Acetic Fermentation of Cagaita Pulp: Technological and Chemical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pulp Characterization
2.2.1. Determination of Soluble Solids (SS), Titratable Acidity (TA), and pH
2.2.2. Proximal Composition
2.2.3. Determination of Vitamin C
2.3. Alcoholic Fermentation
2.4. Acetic Fermentation
2.5. Characterization of Alcoholic and Acetic Fermented Products
2.5.1. Determination of Alcohol Concentration
2.5.2. Colorimetric Determination
2.5.3. Total Phenolic Compounds
2.5.4. Antioxidant Capacity
3. Results and Discussion
3.1. Characterization of Cagaita Pulp
Variables a | Mean b ± SE | Reference 1 | Reference 2 |
---|---|---|---|
Yield (%) | 74.35 ± 0.34 | - | - |
Total soluble solids (°Brix) | 8.8 ± 0.07 | 8.00 ± 0.15 | 9.12 |
pH | 3.47 ± 0.01 | 3.84 ± 0.02 | 3.3 |
Titratable acidity (g citric acid/100 g) | 0.90 ± 0.02 | 0.64 ± 0.01 | 0.73 |
Maturation index (SST/ATT) | 9.71 ± 0.13 | 12.64 | 12.49 |
Moisture (g/100 g) | 85.61 ± 0.64 | 89.74 ± 0.10 | 91.56 |
Ash (g/100 g) | 0.70 ± 0.1 | 0.30 ± 0.09 | 0.18 ± 0.02 |
Proteins (g/100 g) | 1.37 ± 0.07 | 0.77 ± 0.01 | 0.63 ± 0.09 |
Lipids (g/100 g) | 0.30 ± 0.007 | 0.49 ± 0.28 | 0.57 ± 0.05 |
Carbohydrates (g/100 g) | 12.48 ± 042 | 8.09 ± 0.54 | 5.54 ± 0.65 |
Energetic value (kcal/100 g) | 119.27 ± 3.5 | 39.87 ± 0.44 | 29.83 ± 3.43 |
Vitamin C (mg ascorbic acid/100 g) | 26.38 ± 0.01 | 31.95 ± 0.77 | 34.11 ± 1.48 |
3.2. Assessment of Alcoholic Fermentation
3.3. Assessment of Acetic Fermentation
3.4. Chemical Changes in the Development of Acetic Fermented Cagaita
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colli, G.R.; Vieira, C.R.; Dianese, J.C. Biodiversity and conservation of the Cerrado: Recent advances and old challenges. Biodivers. Conserv. 2020, 29, 1465–1475. [Google Scholar] [CrossRef]
- Lewis, K.; de V. Barros, F.; Cure, M.B.; Davies, C.A.; Furtado, M.N.; Hill, T.C.; Hirota, M.; Martins, D.L.; Mazzochini, G.G.; Mitchard, E.T. Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products. Sci. Rep. 2022, 12, 1588. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, G.S.; Cardoso, M.F.; Alves, R.J.; Weber, E.J.; Barbosa, A.A.; de Toledo, P.M.; Pontual, F.B.; Salles, L.d.O.; Hasenack, H.; Cordeiro, J.L. The Brazilian Cerrado is becoming hotter and drier. Glob. Change Biol. 2021, 27, 4060–4073. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.C.; da Rocha Alves, M.; Noguera, N.H.; do Nascimento, R.d.P. A review on Brazilian baru plant (Dipteryx alata Vogel): Morphology, chemical composition, health effects, and technological potential. Future Foods 2022, 5, 100146. [Google Scholar] [CrossRef]
- Santana, L.F.; Sasso, S.; Aquino, D.F.S.; de Cássia Freitas, K.; de Cássia Avellaneda Guimarães, R.; Pott, A.; do Nascimento, V.A.; Bogo, D.; de Oliveira Figueiredo, P.; Hiane, P.A. Nutraceutic potential of bioactive compounds of Eugenia dysenterica DC in metabolic alterations. Molecules 2022, 27, 2477. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.M.M.; da Silva, E.P.; da Silva, F.A.; Ogando, F.I.B.; de Aguiar, C.L.; Damiani, C. Physiological development of cagaita (Eugenia dysenterica). Food Chem. 2017, 217, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Daza, L.D.; Fujita, A.; Granato, D.; Fávaro-Trindade, C.S.; Genovese, M.I. Functional properties of encapsulated Cagaita (Eugenia dysenterica DC.) fruit extract. Food Biosci. 2017, 18, 15–21. [Google Scholar] [CrossRef]
- Santos, D.d.; Oliveira Filho, J.d.; Sousa, T.d.; Ribeiro, C.; Egea, M. Ameliorating effects of metabolic syndrome with the consumption of rich-bioactive compounds fruits from Brazilian Cerrado: A narrative review. Crit. Rev. Food Sci. Nutr. 2021, 62, 7632–7649. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.L.d.; Tomás-Barberán, F.A.; Santos, R.F.d.; Martinez-Blazquez, J.A.; Genovese, M.I. Postprandial glucose-lowering effect of cagaita (Eugenia dysenterica DC) fruit juice in dysglycemic subjects with metabolic syndrome: An exploratory study. Food Res. Int. 2021, 142, 110209. [Google Scholar] [CrossRef]
- Girardi Piva, G.; Casalta, E.; Legras, J.-L.; Tesnière, C.; Sablayrolles, J.-M.; Ferreira, D.; Ortiz-Julien, A.; Galeote, V.; Mouret, J.-R. Characterization and role of sterols in Saccharomyces cerevisiae during white wine alcoholic fermentation. Fermentation 2022, 8, 90. [Google Scholar] [CrossRef]
- Song, J.; Wang, J.; Wang, X.; Zhao, H.; Hu, T.; Feng, Z.; Lei, Z.; Li, W.; Zheng, Y.; Wang, M. Improving the acetic acid fermentation of Acetobacter pasteurianus by enhancing the energy metabolism. Front. Bioeng. Biotechnol. 2022, 10, 815614. [Google Scholar] [CrossRef] [PubMed]
- Isham, N.K.M.; Mokhtar, N.; Fazry, S.; Lim, S.J. The development of an alternative fermentation model system for vinegar production. LWT 2019, 100, 322–327. [Google Scholar] [CrossRef]
- Aulitto, M.; Alfano, A.; Maresca, E.; Avolio, R.; Errico, M.E.; Gentile, G.; Cozzolino, F.; Monti, M.; Pirozzi, A.; Donsì, F.; et al. Thermophilic biocatalysts for one-step conversion of citrus waste into lactic acid. Appl. Microbiol. Biotechnol. 2024, 108, 155. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.J.; de Fatima Borges, M.; de Freitas Rosa, M.; Castro-Gómez, R.J.H.; Spinosa, W.A. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 2018, 56, 139. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; Chichilo, P.; Reynolds, H. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Rockville, MD, USA, 1970. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Pantoja, L.; Duarte, W.; Collela, C.; Valarelli, L.; Schwan, R.; Dias, D. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Res. Int. 2011, 44, 2391–2400. [Google Scholar] [CrossRef]
- Dias, D.R.; Schwan, R.F.; Freire, E.S.; Serôdio, R.d.S. Elaboration of a fruit wine from cocoa (Theobroma cacao L.) pulp. Int. J. Food Sci. Technol. 2007, 42, 319–329. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary as determined by a modified ferric reducing/ antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Araújo, F.F.d.; Neri-Numa, I.A.; Paulo Farias, D.d.; Cunha, G.R.M.C.d.; Pastore, G.M. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res. Int. 2019, 121, 57–72. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Martino, H.S.D.; Moreira, A.V.B.; Ribeiro, S.M.R.; Pinheiro-Sant’Ana, H.M. Cagaita (Eugenia dysenterica DC.) of the Cerrado of Minas Gerais, Brazil: Physical and chemical characterization, carotenoids and vitamins. Food Res. Int. 2011, 44, 2151–2154. [Google Scholar] [CrossRef]
- Schiassi, M.C.E.V.; de Souza, V.R.; Lago, A.M.T.; Campos, L.G.; Queiroz, F. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chem. 2018, 245, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.M.; Dias, T.; Hassimotto, N.M.A.; Naves, M.M.V. Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Sci. Technol. 2017, 37, 564–569. [Google Scholar] [CrossRef]
- Mason, S.A.; Parker, L.; van der Pligt, P.; Wadley, G.D. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic. Biol. Med. 2023, 194, 255–283. [Google Scholar] [CrossRef]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin C—Sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef]
- Resende Oliveira, É.; Caliari, M.; Soares Soares Júnior, M.; Ribeiro Oliveira, A.; Cristina Marques Duarte, R.; Valério de Barros Vilas Boas, E. Assessment of chemical and sensory quality of sugarcane alcoholic fermented beverage. J. Food Sci. Technol. 2018, 55, 72–81. [Google Scholar] [CrossRef]
- Hasunuma, T.; Kondo, A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 2012, 47, 1287–1294. [Google Scholar] [CrossRef]
- De Souza, P.M.; de Oliveira Magalhães, P. Application of microbial α-amylase in industry–A review. Braz. J. Microbiol. 2010, 41, 850. [Google Scholar] [CrossRef] [PubMed]
- Favaretto, D.P.C.; Rempel, A.; Lanzini, J.R.; Silva, A.C.M.; Lazzari, T.; Barbizan, L.D.; Brião, V.B.; Colla, L.M.; Treichel, H. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World J. Microbiol. Biotechnol. 2023, 39, 144. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Chatterjee, S.; Dhoble, A.S. A review on pectinase properties, application in juice clarification, and membranes as immobilization support. J. Food Sci. 2022, 87, 3338–3354. [Google Scholar] [CrossRef]
- Khandare, V.; Walia, S.; Singh, M.; Kaur, C. Black carrot (Daucus carota ssp. sativus) juice: Processing effects on antioxidant composition and color. Food Bioprod. Process. 2011, 89, 482–486. [Google Scholar] [CrossRef]
- Bicanic, D.D. On the photoacoustic, photothermal and colorimetric quantification of carotenoids and other phytonutrients in some foods: A review. J. Mol. Struct. 2011, 993, 9–14. [Google Scholar] [CrossRef]
- Viana, R.O.; Magalhães-Guedes, K.T.; Braga, R.A.; Dias, D.R.; Schwan, R.F. Fermentation process for production of apple-based kefir vinegar: Microbiological, chemical and sensory analysis. Braz. J. Microbiol. 2017, 48, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; Verzelloni, E.; Canonico, M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem. 2014, 49, 1571–1579. [Google Scholar] [CrossRef]
- Guerreiro, T.M.; de Oliveira, D.N.; Ferreira, M.S.; Catharino, R.R. High-throughput analysis by SP-LDI-MS for fast identification of adulterations in commercial balsamic vinegars. Anal. Chim. Acta 2014, 838, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological processes in fruit vinegar production. Foods 2021, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, M.B.; Azabou, S.; Durán-Guerrero, E.; Attia, H.; Castro, R. Investigation of phenolic and volatile compounds changes during vinegar production using spontaneous fermentation of different prickly pear (Opuntia ficus-indica)-based matrices. J. Food Compos. Anal. 2024, 126, 105855. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Gomez, J.; Lasanta, C.; Castro, R.; Sainz, F.; Hamdi, M. Benchmarking laboratory-scale pomegranate vinegar against commercial wine vinegars: Antioxidant activity and chemical composition. J. Sci. Food Agric. 2018, 98, 4749–4758. [Google Scholar] [CrossRef] [PubMed]
- Ordoudi, S.A.; Mantzouridou, F.; Daftsiou, E.; Malo, C.; Hatzidimitriou, E.; Nenadis, N.; Tsimidou, M.Z. Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. J. Funct. Foods 2014, 8, 161–168. [Google Scholar] [CrossRef]
- Davies, C.V.; Gerard, L.M.; Ferreyra, M.M.; Schvab, M.d.C.; Solda, C.A. Bioactive compounds and antioxidant activity analysis during orange vinegar production. Food Sci. Technol. 2017, 37, 449–455. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.; Hidalgo, C.; Torija, M.; Troncoso, A.; Morales, M. Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT-Food Sci. Technol. 2013, 52, 139–145. [Google Scholar] [CrossRef]
- Leonés, A.; Durán-Guerrero, E.; Carbú, M.; Cantoral, J.M.; Barroso, C.G.; Castro, R. Development of vinegar obtained from lemon juice: Optimization and chemical characterization of the process. LWT 2019, 100, 314–321. [Google Scholar] [CrossRef]
Abbreviation | Treatment |
---|---|
NC/SY | Non-chaptalized must + Selected yeast |
CM/P/SY | Chaptalized must + Pasteurization a + Selected yeast CA11 |
CM/P/HY | Chaptalized must + Pasteurization a + Heat-resistant yeast |
CM/A/SY | Chaptalized must + Amylase application+ Selected yeast CA11 |
CM/A/HY | Chaptalized must + Amylase application + Heat-resistant yeast |
CM/PC/SY | Chaptalized must + Pectinase application + Selected yeast CA11 |
CM/PC/HY | Chaptalized must + Pectinase application + Heat-resistant yeast |
Treatments | L* | °h | C* |
---|---|---|---|
NC/SY | 30.83 ± 0.04 b | 139.37 ± 0.45 b | 2.40 ± 0.04 c |
CM/P/SY | 29.39 ± 0.09 b | 119.23 ± 1.01 e | 0.85 ± 0.05 e |
CM/P/HY | 29.21 ± 0.02 b | 130.49 ± 0.05 c | 2.21 ± 0.02 d |
CM/A/SY | 28.72 ± 0.11 c | 124.05 ± 0.79 d | 2.68 ± 0.02 b |
CM/A/HY | 35.53 ± 0.02 a | 119.30 ± 0.03 e | 8.36 ± 0.03 a |
CM/PC/SY | 24.98 ± 0.02 e | 152.47 ± 1.14 a | 0.24 ± 0.01 g |
CM/PC/HY | 26.59 ± 0.04 d | 139.28 ± 2.17 b | 0.44 ± 0.05 f |
Composition | Pulp | Alcoholic Fermented Beverage | Acetic Fermented Beverage |
---|---|---|---|
TPC (mg GAE/L) | 1287.59 ± 33.45 a | 730.88 ± 12.82 b | 728.64 ± 14.61 b |
ABTS (% descoloration) | 16.97 ± 0.49 a | 8.81 ± 0.08 b | 6.32 ± 0.73 c |
FRAP (μM FeSO4/mL) | 809.60 ± 1.76 a | 149.97 ± 1.76 c | 243.28 ± 1.52 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, J.F.D.S.; Hercos, G.F.d.L.; Oliveira Filho, J.G.d.; Santos, D.C.d.; Oliveira, M.S.; Freitas, B.S.M.d.; Silva, F.G.; Egea, M.B. Acetic Fermentation of Cagaita Pulp: Technological and Chemical Characteristics. Beverages 2024, 10, 28. https://doi.org/10.3390/beverages10020028
Santana JFDS, Hercos GFdL, Oliveira Filho JGd, Santos DCd, Oliveira MS, Freitas BSMd, Silva FG, Egea MB. Acetic Fermentation of Cagaita Pulp: Technological and Chemical Characteristics. Beverages. 2024; 10(2):28. https://doi.org/10.3390/beverages10020028
Chicago/Turabian StyleSantana, Jeisa Farias De Sousa, Guilherme Freitas de Lima Hercos, Josemar Gonçalves de Oliveira Filho, Daiane Costa dos Santos, Marilene Silva Oliveira, Bheatriz Silva Morais de Freitas, Fabiano Guimarães Silva, and Mariana Buranelo Egea. 2024. "Acetic Fermentation of Cagaita Pulp: Technological and Chemical Characteristics" Beverages 10, no. 2: 28. https://doi.org/10.3390/beverages10020028
APA StyleSantana, J. F. D. S., Hercos, G. F. d. L., Oliveira Filho, J. G. d., Santos, D. C. d., Oliveira, M. S., Freitas, B. S. M. d., Silva, F. G., & Egea, M. B. (2024). Acetic Fermentation of Cagaita Pulp: Technological and Chemical Characteristics. Beverages, 10(2), 28. https://doi.org/10.3390/beverages10020028