Strawberry Post-Harvest Anthocyanin Development to Improve the Colour Stability of Strawberry Nectars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strawberries
2.2. Methods
2.2.1. Preparation of Nectars
Defrosting of Strawberries and Puree preparation
Nectar Preparation
2.2.2. Physical and Chemical Analysis
2.2.3. Colour Measurements
2.2.4. Anthocyanin Concentration
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Colour Stability
3.1.1. Ripeness Stage 1 (White)
3.1.2. Ripeness Stage 2 (White–Orange)
3.1.3. Ripeness Stage 3 (Orange)
3.1.4. Ripeness Stage 4 (Red)
3.1.5. Ripeness Stage 5 (Dark Red)
3.1.6. Cultivar Effects
3.2. Anthocyanin Content
3.2.1. Anthocyanin Development during Storage
3.2.2. Anthocyanin Content and Colour Stability
3.3. Physical Parameters
3.3.1. Total Soluble Solids, Titratable Acidity, firmness, and pH
3.3.2. Size and Weight
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gössinger, M.; Mayer, F.; Radocha, N.; Höfler, M.; Boner, A.; Groll, E.; Nosko, E.; Bauer, R.; Berghofer, E. Consumer’s Color Acceptance of Strawberry Nectars from Puree. J. Sens. Stud. 2009, 24, 78–92. [Google Scholar] [CrossRef]
- Council Directive 2001/112/EC of 20 December 2001 Relating to Fruit Juices and Certain Similar Products Intended for Human Consumption 2014. Available online: http://data.europa.eu/eli/dir/2001/112/oj (accessed on 14 May 2024).
- Murray, H.; Dietl-Schuller, C.; Lindner, M.; Korntheuer, K.; Halbwirth, H.; Gössinger, M. Prediction of the Potential Colour Stability of Strawberry Nectar by Use of a Stability Prediction Value (SPV). LWT 2023, 173, 114233. [Google Scholar] [CrossRef]
- Bakker, J.; Bridle, P.; Bellworthy, S.J. Strawberry Juice Colour: A Study of the Quantitative and Qualitative Pigment Composition of Juices from 39 Genotypes. J. Sci. Food Agric. 1994, 64, 31–37. [Google Scholar] [CrossRef]
- Garzon, G.A.; Wrolstad, R.E. Comparison of the Stability of Pelargonidin-Based Anthocyanins in Strawberry Juice and Concentrate. J. Food Sci. 2002, 67, 1288–1299. [Google Scholar] [CrossRef]
- Simkova, K.; Veberic, R.; Hudina, M.; Grohar, M.C.; Ivancic, T.; Smrke, T.; Pelacci, M.; Jakopic, J. Variability in ‘Capri’ Everbearing Strawberry Quality during a Harvest Season. Foods 2023, 12, 1349. [Google Scholar] [CrossRef] [PubMed]
- Buvé, C.; Van Bedts, T.; Haenen, A.; Kebede, B.; Braekers, R.; Hendrickx, M.; Van Loey, A.; Grauwet, T. Shelf-Life Dating of Shelf-Stable Strawberry Juice Based on Survival Analysis of Consumer Acceptance Information: Shelf-Life Dating of Shelf-Stable Strawberry Juice. J. Sci. Food Agric. 2018, 98, 3437–3445. [Google Scholar] [CrossRef]
- Diamanti, J.; Balducci, F.; Di Vittori, L.; Capocasa, F.; Berdini, C.; Bacchi, A.; Giampieri, F.; Battino, M.; Mezzetti, B. Physico-Chemical Characteristics of Thermally Processed Purée from Different Strawberry Genotypes. J. Food Compos. Anal. 2015, 43, 106–118. [Google Scholar] [CrossRef]
- Skrede, G.; Wrolstad, R.E.; Lea, P.; Enersen, G. Color Stability of Strawberry and Blackcurrant Syrups. J. Food Sci. 1992, 57, 172–177. [Google Scholar] [CrossRef]
- Woodward, J.R. Physical and Chemical Changes in Developing Strawberry Fruits. J. Sci. Food Agric. 1972, 23, 465–473. [Google Scholar] [CrossRef]
- Aaby, K.; Skrede, G.; Wrolstad, R.E. Phenolic Composition and Antioxidant Activities in Flesh and Achenes of Strawberries (Fragaria ananassa). J. Agric. Food Chem. 2005, 53, 4032–4040. [Google Scholar] [CrossRef]
- Montero, T.M.; Mollá, E.M.; Esteban, R.M.; López-Andréu, F.J. Quality Attributes of Strawberry during Ripening. Sci. Hortic. 1996, 65, 239–250. [Google Scholar] [CrossRef]
- Goulas, V.; Manganaris, G.A. The Effect of Postharvest Ripening on Strawberry Bioactive Composition and Antioxidant Potential. J. Sci. Food Agric. 2011, 91, 1907–1914. [Google Scholar] [CrossRef]
- Gössinger, M.; Koch, C.; Wendelin, S.; Kickenweiz, M.; Stich, K.; Vogl, K. Einfluss von Sorte, Reifegrad Und Erntezeitpunkt Auf Die Farbstabilität von Fruchtfleischhältigem Erdbeernektar. Mitteilungen Klosterneubg. 2010, 60, 420–427. [Google Scholar]
- Gössinger, M.; Grünewald, J.; Kampl, C.; Wendelin, S.; Stich, K.; Berghofer, E. Impact of Provenance, Cultivar, Time of Harvest and Degree of Ripeness of Strawberries on Their Ingredients and Colour Stability of Strawberry Nectars Made from Puree. Acta Hortic. 2014, 1017, 109–118. [Google Scholar] [CrossRef]
- Azodanlou, R.; Darbellay, C.; Luisier, J.-L.; Villettaz, J.-C.; Amadò, R. Changes in Flavour and Texture during the Ripening of Strawberries. Eur. Food Res. Technol. 2004, 218, 167–172. [Google Scholar] [CrossRef]
- Wang, W.; Hu, W.; Ding, T.; Ye, X.; Liu, D. Shelf-Life Prediction of Strawberry at Different Temperatures during Storage Using Kinetic Analysis and Model Development. J. Food Process. Preserv. 2018, 42, e13693. [Google Scholar] [CrossRef]
- Pistón, F.; Pérez, A.G.; Sanz, C.; Refoyo, A. Strawberry Postharvest Shelf Life Is Related to Total Acid Content and Fruit Firmness. Acta Hortic. 2021, 1309, 869–872. [Google Scholar] [CrossRef]
- UNECE Standard FFV-35 Concerning the Marketing and Commerical Quality Control of Strawberries 2023. Available online: https://unece.org/sites/default/files/2023-12/FFV35_Strawberries_2023_e.pdf (accessed on 14 May 2024).
- Quarshi, H.Q.; Ahmed, W.; Azmant, R.; Chendouh-Brahmi, N.; Quyyum, A.; Abbas, A.; Quarshi, H.Q.; Ahmed, W.; Azmant, R.; Chendouh-Brahmi, N.; et al. Post-Harvest Problems of Strawberry and Their Solutions. In Recent Studies on Strawberries; IntechOpen: London, UK, 2023; ISBN 978-1-80355-199-9. [Google Scholar]
- Austin, M.E.; Shutak, V.G.; Christopher, E.P. Color Changes in Harvested Strawberry Fruits. Proc. Am. Soc. Hortic. Sci. 1960, 75, 382–386. [Google Scholar]
- Sacks, E.J.; Shaw, D.V. Color Change in Fresh Strawberry Fruit of Seven Genotypes Stored at 0C. HortScience 1993, 28, 209–210. [Google Scholar] [CrossRef]
- Miszczak, A.; Forney, C.F.; Prange, R.K. Development of Aroma Volatiles and Color during Postharvest Ripening of `Kent’ Strawberries. J. Am. Soc. Hortic. Sci. 1995, 120, 650–655. [Google Scholar] [CrossRef]
- Xu, F.; Cao, S.; Shi, L.; Chen, W.; Su, X.; Yang, Z. Blue Light Irradiation Affects Anthocyanin Content and Enzyme Activities Involved in Postharvest Strawberry Fruit. J. Agric. Food Chem. 2014, 62, 4778–4783. [Google Scholar] [CrossRef] [PubMed]
- Forney, C.F.; Kalt, W.; McDonald, J.E.; Jordan, M.A. Changes in Strawberry Fruit Qualtiy during Ripening on and off the Plant. Acta Hortic. 1998, 464, 506. [Google Scholar] [CrossRef]
- Kalt, W.; Prange, R.K.; Lidster, P.D. Postharvest Color Development of Strawberries: Influence of Maturity, Temperature and Light. Can. J. Plant Sci. 1993, 73, 541–548. [Google Scholar] [CrossRef]
- Nunes, M.C.N.; Morais, A.M.M.B.; Brecht, J.K.; Sargent, S.A. Fruit Maturity and Storage Temperature Influence Response of Strawberries to Controlled Atmospheres. J. Am. Soc. Hortic. Sci. 2002, 127, 836–842. [Google Scholar] [CrossRef]
- Nunes, M.C.N.; Brecht, J.K.; Morais, A.M.M.B.; Sargent, S.A. Physical and Chemical Quality Characteristics of Strawberries after Storage Are Reduced by a Short Delay to Cooling. Postharvest Biol. Technol. 1995, 6, 17–28. [Google Scholar] [CrossRef]
- Nunes, M.C.N.; Brecht, J.K.; Morais, A.M.; Sargent, S.A. Physicochemical Changes during Strawberry Development in the Field Compared with Those That Occur in Harvested Fruit during Storage. J. Sci. Food Agric. 2006, 86, 180–190. [Google Scholar] [CrossRef]
- Van de Poel, B.; Vandendriessche, T.; Hertog, M.L.A.T.M.; Nicolai, B.M.; Geeraerd, A. Detached Ripening of Non-Climacteric Strawberry Impairs Aroma Profile and Fruit Quality. Postharvest Biol. Technol. 2014, 95, 70–80. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Cuevas, E.; Winterhalter, P.; Garcia-Parrilla, M.C.; Troncoso, A.M. Isolation, Identification, and Antioxidant Activity of Anthocyanin Compounds in Camarosa Strawberry. Food Chem. 2010, 123, 574–582. [Google Scholar] [CrossRef]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- Kammerer, D.R.; Schillmöller, S.; Maier, O.; Schieber, A.; Carle, R. Colour Stability of Canned Strawberries Using Black Carrot and Elderberry Juice Concentrates as Natural Colourants. Eur. Food Res. Technol. 2007, 224, 667–679. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001. [Google Scholar] [CrossRef]
- Giusti, M.M.; Rodríguez-Saona, L.E.; Wrolstad, R.E. Molar Absorptivity and Color Characteristics of Acylated and Non-Acylated Pelargonidin-Based Anthocyanins. J. Agric. Food Chem. 1999, 47, 4631–4637. [Google Scholar] [CrossRef]
- Simkova, K.; Veberic, R.; Hudina, M.; Grohar, M.C.; Pelacci, M.; Smrke, T.; Ivancic, T.; Cvelbar Weber, N.; Jakopic, J. Non-Destructive and Destructive Physical Measurements as Indicators of Sugar and Organic Acid Contents in Strawberry Fruit during Ripening. Sci. Hortic. 2024, 327, 112843. [Google Scholar] [CrossRef]
Days in Storage Prior to Processing | Acceptance Factor of Nectars on the Day of Nectar Production (AF0) | Mean Difference with Day 0 (Paired t-Test) | Acceptance Factor of Nectars after 12 Weeks Storage at 20 °C (AF12) | Mean Difference with Day 0 (Paired t-Test) |
---|---|---|---|---|
Day 0 | 0.586 ± 0.303 a | - | 0.356 ± 0.219 a | - |
Day 1 | 0.691 ± 0.271 b | 0.104 ± 0.091 *** | 0.429 ± 0.203 b | 0.073 ± 0.083 *** |
Day 2 | 0.807 ± 0.156 c | 0.221 ± 0.178 *** | 0.492 ± 0.161 c | 0.136 ± 0.110 *** |
Strawberry Sample | Acceptance Factor of Nectars on the Day of Nectar Production (AF0) | Mean Difference with Day 0 (Paired t-Test) | Acceptance Factor of Nectars after 12 Weeks Storage at 20 °C (AF12) | Mean Difference with Day 0 (Paired t-Test) |
---|---|---|---|---|
Day 0 Ripeness 1 (D0R1) | 0.057 ± 0.020 a | - | 0.079 ± 0.013 a | - |
Day 1 Ripeness 1 (D1R1) | 0.176 ± 0.034 b | 0.119 ± 0.027 *** | 0.111 ± 0.023 ab | 0.032 ± 0.016 *** |
Day 2 Ripeness 1 (D2R1) | 0.525 ± 0.081 d | 0.468 ± 0.077 *** | 0.224 ± 0.040 c | 0.145 ± 0.037 *** |
Day 0 Ripeness 2 (D0R2) | 0.467 ± 0.093 c | - | 0.171 ± 0.059 bc | - |
Day 1 Ripeness 2 (D1R2) | 0.712 ± 0.092 e | 0.246 ± 0.099 *** | 0.360 ± 0.112 d | 0.189 ± 0.107 *** |
Day 2 Ripeness 2 (D2R2) | 0.836 ± 0.074 fg | 0.369 ± 0.094 *** | 0.478 ± 0.085 ef | 0.307 ± 0.054 *** |
Day 0 Ripeness 3 (D0R3) | 0.743 ± 0.044 e | - | 0.416 ± 0.106 de | - |
Day 1 Ripeness 3 (D1R3) | 0.811 ± 0.044 f | 0.069 ± 0.037 *** | 0.502 ± 0.084 efg | 0.086 ± 0.034 *** |
Day 2 Ripeness 3 (D2R3) | 0.869 ± 0.043 ghi | 0.126 ± 0.043 *** | 0.575 ± 0.073 ghi | 0.159 ± 0.045 *** |
Day 0 Ripeness 4 (D0R4) | 0.807 ± 0.039 f | - | 0.529 ± 0.124 fgh | - |
Day 1 Ripeness 4 (D1R4) | 0.860 ± 0.025 fgh | 0.053 ± 0.023 *** | 0.554 ± 0.107 fghi | 0.026 ± 0.027 *** |
Day 2 Ripeness 4 (D2R4) | 0.885 ± 0.034 ghi | 0.077 ± 0.038 *** | 0.578 ± 0.079 ghi | 0.050 ± 0.034 *** |
Day 0 Ripeness 5 (D0R5) | 0.858 ± 0.047 fgh | - | 0.585 ± 0.124 ghi | - |
Day 1 Ripeness 5 (D1R5) | 0.893 ± 0.040 hi | 0.036 ± 0.026 *** | 0.616 ± 0.109 i | 0.031 ± 0.043 ** |
Day 2 Ripeness 5 (D2R5) | 0.921 ± 0.055 i | 0.063 ± 0.035 *** | 0.605 ± 0.101 hi | 0.020 ± 0.051 ns |
Days in Storage Prior to Processing | Total Monomeric Anthocyanin Content [mg/kg pg-3-glu eqv] | Mean Difference with Day 0 (Paired t-Test) |
---|---|---|
Day 0 | 86.5 ± 75.9 a | - |
Day 1 | 103.2 ± 68.0 ab | 16.7 ± 21.0 *** |
Day 2 | 120.1 ± 57.9 b | 33.6 ± 33.2 *** |
Strawberry Sample | Total Monomeric Anthocyanin Content [mg/kg pg-3-glu eqv] | Mean Difference with Day 0 (Paired t-Test) |
---|---|---|
Day 0 Ripeness 1 (D0R1) | 0.9 ± 1.2 a | - |
Day 1 Ripeness 1 (D1R1) | 7.7 ± 2.8 ab | 6.7 ± 2.5 *** |
Day 2 Ripeness 1 (D2R1) | 33.4 ± 7.9 b | 32.4 ± 7.2 *** |
Day 0 Ripeness 2 (D0R2) | 23.6 ± 8.4 ab | - |
Day 1 Ripeness 2 (D1R2) | 66.9 ± 24.9 c | 43.3 ± 22.1 *** |
Day 2 Ripeness 2 (D2R2) | 102.9 ± 20.8 de | 79.3 ± 18.5 *** |
Day 0 Ripeness 3 (D0R3) | 77.4 ± 16.3 cd | - |
Day 1 Ripeness 3 (D1R3) | 108.5 ± 14.1 ef | 31.1 ± 7.0 *** |
Day 2 Ripeness 3 (D2R3) | 128.0 ± 18.1 efg | 50.5 ± 19.8 *** |
Day 0 Ripeness 4 (D0R4) | 137.5 ± 19.5 fg | - |
Day 1 Ripeness 4 (D1R4) | 142.3 ± 19.0 g | 4.7 ± 5.35 ** |
Day 2 Ripeness 4 (D2R4) | 146.7 ± 23.3 g | 9.2 ± 11.9 ns |
Day 0 Ripeness 5 (D0R5) | 193.2 ± 50.8 h | - |
Day 1 Ripeness 5 (D1R5) | 190.7 ± 47.3 h | −2.5 ± 10.8 ns |
Day 2 Ripeness 5 (D2R5) | 189.6 ± 44.5 h | −3.5 ± 14.6 ns |
Strawberry Sample | Total Soluble Solids (TSSs) [°Brix] | Mean Difference with Day 0 (Paired t-Test) | Titratable Acidity (TA) [g/L] | Mean Difference with Day 0 (Paired t-Test) | pH | Mean Difference with Day 0 (Paired t-Test) | Firmness [kg/cm2] | Mean Difference with Day 0 (Paired t-Test) |
---|---|---|---|---|---|---|---|---|
Day 0 Ripeness 1 (D0R1) | 7.0 ± 1.2 a | - | 11.6 ± 3.0 ef | - | 3.3 ± 0.1 abc | - | 1.85 ± 2.03 c | - |
Day 1 Ripeness 1 (D1R1) | 7.1 ± 1.4 a | 0.08 ± 0.33 ns | 11.9 ± 2.9 ef | 0.26 ± 1.1 ns | 3.3 ± 0.1 abc | 0.50 ± 1.1 ns | 1.63 ± 1.86 c | −0.21 ± 0.91 ns |
Day 2 Ripeness 1 (D2R1) | 7.5 ± 1.4 a | 0.45 ± 0.32 * | 13.5 ± 4.7 f | 1.95 ± 2.55 ns | 3.2 ± 0.2 a | 0.43 ± 1.06 ns | 0.95 ± 0.68 b | −0.89 ± 0.53 * |
Day 0 Ripeness 2 (D0R2) | 7.2 ± 1.3 a | - | 10.1 ± 2.5 cde | - | 3.3 ± 0.1 ab | - | 0.50 ± 0.46 a | - |
Day 1 Ripeness 2 (D1R2) | 7.3 ± 1.6 a | 0.12 ± 0.56 ns | 10.0 ± 2.6 cde | −0.06 ± 0.83 ns | 3.3 ± 0.1 abc | 0.05 ± 0.14 ns | 0.51 ± 0.30 a | 0.01 ± 0.21 ns |
Day 2 Ripeness 2 (D2R2) | 7.9 ± 1.8 a | 0.65 ± 0.77 ns | 9.1 ± 2.0 de | 0.68 ± 0.90 ns | 3.3 ± 0.0 ab | −0.003 ± 0.17 ns | 0.47 ± 0.30 a | −0.03 ± 0.29 ns |
Day 0 Ripeness 3 (D0R3) | 7.1 ± 1.3 a | - | 8.3 ± 2.0 abc | - | 3.3 ± 0.1 abc | 0.24 ± 0.12 a | - | |
Day 1 Ripeness 3 (D1R3) | 7.2 ± 1.2 a | 0.02 ± 0.45 ns | 8.6 ± 2.1 abcd | 0.18 ± 0.25 * | 3.4 ± 0.1 de | 0.14 ± 0.16 ns | 0.34 ± 0.18 a | 0.10 ± 0.04 ** |
Day 2 Ripeness 3 (D2R3) | 7.3 ± 1.3 a | 0.17 ± 0.61 ns | 9.1 ± 2.0 bcd | 0.86 ± 0.30 ** | 3.4 ± 0.1 cd | 0.09 ± 0.16 ns | 0.28 ± 0.17 a | 0.04 ± 0.12 ns |
Day 0 Ripeness 4 (D0R4) | 7.8 ± 1.0 a | - | 6.9 ± 1.6 ab | - | 3.5 ± 0.2 efg | - | 0.19 ± 0.10 a | - |
Day 1 Ripeness 4 (D1R4) | 7.9 ± 1.1 a | 0.13 ± 0.30 ns | 7.3 ± 1.3 ab | 0.35 ± 0.37 ns | 3.4 ± 0.1 efg | 0.0008 ± 0.14 ns | 0.23 ± 0.13 a | 0.04 ± 0.06 ns |
Day 2 Ripeness 4 (D2R4) | 7.9 ± 1.0 a | 0.12 ± 0.60 ns | 8.6 ± 1.8 abcd | 1.65 ± 1.08 * | 3.4 ± 0.1 bcd | −0.16 ± 0.17 ns | 0.21 ± 0.19 a | 0.02 ± 0.14 ns |
Day 0 Ripeness 5 (D0R5) | 7.8 ± 1.4 a | - | 6.4 ± 1.6 a | - | 3.6 ± 0.2 f | - | 0.16 ± 0.07 a | - |
Day 1 Ripeness 5 (D1R5) | 8.1 ± 1.7 a | 0.13 ± 0.48 ns | 7.4 ± 2.8 ab | 1.00 ± 1.47 ns | 3.6 ± 0.1 ef | −0.06 ± 0.18 ns | 0.16 ± 0.10 a | 0.004 ± 0.03 ns |
Day 2 Ripeness 5 (D2R5) | 8.0 ± 1.9 a | 0.12 ± 0.85 ns | 7.9 ± 1.6 abc | 1.41 ± 0.78 ** | 3.5 ± 0.1 def | −0.17 ± 0.22 ns | - | - |
Ripeness Grade | Weight [g] | Length [mm] | Width [mm] |
---|---|---|---|
Ripeness 1 White (D0R1) | 6.4 ± 2.9 a | 22.5 ± 5.2 a | 21.2 ± 4.1 a |
Ripeness 2 White/Orange (D0R2) | 8.8 ± 3.6 ab | 24.4 ± 5.6 ab | 23.6 ± 4.2 ab |
Ripeness 3 Orange (D0R3) | 11.3 ± 5.8 bc | 27.0 ± 5.5 bc | 26.2 ± 6.2 bc |
Ripeness 4 Red (D0R4) | 13.5 ± 6.3 cd | 29.1 ± 5.2 c | 28.4 ± 6.6 cd |
Ripeness 5 Dark Red (D0R5) | 14.2 ± 5.1 d | 29.6 ± 5.4 c | 29.4 ± 5.4 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murray, H.; Stipkovits, F.; Wühl, J.; Halbwirth, H.; Gössinger, M. Strawberry Post-Harvest Anthocyanin Development to Improve the Colour Stability of Strawberry Nectars. Beverages 2024, 10, 36. https://doi.org/10.3390/beverages10020036
Murray H, Stipkovits F, Wühl J, Halbwirth H, Gössinger M. Strawberry Post-Harvest Anthocyanin Development to Improve the Colour Stability of Strawberry Nectars. Beverages. 2024; 10(2):36. https://doi.org/10.3390/beverages10020036
Chicago/Turabian StyleMurray, Helen, Fabio Stipkovits, Jasmin Wühl, Heidrun Halbwirth, and Manfred Gössinger. 2024. "Strawberry Post-Harvest Anthocyanin Development to Improve the Colour Stability of Strawberry Nectars" Beverages 10, no. 2: 36. https://doi.org/10.3390/beverages10020036
APA StyleMurray, H., Stipkovits, F., Wühl, J., Halbwirth, H., & Gössinger, M. (2024). Strawberry Post-Harvest Anthocyanin Development to Improve the Colour Stability of Strawberry Nectars. Beverages, 10(2), 36. https://doi.org/10.3390/beverages10020036