Emphasizing the Potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics, for Classification of Greek Grape Marc Spirits
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (ATR-FTIR)
2.3. Statistical Analysis
3. Results and Discussion
3.1. ATR-FTIR Spectral Interpretation of Spirits
3.2. Classification of the Spirits through Chemometrics
3.2.1. Type of Distillation Effect
3.2.2. Geographical Origin Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsapou, E.A.; Dourtoglou, V.; Dourtoglou, T.; Sinanoglou, V.; Koussissi, E. Volatile Profile in Greek Grape Marc Spirits with HS-SPME-GC-MS and Chemometrics: Evaluation of Terroir Impact. ACS Omega 2023, 8, 42803–42814. [Google Scholar] [CrossRef] [PubMed]
- Tsapou, E.A.; Tzortzis, P.M.; Koussissi, E. Application of Polarized Projective Mapping combined with Ultra Flash Profiling to a complex− High fatigue product category: The case of Greek grape marc spirits. Food Qual. Prefer. 2024, 105182. [Google Scholar] [CrossRef]
- Apostolopoulou, A.A.; Flouros, A.I.; Demertzis, P.G.; Akrida-Demertzi, K. Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 2005, 16, 157–164. [Google Scholar] [CrossRef]
- Soufleros, E.H. Wine and Distillates; Papageorgiou Pub: Thessaloniki, Greece, 1987. [Google Scholar]
- Arslan, M.; Tahir, H.E.; Zareef, M.; Shi, J.; Rakha, A.; Bilal, M.; Huang, X.; Li, Z.; Zou, X. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci. Technol. 2021, 107, 80–113. [Google Scholar] [CrossRef] [PubMed]
- Anjos, O.; Santos, A.J.; Estevinho, L.M.; Caldeira, I. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chem. 2016, 205, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, S.; Marchionni, B.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Grappa (Italian grape marc spirit) by Mid and Near Infrared spectroscopies coupled with chemometrics. Vib. Spectrosc. 2020, 107, 103040. [Google Scholar] [CrossRef]
- Ross, C.F. Sensory science at the human–machine interface. Trends Food Sci. Technol. 2009, 20, 63–72. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Fernández-Zurbano, P.; Ferreira, V. Contribution of nonvolatile composition to wine flavor. Food Rev. Int. 2012, 28, 389–411. [Google Scholar] [CrossRef]
- Tan, J.; Li, R.; Jiang, Z.-T. Chemometric classification of Chinese lager beers according to manufacturer based on data fusion of fluorescence, UV and visible spectroscopies. Food Chem. 2015, 184, 30–36. [Google Scholar] [CrossRef]
- Yadav, P.K.; Sharma, R.M. Classification of illicit liquors based on their geographic origin using Attenuated total reflectance (ATR)–Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Forensic Sci. Int. 2019, 295, e1–e5. [Google Scholar] [CrossRef]
- Arslan, M.; Zou, X.; Tahir, H.E.; Hu, X.; Rakha, A.; Basheer, S.; Hao, Z. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.). J. Food Meas. Charact. 2018, 12, 2366–2376. [Google Scholar] [CrossRef]
- Arslan, M.; Zou, X.; Tahir, H.E.; Zareef, M.; Hu, X.; Rakha, A. Total polyphenol quantitation using integrated NIR and MIR spectroscopy: A case study of Chinese dates (Ziziphus jujuba). Phytochem. Anal. 2019, 30, 357–363. [Google Scholar] [CrossRef]
- Cozzolino, D.; Kwiatkowski, M.J.; Dambergs, R.G.; Cynkar, W.U.; Janik, L.J.; Skouroumounis, G.; Gishen, M. Analysis of elements in wine using near infrared spectroscopy and partial least squares regression. Talanta 2008, 74, 711–716. [Google Scholar] [CrossRef]
- Tahir, H.E.; Zou, X.; Huang, X.; Shi, J.; Mariod, A.A. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques. Food Chem. 2016, 206, 37–43. [Google Scholar] [CrossRef]
- Tahir, H.E.; Zou, X.; Li, Z.; Shi, J.; Zhai, X.; Wang, S.; Mariod, A.A. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem. 2017, 226, 202–211. [Google Scholar] [CrossRef]
- Amorello, D.; Barreca, S.; Gulli, E.; Orecchio, S. Platinum and rhodium in wine samples by using voltammetric techniques. Microchem. J. 2017, 130, 229–235. [Google Scholar] [CrossRef]
- Akbar, Z.; Idroes, R.; Ginting, B.; Karma, T.; Rahimah, S.; Helwani, Z.; Yusuk, M. Identification of Gayo Arabic Coffee Beans and Powder using the FTIR-PCA Combination Method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1087, 012059. [Google Scholar] [CrossRef]
- Leopold, L.F.; Leopold, N.; Diel, H.; Socaciu, C. Quantification of Carbohydrates in Fruit Juices Using FTIR Spectroscopy and Multivariate Analysis. Spectroscopy 2011, 26, 93–104. [Google Scholar] [CrossRef]
- Rusak, D.A.; Brown, L.M.; Martin, S.D. Classification of vegetable oils by principal component analysis of FTIR spectra. J. Chem. Educ. 2003, 80, 541. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Meng, L.-J.; Lu, Z.-M.; Chai, L.-J.; Wang, S.-T.; Shi, J.-S.; Shen, C.-H.; Xu, Z.-H. Identification of Age-markers Based on Profiling of Baijiu Volatiles over a Two-year Maturation Period: Case Study of Lu-flavor Baijiu. LWT Food Sci. Technol. 2021, 141, 110913. [Google Scholar] [CrossRef]
- Basalekou, M.; Pappas, C.; Tarantilis, P.A.; Kallithraka, S. Wine Authenticity and Traceability with the Use of FT-IR. Beverages 2020, 6, 30. [Google Scholar] [CrossRef]
- Marinaki, M.; Sampsonidis, I.; Nakas, A.; Arapitsas, P.; Assimopoulou, A.N.; Theodoridis, G. Analysis of the Volatile Organic Compound Fingerprint of Greek Grape Marc Spirits of Various Origins and Traditional Production Styles. Beverages 2023, 9, 65. [Google Scholar] [CrossRef]
- Kokoti, K.; Kosma, I.S.; Tataridis, P.; Badeka, A.V.; Kontominas, M.G. Volatile aroma compounds of distilled “tsipouro” spirits: Effect of distillation technique. Eur. Food Res. Technol. 2023, 249, 1173–1185. [Google Scholar] [CrossRef]
- Ioannou, A.G.; Kritsi, E.; Sinanoglou, V.J.; Cavouras, D.; Tsiaka, T.; Houhoula, D.; Zoumpoulakis, P.; Strati, I.F. Highlighting the Potential of Attenuated Total Reflectance—Fourier Transform Infrared (ATR-FTIR) Spectroscopy to Characterize Honey Samples with Principal Component Analysis (PCA). Anal. Lett. 2023, 56, 789–806. [Google Scholar] [CrossRef]
- Nassirpour, S.; Chang, P.; Henning, A. MultiNet PyGRAPPA: Multiple neural networks for reconstructing variable density GRAPPA (a 1H FID MRSI study). NeuroImage 2018, 183, 336–345. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Nagarajan, R.; Gupta, A.; Mehrotra, R.; Bajaj, M.M. Quantitative analysis of alcohol, sugar, and tartaric acid in alcoholic beverages using attenuated total reflectance spectroscopy. J. Anal. Methods Chem. 2006, 2006, 45102. [Google Scholar] [CrossRef]
- Anjos, O.; Martínez Comesaña, M.; Caldeira, I.; Pedro, S.I.; Eguía Oller, P.; Canas, S. Application of functional data analysis and FTIR-ATR spectroscopy to discriminate wine spirits ageing technologies. Mathematics 2020, 8, 896. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Fetea, F.; Ranga, F.; Pop, R.M.; Florea, M. Rapid quantitative analysis of ethanol and prediction of methanol content in traditional fruit brandies from Romania, using FTIR spectroscopy and chemometrics. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 143–149. [Google Scholar] [CrossRef]
- Giannetti, V.; Mariani, M.B.; Marini, F.; Torrelli, P.; Biancolillo, A. Flavour fingerprint for the differentiation of Grappa from other Italian distillates by GC-MS and chemometrics. Food Control 2019, 105, 123–130. [Google Scholar] [CrossRef]
- García-Martín, S.; Herrero, C.; Peña, R.M.; Barciela, J. Solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC–MS) determination of volatile compounds in orujo spirits: Multivariate chemometric characterisation. Food Chem. 2010, 118, 456–461. [Google Scholar] [CrossRef]
- Cortés, S.; Gil, M.L.; Fernández, E. Volatile composition of traditional and industrial Orujo spirits. Food Control 2005, 16, 383–388. [Google Scholar] [CrossRef]
- Ciulu, M.; Oertel, E.; Serra, R.; Farre, R.; Spano, N.; Caredda, M.; Malfatti, L.; Sanna, G. Classification of Unifloral Honeys from SARDINIA (Italy) by ATR-FTIR Spectroscopy and Random Forest. Molecules 2021, 26, 88. [Google Scholar] [CrossRef]
- Martín-Ramos, P.; Fernández-Coppel, I.A.; Ruíz-Potosme, N.M.; Martín-Gil, J. Potential of ATR-FTIR Spectroscopy for the Classification of Natural Resins. Biol. Eng. Med. Sci. Rep. 2018, 4, 3–6. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; da Silva Moreira Thiré, R.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Thummajitsakul, S.; Paensanit, P.; Saeieo, T.; Sirirat, J.; Silprasit, K. FTIR and multivariate analysis of total phenolic content, antioxidant and anti-amylase activities of extracts and milk of Glycine max L. and Phaseolus vulgaris L. Electron. J. Biotechnol. 2023, 64, 69–75. [Google Scholar] [CrossRef]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef]
Spirit Code | Specific Origin | Major Region | Type (Tsipouro/Tsikoudia) | Distillation Process | Code | Varieties |
---|---|---|---|---|---|---|
T1 | Tyrnavos | North | Tsipouro | double distillation | CAD2 | Moschato Mavro |
T2 | Tyrnavos | North | Tsipouro | double distillation | CAD2 | Moschato Mavro |
T3 | Tyrnavos | North | Tsipouro | double distillation | CAD2 | Moschato Mavro |
T4 | Tyrnavos | North | Tsipouro | double distillation | CAD2 | Moschato Mavro |
T5 | Tyrnavos | North | Tsipouro | double distillation | CAD2 | Malagouzia |
T6 | Tyrnavos | North | Tsipouro | double distillation | CAD2 | Roditis |
T7 | Thessaly | North | Tsipouro | double distillation | CAD2 | Muscat, Roditis, Savatiano |
T8 | Thessaly | North | Tsipouro | double distillation | CAD2 | Xinomavro, Cabernet sauvignon, Chardonnay, Muscat |
T9 | Thessaly | North | Tsipouro | double distillation | CAD2 | Savatiano, Roditis, Muscat |
T10 | Peloponnese | South | Tsipouro | single distillation | CAD1 | Roditis |
T11 | Peloponnese | South | Tsipouro | double distillation | CAD2 | Malagouzia, Chardonnay, Merlot |
T12 | Peloponnese | South | Tsipouro | single distillation | CAD1 | Agiorgitiko, Moschofilero, Muscat |
T13 | Peloponnese | South | Tsipouro | double distillation | CAD2 | Moschofilero |
T14 | Peloponnese | South | Tsipouro | single distillation | CAD1 | Moschofilero, Agiorgitiko |
T15 | Peloponnese | South | Tsipouro | double distillation | CAD2 | Agiorgitiko |
T16 | Thrace | North | Tsipouro | double distillation | CAD2 | Roditis, Moschato Mavro |
T17 | Thrace | North | Tsipouro | single distillation | CAD1 | Muscat, Cabernet Sauvihnon, Syrah, Merlot |
T18 | Thrace | North | Tsipouro | single distillation | CAD1 | Muscat, Merlot, Syrah |
T19 | Epirus | North | Tsipouro | double distillation | CAD2 | Debina |
T20 | Macedonia | North | Tsipouro | double distillation | CAD2 | Malagousia |
T21 | Macedonia | North | Tsipouro | single distillation | CAD1 | Muscat, Asyrtiko, Cabernet Sauvignon |
T22 | Central Greece | North | Tsipouro | single distillation | CAD1 | Sabbatiano |
T23 | Central Greece | North | Tsipouro | single distillation | CAD1 | Savatiano, Muscat, Chardonnay |
T24 | Crete | South | Tsikoudia | double distillation | CAD2 | Moschato Mavro |
T25 | Crete | South | Tsikoudia | double distillation | CAD2 | Moschato Mavro |
T26 | Crete | South | Tsikoudia | double distillation | CAD2 | Moschato Mavro |
T27 | Crete | South | Tsikoudia | single distillation | CAD1 | Moschato Mavro |
T28 | Cyclades | Island | Tsipouro | double distillation | CAD2 | Asyrtiko |
T29 | Cyclades | Island | Tsipouro | double distillation | CAD2 | Asyrtiko, Mavrotragano |
T30 | Tyrnavos | North | Tsipouro | home distillation | HD | Moschato Mavro |
T31 | Tyrnavos | North | Tsipouro | home distillation | HD | Moschato Mavro |
T32 | Tyrnavos | North | Tsipouro | home distillation | HD | Moschato Mavro |
T33 | Tyrnavos | North | Tsipouro | home distillation | HD | Moschato Mavro |
T34 | Tyrnavos | North | Tsipouro | home distillation | HD | Moschato Mavro |
T35 | Tyrnavos | North | Tsipouro | home distillation | HD | Moschato Mavro |
T36 | Crete | South | Tsikoudia | home distillation | HD | Romeiko |
T37 | Crete | South | Tsikoudia | home distillation | HD | Romeiko |
T38 | Central Greece | North | Tsipouro | home distillation | HD | Malagouzia, Muscat, Roditis |
T39 | Central Greece | North | Tsipouro | home distillation | HD | Savatiano, Roditis |
Spirit Code | 590–700 | 877–879 | 1043–1045 | 1083–1085 | 1275 | 1350–1310 | 1384–1385 | 1419–1420 | 1450–1460 | 1643–1646 | 2901–2904 | 2980–2986 | 3500–3200 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 0.001 | 0.053 | 0.223 | 0.061 | 0.008 | 0.003 | 0.010 | 0.003 | 0.019 | 0.158 | 0.022 | 0.124 | 0.006 |
T2 | 0.005 | 0.049 | 0.211 | 0.057 | 0.008 | 0.003 | 0.010 | 0.003 | 0.019 | 0.005 | 0.019 | 0.119 | 0.004 |
T3 | 0.003 | 0.046 | 0.204 | 0.056 | 0.007 | 0.002 | 0.011 | 0.003 | 0.018 | 0.003 | 0.018 | 0.114 | 0.003 |
T4 | 0.000 | 0.043 | 0.195 | 0.053 | 0.007 | 0.003 | 0.009 | 0.008 | 0.016 | 0.003 | 0.018 | 0.109 | 0.006 |
T5 | 0.003 | 0.050 | 0.222 | 0.060 | 0.008 | 0.011 | 0.012 | 0.009 | 0.018 | 0.166 | 0.021 | 0.124 | 0.004 |
T6 | 0.002 | 0.053 | 0.226 | 0.062 | 0.008 | 0.011 | 0.012 | 0.009 | 0.018 | 0.169 | 0.022 | 0.126 | 0.006 |
T7 | 0.000 | 0.045 | 0.202 | 0.054 | 0.007 | 0.003 | 0.011 | 0.008 | 0.017 | 0.004 | 0.019 | 0.110 | 0.003 |
T8 | 0.000 | 0.051 | 0.222 | 0.060 | 0.008 | 0.010 | 0.012 | 0.003 | 0.019 | 0.159 | 0.021 | 0.122 | 0.006 |
T9 | 0.001 | 0.050 | 0.215 | 0.058 | 0.008 | 0.010 | 0.009 | 0.008 | 0.018 | 0.004 | 0.023 | 0.121 | 0.014 |
T10 | 0.002 | 0.053 | 0.226 | 0.062 | 0.009 | 0.011 | 0.012 | 0.009 | 0.018 | 0.003 | 0.021 | 0.128 | 0.014 |
T11 | 0.001 | 0.050 | 0.222 | 0.060 | 0.008 | 0.009 | 0.012 | 0.009 | 0.018 | 0.009 | 0.020 | 0.123 | 0.019 |
T12 | 0.000 | 0.049 | 0.216 | 0.059 | 0.008 | 0.003 | 0.012 | 0.003 | 0.019 | 0.157 | 0.019 | 0.120 | 0.003 |
T13 | 0.002 | 0.056 | 0.237 | 0.064 | 0.009 | 0.011 | 0.012 | 0.010 | 0.019 | 0.010 | 0.026 | 0.132 | 0.013 |
T14 | 0.004 | 0.047 | 0.205 | 0.056 | 0.008 | 0.000 | 0.008 | 0.003 | 0.018 | 0.159 | 0.019 | 0.115 | 0.006 |
T15 | 0.000 | 0.048 | 0.213 | 0.058 | 0.008 | 0.010 | 0.012 | 0.008 | 0.017 | 0.170 | 0.019 | 0.120 | 0.005 |
T16 | 0.002 | 0.049 | 0.215 | 0.059 | 0.008 | 0.010 | 0.011 | 0.008 | 0.017 | 0.170 | 0.023 | 0.120 | 0.007 |
T17 | 0.003 | 0.052 | 0.216 | 0.056 | 0.009 | 0.011 | 0.010 | 0.009 | 0.019 | 0.008 | 0.021 | 0.119 | 0.013 |
T18 | 0.004 | 0.044 | 0.202 | 0.056 | 0.007 | 0.002 | 0.008 | 0.007 | 0.017 | 0.004 | 0.020 | 0.114 | 0.003 |
T19 | 0.002 | 0.052 | 0.222 | 0.062 | 0.008 | 0.002 | 0.010 | 0.009 | 0.018 | 0.004 | 0.028 | 0.127 | 0.003 |
T20 | 0.003 | 0.049 | 0.208 | 0.056 | 0.007 | 0.003 | 0.009 | 0.008 | 0.017 | 0.004 | 0.020 | 0.118 | 0.007 |
T21 | 0.002 | 0.049 | 0.214 | 0.058 | 0.007 | 0.010 | 0.010 | 0.008 | 0.018 | 0.003 | 0.023 | 0.121 | 0.006 |
T22 | 0.004 | 0.051 | 0.222 | 0.061 | 0.008 | 0.010 | 0.010 | 0.009 | 0.019 | 0.166 | 0.022 | 0.124 | 0.004 |
T23 | 0.003 | 0.048 | 0.209 | 0.057 | 0.008 | 0.003 | 0.012 | 0.002 | 0.018 | 0.003 | 0.021 | 0.116 | 0.012 |
T24 | 0.000 | 0.050 | 0.220 | 0.060 | 0.009 | 0.010 | 0.012 | 0.009 | 0.017 | 0.169 | 0.021 | 0.121 | 0.002 |
T25 | 0.001 | 0.051 | 0.223 | 0.061 | 0.008 | 0.009 | 0.011 | 0.009 | 0.018 | 0.008 | 0.021 | 0.125 | 0.007 |
T26 | 0.002 | 0.048 | 0.211 | 0.058 | 0.008 | 0.011 | 0.011 | 0.009 | 0.017 | 0.174 | 0.022 | 0.119 | 0.006 |
T27 | 0.004 | 0.051 | 0.223 | 0.060 | 0.008 | 0.010 | 0.011 | 0.009 | 0.019 | 0.175 | 0.022 | 0.123 | 0.013 |
T28 | 0.002 | 0.047 | 0.210 | 0.057 | 0.008 | 0.002 | 0.011 | 0.002 | 0.018 | 0.003 | 0.019 | 0.115 | 0.013 |
T29 | 0.003 | 0.045 | 0.198 | 0.053 | 0.007 | 0.003 | 0.010 | 0.007 | 0.016 | 0.003 | 0.022 | 0.110 | 0.005 |
T30 | 0.002 | 0.079 | 0.312 | 0.087 | 0.012 | 0.015 | 0.019 | 0.010 | 0.023 | 0.164 | 0.034 | 0.178 | 0.007 |
T31 | 0.002 | 0.077 | 0.304 | 0.085 | 0.012 | 0.014 | 0.018 | 0.011 | 0.022 | 0.008 | 0.032 | 0.173 | 0.013 |
T32 | 0.003 | 0.081 | 0.314 | 0.087 | 0.012 | 0.014 | 0.019 | 0.011 | 0.023 | 0.009 | 0.032 | 0.180 | 0.020 |
T33 | 0.002 | 0.108 | 0.394 | 0.114 | 0.014 | 0.019 | 0.024 | 0.012 | 0.027 | 0.009 | 0.044 | 0.231 | 0.008 |
T34 | 0.002 | 0.100 | 0.375 | 0.107 | 0.014 | 0.017 | 0.023 | 0.012 | 0.024 | 0.008 | 0.040 | 0.219 | 0.007 |
T35 | 0.003 | 0.069 | 0.274 | 0.077 | 0.011 | 0.004 | 0.016 | 0.010 | 0.023 | 0.158 | 0.028 | 0.155 | 0.004 |
T36 | 0.000 | 0.050 | 0.217 | 0.059 | 0.008 | 0.010 | 0.012 | 0.008 | 0.018 | 0.164 | 0.020 | 0.119 | 0.013 |
T37 | 0.002 | 0.051 | 0.221 | 0.060 | 0.008 | 0.009 | 0.012 | 0.008 | 0.017 | 0.003 | 0.020 | 0.123 | 0.008 |
T38 | 0.001 | 0.045 | 0.199 | 0.054 | 0.007 | 0.002 | 0.009 | 0.008 | 0.017 | 0.003 | 0.019 | 0.109 | 0.006 |
T39 | 0.003 | 0.043 | 0.192 | 0.052 | 0.007 | 0.002 | 0.008 | 0.008 | 0.016 | 0.004 | 0.017 | 0.105 | 0.013 |
Classification | Variable | VIP | |
---|---|---|---|
Number of distillations | 590–700 | 1.805 | |
877–879 | 1.238 | ||
1275 | 1.230 | ||
1083–1085 | 1.227 | ||
1043–1045 | 1.226 | ||
1384–1385 | 1.213 | ||
2980–2986 | 1.202 | ||
North–South | 1384–1385 | 1.409 | |
1083–1085 | 1.219 | ||
1043–1045 | 1.213 | ||
1275 | 1.255 | ||
Crete | Thessaly | 1350–1310 | 1.987 |
1419–1420 | 1.746 | ||
Tyrnavos | 1350–1310 | 1.648 | |
1419–1420 | 1.399 | ||
1384–1385 | 1.302 | ||
Central Greece | 1350–1310 | 1.454 | |
1384–1385 | 1.202 | ||
Peloponnese | 1350–1310 | 1.846 | |
1419–1420 | 1.823 | ||
1450–1460 | 1.606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsapou, E.A.; Sinanoglou, V.J.; Ntourtoglou, G.; Koussissi, E. Emphasizing the Potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics, for Classification of Greek Grape Marc Spirits. Beverages 2024, 10, 42. https://doi.org/10.3390/beverages10020042
Tsapou EA, Sinanoglou VJ, Ntourtoglou G, Koussissi E. Emphasizing the Potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics, for Classification of Greek Grape Marc Spirits. Beverages. 2024; 10(2):42. https://doi.org/10.3390/beverages10020042
Chicago/Turabian StyleTsapou, Evangelia Anastasia, Vassilia J. Sinanoglou, George Ntourtoglou, and Elisabeth Koussissi. 2024. "Emphasizing the Potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics, for Classification of Greek Grape Marc Spirits" Beverages 10, no. 2: 42. https://doi.org/10.3390/beverages10020042
APA StyleTsapou, E. A., Sinanoglou, V. J., Ntourtoglou, G., & Koussissi, E. (2024). Emphasizing the Potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics, for Classification of Greek Grape Marc Spirits. Beverages, 10(2), 42. https://doi.org/10.3390/beverages10020042