Molecular Methods for Detecting Microorganisms in Beverages
Abstract
:1. Introduction
2. Microorganisms in Beer
3. Microorganisms in Wine
4. Microorganisms in Fruit Juices
5. Microorganisms in Dairy Beverages
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, M.; Wu, J.; Shi, Z.; Cao, A.; Fang, W.; Yan, D.; Wang, Q.; Li, Y. Molecular methods for identification and quantification of foodborne pathogens. Molecules 2022, 27, 8262. [Google Scholar] [CrossRef] [PubMed]
- Skowron, K.; Budzyńska, A.; Grudlewska-Buda, K.; Wiktorczyk-Kapischke, N.; Andrzejewska, M.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Two faces of fermented foods—The benefits and threats of its consumption. Front. Microbiol. 2022, 13, 845166. [Google Scholar] [CrossRef] [PubMed]
- Avîrvarei, A.C.; Salanță, L.C.; Pop, C.R.; Mudura, E.; Pasqualone, A.; Anjos, O.; Barboza, N.; Usaga, J.; Dărab, C.P.; Burja-Udrea, C.; et al. Fruit-based fermented beverages: Contamination sources and emerging technologies applied to assure their safety. Foods 2023, 12, 838. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M.A.P.; den Besten, H.M.W.; Böhnlein, C.; Gareis, M.; Zwietering, M.H.; Fusco, V. Reprint of: Microbial food safety in the 21st century: Emerging challenges and foodborne pathogenic bacteria. Trends Food Sci. Technol. 2019, 84, 34–37. [Google Scholar] [CrossRef]
- Juvonen, R.; Virkajärvi, V.; Priha, O.; Laitila, A. Microbiological spoilage and safety risks in non-beer beverages. VTT Tied. Res. Notes 2011, 2599, 107. [Google Scholar] [CrossRef]
- Azeredo, D.R.; Alvarenga, V.; Sant’Ana, A.S.; Srur, A.U.S. An over- view of microorganisms and factors contributing for the micro-bial stability of carbonated soft drinks. Food Res. Int. 2016, 82, 136–144. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, C.W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Wu, A.; Li, Z.C.; Zhang, G.; Yu, W.Y. A new calibration method between an optical sensor and a rotating platform in turbine blade inspection. Meas. Sci. Technol. 2017, 28, 035009. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, X. Detection of viable but non-culturable Escherichia coli O157:H7 by PCR in combination with propidium monoazide. 3 Biotechnology 2018, 8, 28. [Google Scholar] [CrossRef]
- Fusco, V.; Quero, G.M. Culture-dependent and culture-independent nucleic-acid-based methods used in the microbial safety assessment of milk and dairy products. Compr. Rev. Food Sci. Food Saf. 2014, 13, 493–537. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Guan, Q.; Zhang, Q. SERS detection of foodborne pathogens in beverage with Au nanostars. Microchim. Acta 2024, 191, 28. [Google Scholar] [CrossRef] [PubMed]
- Länge, K. Bulk and surface acoustic wave biosensors for milk analysis. Biosensors 2022, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- da Silva Campos, J.; Júnior, A.C.V.; Boniek, D.; da Silva, D.L.; de Paula Lana, U.G.; Fernandes, J.V.; de Resende Stoianoff, M.A.; Andrade, V.S. Identification and evaluation of thermotolerance of yeasts from milk in natura exposed to high temperature and slow and fast pasteurization. Braz. J. Microbiol. 2023, 54, 1075–1082. [Google Scholar] [CrossRef]
- Grützke, J.; Gwida, M.; Deneke, C.; Brendebach, H.; Projahn, M.; Schattschneider, A.; Hofreuter, D.; El-Ashker, M.; Malorny, B.; Al Dahouk, S. Direct identification and molecular characterization of zoonotic hazards in raw milk by metagenomics using Brucella as a model pathogen. Microb. Genet. 2021, 7, 000552. [Google Scholar] [CrossRef]
- Jaudou, S.; Deneke, C.; Tran, M.L.; Schuh, E.; Goehler, A.; Vorimore, F.; Malorny, B.; Fach, P.; Grützke, J.; Delannoy, S. A step forward for Shiga toxin-producing Escherichia coli identification and characterization in raw milk using long-read metagenomics. Microb. Genet. 2022, 8, mgen000911. [Google Scholar] [CrossRef] [PubMed]
- Palomino-Camargo, C.; Gonzalez-Munoz, Y. Molecular techniques for detection and identification of pathogens in food: Advantages and limitations. Rev. Peru. Med. Exp. Y Salud Publica 2014, 31, 535–546. [Google Scholar]
- Mangal, M.; Bansal, S.; Sharma, S.K.; Gupta, R.K. Molecular detection of foodborne pathogens: A rapid and accurate answer to food safety. Crit. Rev. Food Sci. Nutr. 2016, 56, 1568–1584. [Google Scholar] [CrossRef]
- Jiyeon, H.; Ingyun, H.; Hyosun, K.; Chankyu, P.; Insoo, C.; Kunho, S. Evaluation of PCR inhibitory effect of enrichment broths and comparison of DNA extraction methods for detection of Salmonella enteritidis using real-time PCR assay. J. Vet. Sci. 2010, 11, 143–149. [Google Scholar] [CrossRef]
- Löfström, C.; Hansen, F.; Hoorfar, J. Validation of a 20-h real-time PCR method for screening of Salmonella in poultry faecal samples. Vet. Microbiol. 2010, 144, 511–514. [Google Scholar] [CrossRef]
- Cantekin, C.; Ergun, Y.; Solmaz, H.; Özmen, G.Ö.; Demir, M.; Saidi, R. PCR assay with host specific internal control for Staphylococcus aureus from bovine milk samples. Maced. Vet. Rev. 2015, 38, 97–100. [Google Scholar] [CrossRef]
- Forghani, F.; Wei, S.; Oh, D.H. A rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in Food. J. Food Prot. 2016, 79, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Elizaquível, P.; Aznar, R. A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables. Food Microbiol. 2008, 25, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, S.; Fratamico, P.M.; Horikoshi, N.; Okada, Y.; Takeshita, K.; Sameshima, T.; Kawamoto, S. Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species, Listeria monocytogenes, and Escherichia coli O157:H7 in ground pork samples. Foodborne Pathog. Dis. 2010, 7, 549–554. [Google Scholar] [CrossRef]
- Singh, J.; Batish, V.K.; Grover, S. Simultaneous detection of Listeria monocytogenes and Salmonella spp. in dairy products using real time PCR-melt curve analysis. J. Food Sci. Technol. 2012, 49, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Bastam, M.M.; Jalili, M.; Pakzad, I.; Maleki, A.; Ghafourian, S. Pathogenic bacteria in cheese, raw and pasteurised milk. J. Vet. Med. Sci. 2021, 7, 2445–2449. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garrett, E.H.; Busta, F.F. Outbreaks associated with fresh produce: Incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 78–141. [Google Scholar] [CrossRef]
- Grumezescu, A.; Holban, A.M. Preservatives and Preservation Approaches in Beverages; Academic Press: Cambridge, MA, USA, 2019; Volume 15, pp. 540–562. [Google Scholar]
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Kumar, V.; Kaur, M. Microbes associated with freshly prepared juices of citrus and carrots. Int. J. Food Sci. 2014, 2014, 408085. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D.; James, S.A.; Rygala, A.; Berlowska, J.; Antolak, H.; Pawlikowska, E. Consortia formed by yeasts and acetic acid bacteria Asaia spp. in soft drinks. Antonie Leeuwenhoek 2018, 111, 373–383. [Google Scholar] [CrossRef]
- Kregiel, D. Health safety of soft drinks: Contents, containers, and microorganisms. BioMed Res. Int. 2015, 2015, 128697. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria: Their applications in foods. J. Bacteriol. Mycol. 2018, 6, 89–94. [Google Scholar] [CrossRef]
- Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martín, A.; Córdoba, M.G. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Coskun, F.A. Traditional turkish fermented non-alcoholic grape-based beverage, “Hardaliye”. Beverages 2017, 3, 2. [Google Scholar] [CrossRef]
- Romero-Luna, H.E.; Peredo-Lovillo, A.; Davila-Ortiz, G. Tepache: A pre-hispanic fermented beverage as a potential source of probiotic yeasts. In Chemistry of Fermented Foods; American Chemical Society: Washington, DC, USA, 2022; pp. 135–147. [Google Scholar] [CrossRef]
- Motlhanka, K.; Lebani, K.; Boekhout, T.; Zhou, N. Fermentative microbes of khadi, a traditional alcoholic beverage of Botswana. Fermentation 2020, 6, 51. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical assessment of mycotoxins in beverages and their control measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef]
- Larcher, R.; Nicolini, G. Survey of ochratoxin A in musts, concentrated musts and wines produced or marketed in Trentino (Italy). J. Commod. Sci. 2001, 40, 69–78. [Google Scholar]
- Yazdanpanah, H. Mycotoxin contamination of foodstuffs and feedstuffs in Iran. Iran. J. Pharm. Res. 2006, 5, 9–16. [Google Scholar] [CrossRef]
- Mule, G.; Susca, A.; Logrieco, A.; Stea, G.; Visconti, A. Development of a quantitative real-time PCR assay for the detection of Aspergillus carbonarius in grapes. Int. J. Food Microbiol. 2006, 111, 28–34. [Google Scholar] [CrossRef]
- Rani, H.; Bhardwaj, R.D. Quality attributes for barley malt: “The backbone of beer”. J. Food Sci. 2021, 86, 3322–3340. [Google Scholar] [CrossRef]
- Zugravu, C.A.; Medar, C.; Manolescu, L.S.C.; Constantin, C. Beer and Microbiota: Pathways for a Positive and Healthy Interaction. Nutrients 2023, 15, 844. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E. Biopreservation of beer: Potential and constraints. Biotechnol. Adv. 2022, 58, 107910. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Konings, W.N. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Luo, Y.; Mao, Y.; Peng, R.; Chen, J.; Soteyome, T.; Bai, C.; Chen, L.; Liang, Y.; Su, J.; et al. Spoilage lactic acid bacteria in the brewing industry. World J. Microbiol. Biotechnol. 2020, 30, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Tsekouras, G.; Tryfinopoulou, P.; Panagou, E. Detection and identification of lactic acid bacteria in semi-finished beer products using molecular techniques. In Proceedings of the 2nd International Electronic Conference on Foods—“Future Foods and Food Technologies for a Sustainable World”, Virtual, 15–30 October 2021. [Google Scholar] [CrossRef]
- Satokari, R.; Juvonen, R.; Wright, A.; Haikara, A. Detection of Pectinatus beer spoilage bacteria by using the polymerase chain reaction. J. Food Prot. 1997, 60, 1571–1573. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Hill, A.E. 7—Gram-positive spoilage bacteria in brewing. In Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2015; pp. 141–173. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Aquilanti, L.; Clementi, F. The occurrence of beer spoilage lactic acid bacteria in craft beer production. J. Food Sci. 2015, 80, M2845-52. [Google Scholar] [CrossRef] [PubMed]
- Gevers, D.; Huys, G.; Swings, J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 2001, 205, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Deng, Y.; Xu, Z.; Liu, J.; Dong, J.; Yin, H.; Yu, J.; Chang, Z.; Wang, D. Development of a propidium monoazide-polymerase chain reaction assay for detection of viable Lactobacillus brevis in beer. Braz. J. Microbiol. 2017, 48, 740–746. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Latorre, M.; Bruzone, M.C.; de Garcia, V.; Libkind, D. Microbial contaminants in bottled craft beer of Andean Patagonia, Argentina. Rev. Argent. Microbiol. 2023, 55, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Geissler, A.J.; Behr, J.; Vogel, R.F. Multiple genome sequences of important beer-spoiling lactic acid bacteria. Genome Announc. 2016, 4, e01077-16. [Google Scholar] [CrossRef]
- Kiousi, D.E.; Bucka-Kolendo, J.; Wojtczak, A.; Sokołowska, B.; Doulgeraki, A.I.; Galanis, A. Genomic analysis and in vitro investigation of the hop resistance phenotype of two novel Loigolactobacillus backii strains, isolated from spoiled beer. Microorganisms 2023, 11, 280. [Google Scholar] [CrossRef]
- Asano, S.; Shimokawa, M.; Suzuki, K. PCR analysis methods for detection and identification of beer-spoilage lactic acid bacteria. Methods Mol. Biol. 2019, 1887, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Haakensen, M.; Ziola, B. Identification of novel horA-harbouring bacteria capable of spoiling beer. Can. J. Microbiol. 2008, 54, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Satokari, R.; Juvonen, R.; Mallison, K.; von Wright, A.; Haikara, A. Detection of beer spoilage bacteria Megasphaera and Pectinatus by polymerase chain reaction and colorimetric microplate hybridization. Int. J. Food Microbiol. 1998, 45, 119–127. [Google Scholar] [PubMed]
- Juvonen, R.; Koivula, T.; Haikara, A. Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int. J. Food Microbiol. 2008, 125, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Sanzani, S.M.; Miazzi, M.M.; di Rienzo, V.; Fanelli, V.; Gambacorta, G.; Taurino, M.R.; Montemurro, C. A rapid assay to detect toxigenic Penicillium spp. contamination in wine and musts. Toxins 2016, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, K. Occurrence of ochratoxin A in commodities and processed food—A review of EU occurrence data. Food Addit. Contam. 2005, 1, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Majerus, P.; Hain, J.; Kölb, C. Patulin in grape must and new, still fermenting wine (Federweißer). Mycotoxin Res. 2008, 24, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Sanzani, S.M.; Reverberi, M.; Fanelli, C.; Ippolito, A. Detection of ochratoxin A using molecular beacons and real-time PCR thermal cycler. Toxins 2015, 7, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Sanzani, S.M.; Montemurro, C.; Di Rienzo, V.; Solfrizzo, M.; Ippolito, A. Genetic structure and natural variation associated with host of origin in Penicillium expansum strains causing blue mould. Int. J. Food Microbiol. 2013, 165, 111–120. [Google Scholar] [CrossRef]
- Silva, P. First science & wine world congress. J. Agric. Food Chem. 2020, 68, 3299–3301. [Google Scholar] [CrossRef]
- López-Barajas, M.; López-Tamames, E.; Buxaderas, S.; Tomás, X.; de La Torre, M.C. Prediction of wine foaming. J. Agric. Food Chem. 1999, 47, 3743–3748. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.H.; Vrigneau, C.; Salmon, T.; Hoang, D.A.; Boulet, J.C.; Jégou, S.; Marchal, R. Influence of grape berry maturity on juice and base wine composition and foaming properties of sparkling wines from the champagne region. Molecules 2018, 23, 1372. [Google Scholar] [CrossRef]
- Amaro, F.; Almeida, J.; Oliveira, A.S.; Furtado, I.; Bastos, M.L.; Guedes de Pinho, P.; Pinto, J. Impact of cork closures on the volatile profile of sparkling wines during bottle aging. Foods 2022, 11, 293. [Google Scholar] [CrossRef]
- Marchal, R.; Warchol, M.; Cilindre, C.; Jeandet, P. Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties. J. Agric. Food Chem. 2006, 54, 5157–5165. [Google Scholar] [CrossRef]
- Marchal, R.; Salmon, T.; Gonzalez, R.; Kemp, B.; Vrigneau, C.; Williams, P.; Doco, T. Impact of Botrytis cinerea contamination on the characteristics and foamability of yeast macromolecules released during the alcoholic fermentation of a model grape juice. Molecules 2020, 25, 472. [Google Scholar] [CrossRef] [PubMed]
- Echeverrigaray, S.; Randon, M.; da Silva, K.; Zacaria, J.; Longaray, A.P. Delamare Identification and characterization of non-saccharomyces spoilage yeasts isolated from Brazilian wines. World J. Microbiol. Biotechnol. 2013, 29, 1019–1027. [Google Scholar] [CrossRef]
- Millet, V.; Lonvaud-Funel, A. The viable but non-culturable state of wine micro-organisms during storage. Lett. Appl. Microbiol. 2000, 30, 136–141. [Google Scholar] [CrossRef]
- Caruso, M.; Fiore, C.; Contursi, M.; Salzano, G.; Paparella, A.; Romano, P. Formation of biogenic amines as criteria for the selection of wine yeasts. World J. Microbiol. Biotechnol. 2002, 18, 159–163. [Google Scholar] [CrossRef]
- Hierro, N.; Esteve-Zarzoso, B.; González, A.; Mas, A.; Guillamón, J.M. Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl. Environ. Microbiol. 2006, 72, 7148–7155. [Google Scholar] [CrossRef]
- Willenburg, E.; Divol, B. Quantitative PCR: An appropriate tool to detect viable but not culturable Brettanomyces bruxellensis in wine. Int. J. Food Microbiol. 2012, 160, 131–136. [Google Scholar] [CrossRef]
- Phister, T.G.; Mills, D.A. Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl. Environ. Microbiol. 2003, 69, 7430–7434. [Google Scholar] [CrossRef] [PubMed]
- Delaherche, A.; Claisse, O.; Lonvaud-Funel, A. Detection and quantification of Brettanomyces bruxellensis and ‘ropy’ Pediococcus damnosus strains in wine by real-time polymerase chain reaction. J. Appl. Microbiol. 2004, 97, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Tessonniere, H.; Vidal, S.; Barnavon, L.; Alexandre, H.; Remize, F. Design and performance testing of a real-time PCR assay for sensitive and reliable direct quantification of Brettanomyces in wine. Int. J. Food Microbiol. 2009, 129, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Tofalo, R.; Schirone, M.; Corsetti, A.; Suzzi, G. Detection of Brettanomyces spp. in red wines using real-time PCR. J. Food Sci. 2012, 77, M545-9. [Google Scholar] [CrossRef] [PubMed]
- Palma, M.; Sa-Correia, I. Physiological genomics of the highly weak-acid-tolerant food spoilage yeasts of Zygosaccharomyces bailii sensu lato. Prog. Mol. Subcell. Biol. 2019, 58, 85–109. [Google Scholar] [CrossRef]
- Rawsthorne, H.; Phister, T.G. A real-time PCR assay for the enumeration and detection of Zygosaccharomyces bailii from wine and fruit juices. Int. J. Food Microbiol. 2006, 112, 1–7. [Google Scholar] [CrossRef] [PubMed]
- González-Muñoz, B.; Garrido-Vargas, F.; Pavez, C.; Osorio, F.; Chen, J.; Bordeu, E.; O’Brien, J.A.; Brossard, N. Wine astringency: More than just tannin-protein interactions. J. Sci. Food Agric. 2022, 102, 1771–1781. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. Acetic acid bacteria spoilage of bottled red wine—A review. Int. J. Food Microbiol. 2008, 125, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Shi, L.; Chen, X.; Liang, M.; Zhao, L. Development and application of a real-time loop-mediated isothermal amplification method for quantification of Acetobacter aceti in red wine. FEMS Microbiol. Lett. 2020, 367, fnaa152. [Google Scholar] [CrossRef]
- Valera, M.J.; Torija, M.J.; Mas, A.; Mateo, E. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques. Food Microbiol. 2015, 46, 452–462. [Google Scholar] [CrossRef]
- Longin, C.; Guilloux-Benatier, M.; Alexandre, H. Design and performance testing of a DNA extraction assay for sensitive and reliable quantification of acetic acid bacteria directly in red wine using real time PCR. Front. Microbiol. 2016, 7, 831. [Google Scholar] [CrossRef] [PubMed]
- Mandappa, I.M.; Basavaraj, K.; Manonmani, H.K. Analysis of Mycotoxins in Fruit Juices; Academic Press: Cambridge, MA, USA, 2018; pp. 763–777. [Google Scholar] [CrossRef]
- Karasawa, M.M.G.; Mohan, C. Fruits as prospective reserves of bioactive compounds: A review. Nat. Prod. Bioprospect. 2018, 8, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martin-Belloso, O. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr. Rev. Food Sci. Food Saf. 2009, 8, 157–180. [Google Scholar] [CrossRef] [PubMed]
- Jimma, F.I.; Mohammed, A.; Adzaworlu, E.G.; Nzeh, J.; Quansah, L.; Dufailu, O.A. Microbial quality and antimicrobial residue of local and industrial processed fruit juice sold in Tamale, Ghana. Food Technol. 2022, 2, 26. [Google Scholar] [CrossRef]
- Salomao, B.D.C.M. Pathogens and Spoilage Microorganisms in Fruit Juice: An Overview; Academic Press: Cambridge, MA, USA, 2018; pp. 291–308. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, K.; Toor, D.; Pai, S.S.; Chakraborty, R.; Khan, K.M. Antibiotic resistance in microbes from street fruit drinks and hygiene behavior of the vendors in Delhi, India. Int. J. Environ. Res. Public Health 2020, 17, 4829. [Google Scholar] [CrossRef] [PubMed]
- Tasnim, F., Jr.; Anwar Hossain, M.; Kamal Hossain, M.; Lopa, D.; Formuzul Haque, K.M. Quality assessment of industrially processed fruit juices available in Dhaka city, Bangladesh. Malays. J. Nutr. 2010, 16, 431–438. [Google Scholar] [PubMed]
- Keller, S.E.; Miller, A.J. Microbiological safety of fresh citrus and apple juices. In Microbiology of Fruits and Vegetables; CRC Press: Boca Raton, FL, USA, 2005; pp. 227–246. [Google Scholar]
- Jensen, N. Alicyclobacillus: A new challenge for the food industry. Food Aust. 1999, 51, 33–36. [Google Scholar]
- Cacho, P.; Danyluk, M.; Rouseff, R. GC–MS quantification and sensory thresholds of guaiacol in orange juice and its correlation with Alicyclobacillus spp. Food Chem. 2011, 129, 45–50. [Google Scholar] [CrossRef]
- Chang, S.S.; Kang, D.H. Alicyclobacillus spp. in the fruit juice industry: History, characteristics, and current isolation/detection procedures. Crit. Rev. Microbiol. 2004, 30, 55–74. [Google Scholar] [CrossRef]
- Molva, C.; Baysal, A.H. Evaluation of bioactivity of pomegranate fruit extract against Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT-Food Sci. Technol. 2015, 62, 989–995. [Google Scholar] [CrossRef]
- Hui, L.; Hong, C.; Bin, L.; Rui, C.; Nan, J.; Tianli, Y.; Zhouli, W. Establishment of quantitative PCR assays for the rapid detection of Alicyclobacillus spp. that can produce guaiacol in apple juice. Int. J. Food Microbiol. 2021, 360, 109329. [Google Scholar] [CrossRef]
- Osopale, B.A.; Adewumi, G.A.; Witthuhn, R.C.; Kuloyo, O.O.; Oguntoyinbo, F.A. A review of innovative techniques for rapid detection and enrichment of Alicyclobacillus during industrial processing of fruit juices and concentrates. Food Control 2019, 99, 146–157. [Google Scholar] [CrossRef]
- Sourri, P.; Tassou, C.C.; Nychas, G.E.; Panagou, E.Z. Fruit juice spoilage by Alicyclobacillus: Detection and control methods-a comprehensive review. Foods 2022, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Okubo, T.; Inoue, N.; Shinano, H. Randomly amplified polymorphic DNA (RAPD) for rapid identification of the spoilage bacterium Alicyclobacillus acidoterrestris. Biosci. Biotechnol. Biochem. 1997, 61, 1016–1018. [Google Scholar] [CrossRef]
- Sourri, P.; Doulgeraki, A.I.; Tassou, C.C.; Nychas, G.E. A single enzyme PCR-RFLP assay targeting V1-V3 region of 16S rRNA gene for direct identification of Alicyclobacillus acidoterrestris from other Alicyclobacillus species. J. Appl. Genet. 2019, 60, 225–229. [Google Scholar] [CrossRef]
- Connor, C.J.; Luo, H.; Gardener, B.B.; Wang, H.H. Development of a real-time PCR-based system targeting the 16S rRNA gene sequence for rapid detection of Alicyclobacillus spp. in juice products. Int. J. Food Microbiol. 2005, 99, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tang, Q.; Zhang, X.; Zhao, G.; Hu, X.; Liao, X.; Xiang, H. Isolation and characterization of thermo-acidophilic endospore-forming bacteria from the concentrated apple juice-processing environment. Food Microbiol. 2006, 23, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Dekowska, A.; Niezgoda, J.; Sokołowska, B. Genetic heterogeneity of Alicyclobacillus strains revealed by RFLP analysis of vdc region and rpoB gene. BioMed Res. Int. 2018, 2018, 9608756. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, T.; Yuan, Y.; Zhang, Y.; Gao, Z.; Cai, R. Targeting the vanillic acid decarboxylase gene for Alicyclobacillus acidoterrestris quantification and guaiacol assessment in apple juices using real time PCR. Int. J. Food Microbiol. 2021, 338, 109006. [Google Scholar] [CrossRef]
- Cai, R.; Wang, Z.; Yuan, Y.; Liu, B.; Wang, L.; Yue, T. Detection of Alicyclobacillus spp. in fruit juice by combination of immunomagnetic separation and a SYBR Green I Real-Time PCR assay. PLoS ONE 2015, 10, e0141049. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Shi, Y.; Zhang, J.; Han, Q.; Xia, X.S.; Zhang, A.M.; Song, Y. Rapid and simultaneous detection of five, viable, foodborne pathogenic bacteria by photoinduced PMAxx-coupled multiplex PCR in fresh juice. Foodborne Pathog. Dis. 2021, 18, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Corbett, K.M.; de Smidt, O. Culture-dependent diversity profiling of spoilage yeasts species by PCR-RFLP comparative analysis. Food Sci. Technol. Int. 2019, 25, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Casey, G.D.; Dobson, A.D.W. Potential of using real-time PCR-based detection of spoilage yeast in fruit juice—A preliminary study. Int. J. Food Microbiol. 2004, 91, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.C.; Seixas, A.S.; Sousa, C.P.; Souza, C.W. Microbiological evaluation of sugarcane juice sold at street stands and juice handling conditions in Sao Carlos, Sao Paulo, Brazil. Cad. Saude Publica 2006, 22, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Dawar, S.; Tariq, M. Mycoflora associated with sugar cane juice in Karachi city. Pak. J. Bot. 2010, 42, 2955–2962. [Google Scholar]
- Abbas, S.R.; Sabir, S.M.; Ahmad, S.D.; Boligon, A.A.; Athayde, M.L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem. 2014, 147, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Mattos, E.C.; Meira-Strejevitch, C.D.S.; Marciano, M.A.M.; Faccini, C.C.; Lourenço, A.M.; Pereira-Chioccola, V.L. Molecular detection of Trypanosoma cruzi in acai pulp and sugarcane juice. Acta Trop. 2017, 176, 311–315. [Google Scholar] [CrossRef]
- Rettedal, E.A.; Altermann, E.; Roy, N.C.; Dalziel, J.E. The Effects of unfermented and fermented cow and sheep milk on the gut microbiota. Front. Microbiol. 2019, 10, 458. [Google Scholar] [CrossRef]
- Paszczyk, B.; Czarnowska-Kujawska, M.; Klepacka, J.; Tońska, E. Health-promoting ingredients in goat’s milk and fermented goat’s milk drinks. Animals 2023, 13, 907. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. 2013, 37, 664–698. [Google Scholar] [CrossRef]
- Aliyo, A.; Teklemariam, Z. Assessment of Milk Contamination, Associated Risk Factors, and Drug Sensitivity Patterns among Isolated Bacteria from Raw Milk of Borena Zone, Ethiopia. J. Trop. Med. 2022, 2022, 3577715. [Google Scholar] [CrossRef]
- Koskinen, M.T.; Holopainen, J.; Pyorala, S.; Bredbacka, P.; Pitkala, A.; Barkema, H.W.; Bexiga, R.; Roberson, J.; Solverod, L.; Piccinini, R.; et al. Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J. Dairy Sci. 2009, 92, 952–959. [Google Scholar] [CrossRef]
- Pang, L.; Pi, X.; Yang, X.; Song, D.; Qin, X.; Wang, L.; Man, C.; Zhang, Y.; Jiang, Y. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: A review. Crit. Rev. Food Sci. Nutr. 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Cornelissen, J.B.W.J.; De Greeff, A.; Heuvelink, A.E.; Swarts, M.; Smith, H.E.; Van der Wal, F.J. Rapid detection of Streptococcus uberis in raw milk by loop-mediated isothermal amplification. J. Dairy Sci. 2016, 99, 4270–4281. [Google Scholar] [CrossRef]
- Alber, J.; El-Sayed, A.; Lammler, C.; Hassan, A.A.; Zschock, M. Polymerase chain reaction mediated identification of Streptococcus uberis and Streptococcus parauberis using species-specific sequences of the genes encoding superoxide dismutase A and chaperonin 60. J. Vet. Med. B Infect. Dis. Vet. Public Health 2004, 51, 180–184. [Google Scholar] [CrossRef]
- Gillespie, B.E.; Oliver, S.P. Simultaneous detection of mastitis pathogens, Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae by multiplex real-time polymerase chain reaction. J. Dairy Sci. 2005, 88, 3510–3518. [Google Scholar] [CrossRef]
- Bruno, S.J.; Phiri, B.M.; Hang’ombe, M.E.; Mubanga, M.; Maurischat, S.; Wichmann-Schauer, H.; Schaarschmidt, S.; Fetsch, A. Prevalence and diversity of Staphylococcus aureus in the Zambian dairy value chain: A public health concern. Int. J. Food Microbiol. 2022, 375, 109737. [Google Scholar] [CrossRef]
- Machado, G.P.; Silva, R.C.; Guimarães, F.F.; Salina, A.; Langoni, H. Detection of Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli in Brazilian mastitic milk goats by multiplex-PCR. Pesqui. Vet. Bras. 2018, 38, 1358–1364. [Google Scholar] [CrossRef]
- Straub, J.A.; Hertel, C.; Hammes, W.P. A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. J. Prot. 1999, 62, 1150–1156. [Google Scholar] [CrossRef]
- Riffon, R.; Sayasith, K.; Khalil, H.; Dubreuil, P.; Drolet, M.; Lagacé, J. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J. Clin. Microbiol. 2001, 39, 2584–2589. [Google Scholar] [CrossRef]
- Chotár, M.; Vidova, B.; Godany, A. Development of specific and rapid detection of bacterial pathogens in dairy products by PCR. Folia Microbiol. 2006, 51, 639–646. [Google Scholar] [CrossRef]
- Luciani, M.; di Febo, T.; Zilli, K.; di Giannatale, E.; Armillotta, G.; Manna, L. Rapid detection and isolation of Escherichia coli O104:H4 from milk using monoclonal antibody-coated magnetic beads. Front. Microbiol. 2016, 7, 942. [Google Scholar] [CrossRef]
- Bai, Y.; Cui, Y.; Suo, Y.; Shi, C.; Wang, D.; Shi, X. A Rapid method for detection of Salmonella in milk based on extraction of mRNA using magnetic capture probes and RT-qPCR. Front. Microbiol. 2019, 10, 770. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, S.; Xue, Y.; Zhang, Y.; Zhang, W.; Wang, S. Quantitative detection of viable but nonculturable Cronobacter sakazakii using photosensitive nucleic acid dye PMA combined with isothermal amplification LAMP in raw milk. Foods 2022, 11, 2653. [Google Scholar] [CrossRef]
- Dauga, C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: A model molecule for molecular systematic studies. Int. J. Syst. Evol. Microbiol. 2002, 52, 531–547. [Google Scholar] [CrossRef]
- Urso, R.; Rantsiou, K.; Dolci, P.; Rolle, L.; Comi, G.; Cocolin, L. Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods. FEMS Yeast Res. 2008, 8, 1053–1062. [Google Scholar] [CrossRef]
- Zendeboodi, F.; Jannat, B.; Sohrabvandi, S.; Khanniri, E.; Mortazavian, A.M.; Khosravi, K.; Gholian, M.M.; Sarmadi, B.; Javadi, N.H.S. Detection of non-alcoholic beer spoilage microorganisms at critical points of production by polymerase chain reaction. Biointerface Res. Appl. Chem. 2021, 11, 9658–9966. [Google Scholar] [CrossRef]
- Phattaraporn, S.; Rachnarin, N.; Issara, P.; Siwarutt, B. Identification of bacteria and yeast communities in a Thai sugary kefir by polymerase chain reaction-denaturing gradient gel electrophoresis (pcr-dgge) analyses. J. Ind. Technol. 2015, 11, 25–39. [Google Scholar]
№ | Object | Target | Method | Primer | Subsequence (5′-3′) | Literature |
---|---|---|---|---|---|---|
1 | Beer | Lactobacillus | Rep-PCR | REP1R-I | IIIICGICGICATCIGGC | [46,50] |
REP2-I | IIICGNCGNCATCNGGC | |||||
BOXA1R | CTACGGCAAGGCGACGCTGACG | |||||
PRIMER | (GTG)5 (5GTGGTGGTGGTGGTG3) | |||||
2 | Pectinatus | qPCR | F | GCTTTTAGCTGTCGCTTGGA | [47] | |
R | TGCATCTCTGCATACGTCAA | |||||
3 | Bacteria | qPCR | 27F | GAGAGTTTGATCCTGGCTCAG | [53] | |
1495r | CTACGGCTACCTTGTTACGA | |||||
4 | Yeasts | qPCR | ITS1 | TCCGTAGGTGAACCTGCGG | [52,53] | |
ITS4 | TCCTCCGCTTATTGATATGC | |||||
5 | Resistance gene HorA/HorC | qPCR | LbHC-1 | ATCCGGCGGTGGCAAATCA | [56] | |
LbHC-2 | AATCGCCAATCGTTGGCG | |||||
Lactobacillus brevis | qPCR | LBP2 | CTGATTTCAACAATGAAGC | |||
UNP1 | CCGTCAATTCCTTTGAGTTT | |||||
Pectinatus cerevisiiphilus | qPCR | 16C-F | CGTATGCAGAGATGCATATT | |||
IC-R | CACTCTTACAAGTATCTAC | |||||
Pediococcus damnosus/Pediococcus inopinatus | qPCR | PIDF1 | TGTGAGAGTAACTGCTCATG | |||
PIDR8 | ACGCCTAATCTCTTTGGTTA | |||||
Megasphaera cerevisiae | qPCR | Mc-f4 | ACCGAATACGATCTAAAG | |||
Mc-r4 | TTAAGACCGACTTACCGA | |||||
6 | Clostridia | End-point PCR | An-0279f | ACGATCAGTAGCCGGT | [59] | |
An-0603r | AGCCCCGCACTTTTAAG | |||||
7 | Megasphaera cerevisiae | qPCR | F | CACTGAATAGTCTATCGC | [58] | |
R | AAGACCGACTTACCGAAC | |||||
1 | Wine | Penicillium expansum | qPCR | PE F | ATCGGCTGCGGATTGAAAG | [64] |
PE R | AGTCACGGGTTTGGAGGGA | |||||
2 | Acetobacter aceti | qLAMP | F3 | AGGTGGGGATGACGTCAAG | [84] | |
B3 | CGGGAACGTATTCACCGC | |||||
FIP | CTAGCTTCCCACTGTCACCG TCCTCATGGCCCTTATGTC | |||||
BIP | AACCGTCTCAGTTCGGATTGCATCCGCGATTACTAGCGATTC | |||||
LF | AGCACGTGTGTAGCCCA | |||||
LB | CTCTGCAACTCGAGTGCATG | |||||
F | CGGAATGACTGGGCGTAAG | |||||
R | CAGTAATGAGCCAGGTTGCC | |||||
PROBE | 6FAMCGGGCTTAACCTGGGAGCTGCATTBHQ1 | |||||
3 | Acetic acid bacteria | qPCR | AAB F | TGAGAGGATGATCAGCCACACT | [85] | |
AAB R | TCACACACGCGGCATTG | |||||
4 | Yeasts | qPCR | YEAST F | GAGTCGAGTTGTTTGGGAATGC | [74] | |
YEAST R | TCTCTTTCCAAAGTTCTTTTCATCTTT | |||||
5 | Brettanomyces/Dekkera spp. | qPCR | DBRUX F | GGATGGGTGCACCTGGTTTACAC | [76,78,79] | |
DBRUXR | GAAGGGCCACATTCACGAACCCCG | |||||
6 | Brettanomyces bruxellensis | qPCR | BRETT 1 | CGAAGAAGTTGAACGGCCGCATTTG | [77] | |
BRETT 2 | TCTTCGATATGCCGTCCAAAAGCTC | |||||
RAD 1 | GTTCACACAATCCCCTCGATCAAC | [78] | ||||
RAD 2 | TGCCAACTGCCGAATGTTCTC | |||||
ACT 1 | TGTCAGAGACATCAAGGAGAAGCT | [75] | ||||
ACT 2 | CGTCTGCATTTCCTGGTCAA | |||||
7 | Zygosaccharomyces bailii | qPCR | ZB F1 | CATGGTGTTTTGCGCC | [81] | |
ZB R1 | CGTCCGCCACGAAGTGGTAG A | |||||
8 | Ochratoxin A | Molecular Beacon Method | APTABEACON | 6FAMCGCGCTGGATCGGGTGTGGGTGGCGTAAAGGGAGCATCGGACACAGCGCGBHQ1 | [63] | |
1 | Fruit juices | Alicyclobacillus acidoterrestris | PCR | A1-92-3 F | TCGCAACCTGCTTCTCCA | [100] |
A1-92-3 R | TGGTGGACGGGATTGTTT | |||||
Alicyclobacillus acidiphilus | PCR | A2-16S-1 F | ATGCAAGTCGAGCGAAC | |||
A2-16S-1 R | GCAACTTTCCTCAACGG | |||||
Alicyclobacillus cycloheptanicus | PCR | A3-16S-3 F | TGCAAATGCACCGCAGAT | |||
A3-16S-3 R | GGCTTTCCACTCCCCTTG | |||||
Alicyclobacillus herbarius | PCR | A4-5472 F | TGAGTCGCTTCTTCGTTCTT | |||
A4-5472 R | CTACGGGATGACGGAAGC | |||||
2 | Alicyclobacillus acidoterrestris | RAPD | Ba-lO | AACGCGCAAC | [103] | |
F -61 | CCTGTGATGGGC | |||||
F-64 | GCCGCGCCAGTA | |||||
3 | Alicyclobacillus acidoterrestris | PCR-RFLP Restriction endonuclease: HhaI | P1 | GCGGCGTGCCTAATACATGC | [104] | |
P4 | ATCTACGCATTTCACCGCTAC | |||||
4 | Alicyclobacillus | qPCR | CC16S-F | CGTAGTTCGGATTGCAGGC | [105] | |
CC16S-R | GTGTTGCCGACTCTCGTG | |||||
CC16S-Probe | QUASAR670CGGAATTGCTAGTAATCGCBHQ-2 | |||||
5 | Alicyclobacillus | PCR–RFLP Restriction endonucleases: BsuR I, Hinf I, Msp I, Rsa I | P1 | CGGGATCCAGAGTTTGATCCTGCGTCAGAACGAACGCT | [106] | |
P2 | CGGGATCCTAGGGCTACCTTGTTACGACTTCACCCC | |||||
6 | Alicyclobacillus acidoterrestris | PCR-RFLP Restriction endonuclease: HhaI | P1 | GCGGCGTGCCTAATACATGC | [104] | |
P4 | ATCTACGCATTTCACCGCTAC | |||||
7 | Alicyclobacillus | PCR-RFLP Restriction endonucleases: BsuRI, Hin6I, HphI | vdc fr | CTGTTGGCTCAATGGCGGCTGAGCGAT | [107] | |
vdc rev | TTATCAGCGGTTTATCCGCGGTGGAACAGTC | |||||
vdc1 fr | AACGACGCAGGTGTGGAAAC | |||||
vdc1 rev | AGCGTGGGCAAGTTGTCATGTG | |||||
vdc K | TTGGCAACGGAGAAGTGGGAG | |||||
and vdc S | AATCACGCGCTGATGATGGG | |||||
Bur 5 | GCCGACGTGATGCTCAARGAGCGCA | |||||
Bur 6 | GTSGCRTCGAGAATCATCTTGTG | |||||
Gru3 | CGYGACGTDCACTAYTCBCACTA | |||||
Gru4 | GCCCANACYTCCATCTCRCCRAA | |||||
Gru5 | CGCGACGTACACTATTCGCACTA | |||||
Gru6 | GCCCAAACCTCCATCTCACCAAA | |||||
8 | Alicyclobacillus acidoterrestris | qPCR | vdcCF1 | TAYGAAATGGCMGGTGC | [108] | |
vdcCR1 | GGAAGGTTGAAYGGATC | |||||
9 | Alicyclobacillus | qPCR | F | ATGCGTAGATATGTGGAGGA | [109] | |
R | CAGGCGGAGTGCTTATTG | |||||
10 | Yeast | PCR-RFLP Restriction endonucleases: CfoI, HaeIII, HinfI | ITS1 | TCCGTAGGTGAACCTGCGG | [111] | |
ITS4 | TCCTCCGCTTATTGATATGC | |||||
11 | Zygosaccharomyces bailii, Zygosaccharomyces rouxii, Candida krusei, Rhodotorula glutinis, Saccharomyces cerevisiae | qPCR | ITS3 | GCATCGATGAAGAACGCAGC | [112] | |
ITS4 | TCCTCCGCTTATTGATATGC | |||||
CS Fwd | GCATATGGTGGTTATGAGAGG | |||||
CS Rev | AGCAGAAACATTACCACCTTC | |||||
12 | Trypanosoma cruzi | qPCR | 32F | TTTGGGAGGGGCGTTCA | [116] | |
148R | ATATTACACCAACCCCAATCGAA | |||||
probe71 | FAMCATCTCACCCGTACATT3NFQ | |||||
1 | Streptococcus uberis | LAMP | Su sodA F3 | TGGCGTTATTATCTGATGTGT | [124] | |
Su sodA B3 | AGAYCCAAAACGTCCCGT | |||||
Su sodA FIP | ATGGTTAAGATGTCCGCCTCCCATCAATTCCAGAAGATATTCGT | |||||
Su sodA BIP | TTCACCTGAGAAAACAGAAATCACTTCTTTAAATGCATCAAAAGAACC | |||||
Su sodA Bloop | CGGAAGTAGCTTCTGCTATTGAT | |||||
Su sodA FIP | DIG-ATGGTTAAGATGTCCGCCTCCCATCAATTCCAGAAGATATTCGT | |||||
Milk beverages | Su sodA BIP | Biotin-TTCACCTGAGAAAACAGAAATCACTTCTTTAAATGCATCAAAAGAACC | ||||
2 | Streptococcus aureus | multiplex PCR | Sau 327/SAU1 | GGACGACATTAGACGAATCA | [130] | |
Sau 1645/SAU2 | CGGGCACCTATTTTCTATCT | [131] | ||||
STAUR4 | ACGGAGTTACAAAGGACGAC | [129] | ||||
STAUR6 | AGCTCAGCCTTAACGAGTAC | |||||
3 | Streptococcus agalactiae | Sag 432/SAGA1 | CGTTGGTAGGAGTGGAAAAT | [130] | ||
Sag 1018/SAGA2 | CTGCTCCGAAGAGAAAGCCT | [131] | ||||
SIP3/SIP3 | TGAAAATGCAGGGCTCCAACCTCA | |||||
SIP4/SIP4 | GATCTGGCATTGCATTCCAAGTAT | |||||
4 | Escherichia coli | Eco 2083/Ecoli1 | GCTTGACACTGAACATTGAG | [130] | ||
Eco 2745/Ecoli2 | GCACTTATCTCTTCCGCATT | [131] | ||||
FOP | CCGTTAAAGTGCC | |||||
BOP | GCTTTACGTGCCGCC | |||||
5 | Cronobacter sakazakii | QLAMP | FIP | TGCTGCTCAACCGCCGATTTCTCCCCCCCCCCCCACCACCAAAGACA | [133] | |
BIP | GATGAACGAGCTGCTGGCCGTCGATAATTTTGCCGA | |||||
FLP | CACCTCGGAGGAGACC | |||||
BLP | CTGCTGGAGAACCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesterova, E.; Morozova, P.; Gladkikh, M.; Kazemzadeh, S.; Syromyatnikov, M. Molecular Methods for Detecting Microorganisms in Beverages. Beverages 2024, 10, 46. https://doi.org/10.3390/beverages10020046
Nesterova E, Morozova P, Gladkikh M, Kazemzadeh S, Syromyatnikov M. Molecular Methods for Detecting Microorganisms in Beverages. Beverages. 2024; 10(2):46. https://doi.org/10.3390/beverages10020046
Chicago/Turabian StyleNesterova, Ekaterina, Polina Morozova, Mariya Gladkikh, Shima Kazemzadeh, and Mikhail Syromyatnikov. 2024. "Molecular Methods for Detecting Microorganisms in Beverages" Beverages 10, no. 2: 46. https://doi.org/10.3390/beverages10020046
APA StyleNesterova, E., Morozova, P., Gladkikh, M., Kazemzadeh, S., & Syromyatnikov, M. (2024). Molecular Methods for Detecting Microorganisms in Beverages. Beverages, 10(2), 46. https://doi.org/10.3390/beverages10020046