 | 1 | √ | h-swish |
Bottleneck | 5 × 5 | 120 | 48 | 1 | √ | h-swish |
Bottleneck | 5 × 5 | 144 | 48 | 1 | √ | h-swish |
Bottleneck | 5 × 5 | 288 | 96 | 2 | √ | h-swish |
Bottleneck | 5 × 5 | 576 | 96 | 1 | √ | h-swish |
Bottleneck | 5 × 5 | 576 | 96 | 1 | √ | h-swish |
Conv2d | 1 × 1 | - | 576 | 1 | √ | h-swish |
Slide | A02 | A07 | 04 | 11 | 19 | Average |
---|---|---|---|---|---|---|
MobileNet-V3 | 0.6737 | 0.8515 | 0.5349 | 0.8549 | 0.3911 | 0.6612 |
BM-Net | 0.7264 | 0.8959 | 0.4826 | 0.8092 | 0.4375 | 0.6703 |
Slide | Majority Voting | Direct Stitch | Majority Voting (Without BD) | Direct Stitch (Without BD) |
---|---|---|---|---|
A02 | 0.7264 | 0.7681 | 0.7876 | 0.8358 |
A07 | 0.8959 | 0.8567 | 0.9273 | 0.8878 |
04 | 0.4826 | 0.4543 | 0.5242 | 0.4917 |
11 | 0.8092 | 0.7645 | 0.8498 | 0.8027 |
19 | 0.4375 | 0.6359 | 0.4453 | 0.6791 |
average | 0.6703 | 0.6959 | 0.7068 | 0.7394 |
Team | Network | Average | NMP (M) | FLOPs(G) |
---|---|---|---|---|
Galal et al. [29] | Candy Cane | 0.45 | - | - |
Kohl et al. [31] | DeseNet-161 | 0.42 | 28.68 | 3.99 |
Vu et al. [44] | DenseNet, SENet, ResNet | 0.495 | 7.98 | 22.74 |
Galal and Sanchez-Freire [30] | DenseNet | 0.50 | - | - |
Murata et al. [30] | U-Net | 0.50 | 31.04 | 54.76 |
Li et al. [30] | VGG16, DeepLab-V2 ResNet-50 | 0.52 | 25.56 | 21.53 |
Jia et al. [30] | ResNet-50 | 0.52 | 25.56 | 2153 |
Marami et al. [32] | Ensemble Network (Inception-V3, ResNet-34) | 0.553 | - | - |
Ozan Ciga et al. [33] | SE-ResNet-50, L-DANN module | 0.68 | - | - |
Kwok [34] | Inception-ResNet-V2 | 0.69 | - | - |
BM-Net | MobileNet-V3, Bilinear module | 0.71 | 2.56 | 1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Mei, L.; Long, M.; Liu, Y.; Sun, W.; Li, X.; Shen, H.; Zhou, F.; Ruan, X.; Wang, D.; et al. BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images. Bioengineering 2022, 9, 261. https://doi.org/10.3390/bioengineering9060261
Huang J, Mei L, Long M, Liu Y, Sun W, Li X, Shen H, Zhou F, Ruan X, Wang D, et al. BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images. Bioengineering. 2022; 9(6):261. https://doi.org/10.3390/bioengineering9060261
Chicago/Turabian StyleHuang, Jin, Liye Mei, Mengping Long, Yiqiang Liu, Wei Sun, Xiaoxiao Li, Hui Shen, Fuling Zhou, Xiaolan Ruan, Du Wang, and et al. 2022. "BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images" Bioengineering 9, no. 6: 261. https://doi.org/10.3390/bioengineering9060261
APA StyleHuang, J., Mei, L., Long, M., Liu, Y., Sun, W., Li, X., Shen, H., Zhou, F., Ruan, X., Wang, D., Wang, S., Hu, T., & Lei, C. (2022). BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images. Bioengineering, 9(6), 261. https://doi.org/10.3390/bioengineering9060261