Study of Ultrasound-Assisted Technology for Accelerating the Aging Process in a Sugar Cane Honey Spirit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sugar Cane Spirit
2.2. Accelerated Aging Method
2.2.1. Alcohol Content
2.2.2. Titratable Acidity
2.2.3. Color Determination
2.2.4. Electronic Tongue Evaluation
2.2.5. Electronic Nose Evaluation
3. Results
3.1. Sugar Cane Spirit
3.2. Accelerated Aging Method
3.2.1. Alcohol Content
3.2.2. Titratable Acidity
3.2.3. Color Determination
3.2.4. Electronic Tongue Evaluation
3.2.5. Electronic Nose Evaluation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Calculation Scheme on Rum Fermentation and Distillation [21]
A.1. Pre-Fermentation Dilution of Sugarcane Honey
SG | % ABV | °Bx |
---|---|---|
A.2. Fermentation Efficiency Calculation
A.3. Distillation Efficiency Calculation
Appendix B. Chromatic Characteristics Data
B.1. Absorbance Readings for Unaged and Aged Sugar Cane Spirit Samples
Sample | 450 nm | STD | 520 nm | STD | 570 nm | STD | 630 nm | STD |
---|---|---|---|---|---|---|---|---|
Ref | 0.014 | 0.001 | 0.008 | 0.001 | 0.006 | 0.001 | 0.003 | 0.001 |
1 | 0.118 | 0.047 | 0.049 | 0.02 | 0.03 | 0.012 | 0.02 | 0.007 |
2 | 0.062 | 0.01 | 0.027 | 0.011 | 0.02 | 0.012 | 0.015 | 0.012 |
3 | 0.125 | 0.012 | 0.058 | 0.012 | 0.04 | 0.016 | 0.027 | 0.015 |
4 | 0.131 | 0.039 | 0.054 | 0.019 | 0.03 | 0.011 | 0.016 | 0.006 |
5 | 0.101 | 0.049 | 0.038 | 0.018 | 0.021 | 0.011 | 0.012 | 0.004 |
6 | 0.12 | 0.011 | 0.048 | 0.013 | 0.028 | 0.015 | 0.016 | 0.015 |
7 | 0.078 | 0.016 | 0.027 | 0.006 | 0.016 | 0.004 | 0.01 | 0.002 |
8 | 0.102 | 0.011 | 0.035 | 0.002 | 0.016 | 0.003 | 0.007 | 0.006 |
B.2. Total Color Difference among Aged Sugar Cane Spirit Samples
Samples | Ref | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
Ref | - | 10.26 | 4.68 | 10.17 | 11.74 | 9.22 | 10.72 | 7.07 | 9.84 |
1 | 10.26 | - | 5.62 | 0.9 | 1.57 | 1.17 | 0.55 | 3.31 | 1.21 |
2 | 4.68 | 5.62 | - | 5.54 | 7.14 | 4.62 | 6.11 | 2.51 | 5.32 |
3 | 10.17 | 0.9 | 5.54 | - | 1.98 | 1.68 | 1.27 | 3.48 | 2.02 |
4 | 11.74 | 1.57 | 7.14 | 1.98 | - | 2.6 | 1.07 | 4.81 | 2.19 |
5 | 9.22 | 1.17 | 4.62 | 1.68 | 2.6 | - | 1.56 | 2.21 | 0.83 |
6 | 10.72 | 0.55 | 6.11 | 1.27 | 1.07 | 1.56 | - | 3.76 | 1.29 |
7 | 7.07 | 3.31 | 2.51 | 3.48 | 4.81 | 2.21 | 3.76 | - | 2.84 |
8 | 9.84 | 1.21 | 5.32 | 2.02 | 2.19 | 0.83 | 1.29 | 2.84 | - |
Appendix C. Flavor Characteristics Data
Samples | Sourness | Bitterness | Astringency | Aftertaste-B | ||||
---|---|---|---|---|---|---|---|---|
NE | −17.68 | 2.04 | 16.46 | 1.16 | 8.71 | 0.83 | −1.13 | 0.40 |
1 | −6.07 | 0.46 | 8.70 | 0.03 | 5.34 | 0.17 | −0.72 | 0.02 |
2 | −5.30 | 0.28 | 9.19 | 0.37 | 4.42 | 0.35 | 0.75 | 0.04 |
3 | −5.79 | 0.43 | 9.14 | 0.22 | 4.63 | 0.51 | −0.14 | 0.03 |
4 | −5.54 | 0.08 | 9.01 | 0.06 | 4.58 | 0.05 | −0.25 | 0.00 |
5 | −6.40 | 0.56 | 9.21 | 0.31 | 4.84 | 0.55 | 0.09 | 0.01 |
6 | −8.50 | 2.39 | 9.57 | 0.47 | 5.77 | 0.80 | 0.12 | 0.03 |
7 | −5.14 | 0.93 | 8.76 | 0.48 | 5.25 | 0.75 | −0.13 | 0.03 |
8 | −4.85 | 0.21 | 8.52 | 0.14 | 5.05 | 0.33 | −0.18 | 0.02 |
Average | −5.95 | 0.67 | 9.01 | 0.26 | 4.99 | 0.44 | −0.06 | 0.02 |
Ref | −5.34 | 0.34 | 8.66 | 0.12 | 5.10 | 0.34 | −0.24 | 0.07 |
Commercial | −11.86 | 0.23 | 5.98 | 0.16 | 4.33 | 0.44 | 0.78 | 0.07 |
Samples | Aftertaste-A | Umami | Richness | Saltiness | ||||
NE | 0.14 | 0.06 | 6.59 | 0.84 | −0.34 | 0.01 | 22.56 | 1.43 |
1 | 0.17 | 0.01 | 3.74 | 0.21 | −0.33 | 0.03 | 9.42 | 0.27 |
2 | 0.05 | 0.01 | 3.63 | 0.04 | −0.13 | 0.02 | 8.77 | 0.32 |
3 | 0.04 | 0.01 | 3.82 | 0.12 | −0.12 | 0.01 | 9.47 | 0.40 |
4 | 0.02 | 0.01 | 3.78 | 0.16 | −0.08 | 0.01 | 9.33 | 0.16 |
5 | 0.06 | 0.01 | 4.26 | 0.24 | −0.08 | 0.01 | 10.03 | 0.60 |
6 | 0.03 | 0.01 | 4.99 | 0.78 | −0.11 | 0.01 | 12.07 | 2.12 |
7 | 0.08 | 0.01 | 3.32 | 0.42 | 0.16 | 0.01 | 8.23 | 1.05 |
8 | 0.07 | 0.01 | 3.30 | 0.14 | 0.22 | 0.01 | 8.06 | 0.22 |
Average | 0.07 | 0.01 | 3.85 | 0.26 | −0.06 | 0.01 | 9.42 | 0.64 |
Ref | 0.07 | 0.05 | 3.52 | 0.13 | 0.48 | 0.14 | 8.55 | 0.18 |
Commercial | 0.09 | 0.01 | 4.79 | 0.17 | 0.41 | 0.13 | 2.24 | 0.26 |
Appendix D. Aroma Characteristics Data
Samples | W1C | W5S | W3C | W6S | W5C |
---|---|---|---|---|---|
Ref | 4.99 × 10−5 | 1.13 × 10−1 | 5.87 × 10−5 | 2.04 × 10−1 | 6.20 × 10−5 |
1 | 6.17 × 10−5 | 3.11 × 10−2 | 6.95 × 10−5 | 1.74 × 10−1 | 7.31 × 10−5 |
2 | 5.08 × 10−5 | 8.27 × 10−2 | 6.08 × 10−5 | 1.94 × 10−1 | 6.41 × 10−5 |
3 | 6.51 × 10−5 | 3.31 × 10−2 | 7.26 × 10−5 | 1.66 × 10−1 | 7.67 × 10−5 |
4 | 5.21 × 10−5 | 7.79 × 10−2 | 6.22 × 10−5 | 2.01 × 10−1 | 6.53 × 10−5 |
5 | 5.16 × 10−5 | 8.66 × 10−2 | 6.17 × 10−5 | 2.00 × 10−1 | 6.56 × 10−5 |
6 | 4.96 × 10−5 | 1.22 × 10−1 | 5.86 × 10−5 | 1.95 × 10−1 | 6.11 × 10−5 |
7 | 5.31 × 10−5 | 8.99 × 10−2 | 6.14 × 10−5 | 1.86 × 10−1 | 6.44 × 10−5 |
8 | 4.89 × 10−5 | 1.36 × 10−1 | 5.81 × 10−5 | 1.94 × 10−1 | 6.09 × 10−5 |
Average | 5.41 × 10−5 | 8.24 × 10−2 | 6.31 × 10−5 | 1.89 × 10−1 | 6.64 × 10−5 |
STD | 5.95 × 10−6 | 3.70 × 10−2 | 5.17 × 10−6 | 1.25 × 10−2 | 5.61 × 10−6 |
Samples | W1S | W1W | W2S | W2W | W3S |
Ref | 8.33 × 10−1 | 3.06 × 10−1 | 8.83 × 10−1 | 1.99 × 10−1 | 9.48 × 10−1 |
1 | 2.89 × 10−1 | 1.77 × 10−1 | 3.34 × 10−1 | 1.47 × 10−1 | 9.10 × 10−1 |
2 | 3.97 × 10−1 | 1.96 × 10−1 | 5.89 × 10−1 | 1.68 × 10−1 | 9.39 × 10−1 |
3 | 4.05 × 10−1 | 1.57 × 10−1 | 3.56 × 10−1 | 1.53 × 10−1 | 8.23 × 10−1 |
4 | 3.30 × 10−1 | 1.80 × 10−1 | 4.88 × 10−1 | 1.74 × 10−1 | 9.19 × 10−1 |
5 | 4.72 × 10−1 | 2.43 × 10−1 | 6.15 × 10−1 | 1.85 × 10−1 | 9.14 × 10−1 |
6 | 6.59 × 10−1 | 3.10 × 10−1 | 8.14 × 10−1 | 1.93 × 10−1 | 8.81 × 10−1 |
7 | 6.59 × 10−1 | 2.70 × 10−1 | 6.42 × 10−1 | 1.85 × 10−1 | 8.95 × 10−1 |
8 | 7.65 × 10−1 | 3.30 × 10−1 | 7.95 × 10−1 | 2.05 × 10−1 | 9.16 × 10−1 |
Average | 4.97 × 10−1 | 2.33 × 10−1 | 5.79 × 10−1 | 1.76 × 10−1 | 9.00 × 10−1 |
STD | 1.75 × 10−1 | 6.54 × 10−2 | 1.80 × 10−1 | 1.99 × 10−2 | 3.55 × 10−2 |
Samples | W1C | W5S | W3C | W6S | W5C |
---|---|---|---|---|---|
Bacardí Añejo | 5.26 × 10−5 | 1.13 × 10−1 | 6.29 × 10−5 | 2.27 × 10−1 | 6.79 × 10−5 |
Ron Medellín Añejo | 7.59 × 10−5 | 1.45 × 10−2 | 8.07 × 10−5 | 1.80 × 10−1 | 8.45 × 10−5 |
Barceló Imperial | 7.62 × 10−5 | 1.26 × 10−2 | 8.13 × 10−5 | 1.72 × 10−1 | 8.52 × 10−5 |
Average | 6.82 × 10−5 | 4.67 × 10−2 | 7.49 × 10−5 | 1.93 × 10−1 | 7.92 × 10−5 |
STD | 1.35 × 10−5 | 5.74 × 10−2 | 1.05 × 10−5 | 2.97 × 10−2 | 9.81 × 10−6 |
Samples | W1S | W1W | W2S | W2W | W3S |
Bacardí Añejo | 8.54 × 10−1 | 2.89 × 10−1 | 7.82 × 10−1 | 1.76 × 10−1 | 9.41 × 10−1 |
Ron Medellín Añejo | 2.10 × 10−1 | 1.30 × 10−1 | 2.16 × 10−1 | 1.31 × 10−1 | 8.73 × 10−1 |
Barceló Imperial | 2.03 × 10−1 | 9.69 × 10−2 | 2.20 × 10−1 | 1.26 × 10−1 | 8.75 × 10−1 |
Average | 4.23 × 10−1 | 1.72 × 10−1 | 4.06 × 10−1 | 1.44 × 10−1 | 8.96 × 10−1 |
STD | 3.74 × 10−1 | 1.03 × 10−1 | 3.26 × 10−1 | 2.74 × 10−2 | 3.87 × 10−2 |
Category | Aroma | Aged | Commercial |
---|---|---|---|
Baking Spices | Nutmeg | ||
Baking Spices | Vanilla | High | High |
Baking Spices | Cinnamon | Medium | |
Baking Spices | Cloves | Medium | |
Berry fruit | Blackberry | Medium | |
Berry fruit | Raspberry | ||
Berry fruit | Strawberry | Low | |
Chocolate | Chocolate | High | Medium |
Citrus | Lime | High | High |
Citrus | Lemon | Medium | |
Dried fruit | Prune | ||
Dried fruit | Dried Apricot | Medium | Low |
Earthy | Tobacco | Medium | High |
Fruity | Cherry | Low | High |
Fruity | Plum | High | High |
Fruity | Blackcurrant | ||
Fruity | Apple | Low | Low |
Fruity | Green Apple | Medium | High |
Fruity | Pear | High | High |
Medicinal | Tar | Medium | High |
Medicinal | Licorice | Medium | Medium |
Nutty | Almond | Low | Medium |
Nutty | Hazelnut | Medium | High |
Off flavor | Onion | ||
Off flavor | Nail Polish Remover | ||
Off flavor | Vinegar | Medium | High |
Roasted | Smoke | High | Medium |
Roasted | Bacon | Medium | |
Roasted | Butter | Medium | |
Roasted | Toast | High | Medium |
Spicy | Pepper | ||
Spicy | Anise | Low | |
Spicy | Fennel | Low | Low |
Spicy | Coffee | Medium | Low |
Sugar | Honey | High | Medium |
Sugar | Caramel | Medium | Medium |
Tropical fruit | Pineapple | Medium | High |
Tropical fruit | Banana | ||
Tropical fruit | Coconut | ||
Vegetal | Rose | Low | |
Vegetal | Cut Grass | ||
Vegetal | Mint | ||
Vegetal | Black Tea | High | High |
Wood | Sandalwood | ||
Wood | Oak | ||
Wood | Pine | High | High |
Wood | Cedar |
Compound | Sensory Attribute(s) |
---|---|
Esters | |
Ethyl acetate | Pineapple, fruity, solvent |
Ethyl butanoate * | Pineapple |
Ethyl formate | Ethereal, fruity, rum-like |
Isoamyl acetate * | Banana, estery |
Ethyl propionate | Ethereal, fruity, rum-like |
Ethyl butyrate | Ethereal, fruity, apple, buttery |
Ethyl valerate | Fruity, apple |
Ethyl hexanoate * | Fruity, winey, apple, banana, pineapple |
Ethyl octanoate * | Sweet, cognac, apricot |
Ethyl decanoate * | Sweet, fatty, nut, winey-cognac |
Ethyl dodecanoate | Oily, fatty, floral |
Ethyl hexadecanoate | Waxy, fruity, creamy, greasy, oily, balsamic |
Ethyl linoleate | Fatty, fruity, oily |
Ethyl lactate | Buttery, butterscotch, fruity, artificial strawberry, raspberry, perfumed |
Methyl salicylate | Wintergreen |
Ethyl 2-methylpropanoate * | Ethereal, sweet, alcoholic |
Ethyl 2-methylbutanoate * | Fresh, fruity |
2-phenylethyl acetate * | Rose, honey, raspberry |
Ketones | |
(E)-β-damascenone * | Fruity, apple |
Acids | |
Acetic acid | Vinegar |
Hexanoic acid | Goaty, fatty, vegetable oil |
Butyric acid | Rancid |
Valeric acid | Strong, pungent, cheesy |
Propionic acid | Vinegar, milky |
Octanoic acid | Goaty, fatty, vegetable oil, wet dog |
Alcohols | |
1-propanol | Alcohol |
1-butanol | Malty, solvent-like |
Isobutanol | Malty, alcohol |
2-methyl−1-butanol | Fish oil, green, malt, onion, wine |
3-methyl−1-butanol (isoamylacetate) | Fruity at low levels, unpleasant at high |
2-phenylethanol * | Floral |
Acetals | |
1,1-diethoxyethane * | Ethereal, green, nutty, earthy, sweet, vegetable |
Phenolic compounds | |
2-methoxyphenol (guaiacol) * | Smoky |
4-methylguaiacol | Vanilla, clove |
4-Ethylguaiacol * | Bacon, clove, phenolic |
4-Propylguaiacol * | Spicy, sweet |
Eugenol * | Clove-like |
Vanillin * | Vanilla |
Lactones | |
Cis-oak lactone * | Sweet, spicy, coconut, vanilla |
γ -nonalactone * | Coconut, creamy, waxy, sweet, buttery, oily |
References
- Silvello, G.C.; Alcarde, A.R. Experimental design and chemometric techniques applied in electronic nose analysis of wood-aged sugar cane spirit (cachaça). J. Agric. Food Res. 2020, 2, 100037. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Xu, Y. Distilled beverage aging: A review on aroma characteristics, maturation mechanisms, and artificial aging techniques. Compr. Rev. Food Sci. Food Saf. 2023, 22, 502–534. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Nogueira, D.; Pérez-Burillo, S.; Ángel Rufián-Henares, J.; Pastoriza de la Cueva, S. Characterization of rums sold in Spain through their absorption spectra, furans, phenolic compounds and total antioxidant capacity. Food Chem. 2020, 323, 126829. [Google Scholar] [CrossRef] [PubMed]
- Canas, S. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. A Review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef]
- Jordão, A.M.; Cosme, F. The application of wood species in enology: Chemical wood composition and effect on wine quality. Appl. Sci. 2022, 12, 3179. [Google Scholar] [CrossRef]
- Costa, M.; Fontes, L.; Correia, A.C.; Miljić, U.; Jordão, A.M. Impact of oak (Q. pyrenaica and Q. pubescens) and cherry (P. avium) wood chip contact on phenolic composition and sensory profile evolution of red wines during bottle storage. OENO One 2020, 54, 1159–1181. [Google Scholar] [CrossRef]
- Granja-Soares, J.; Roque, R.; Cabrita, M.J.; Anjos, O.; Belchior, A.P.; Caldeira, I.; Canas, S. Effect of innovative technology using staves and micro-oxygenation on the odorant and sensory profile of aged wine spirit. Food Chem. 2020, 333, 127450. [Google Scholar] [CrossRef]
- Aguiar, D.; Pereira, A.C.; Marques, J.C. Agricultural Rum of Madeira matured on the seafloor: Improved physicochemical changes induced by a pioneering seafloor ageing process. Eur. Food Res. Technol. 2021, 247, 3023–3035. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Estela, G.Y.; Radice, M.; Scalvenzi, L.; Pérez-Martínez, A. Preliminary study regarding the optimisation of the accelerated ageing of sugar cane spirit by applying ultrasound-assisted extraction and white oak chips (Quercus alba). Food Anal. Methods 2023, 6, 1120–1130. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, H.; Zhao, Q.; Zhang, F.; Ge, Q.; Li, C.; Gamboa, G.G.; Fang, Y.; Sun, X. Wine aging and artificial simulated wine aging: Technologies, applications, challenges, and perspectives. Food Res. Int. 2022, 153, 110953. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Sánchez, M.; Guillén, D.A.; Barroso, C.G. Development of an accelerated aging method for Brandy. LWT 2014, 59, 108–114. [Google Scholar] [CrossRef]
- İşçimen, E.M.; Hayta, M. Optimisation of ultrasound assisted extraction of rice bran proteins: Effects on antioxidant and antiproliferative properties. Qual. Assur. Saf. Crops Foods 2018, 10, 165–174. [Google Scholar] [CrossRef]
- Delgado-González, M.J.; Sánchez-Guillén, M.M.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Study of a laboratory-scaled new method for the accelerated continuous ageing of wine spirits by applying ultrasound energy. Ultrason. Sonochem. 2017, 36, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.; Patras, A.; Brunton, N.; Cullen, P.; O’Donnell, C. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrason. Sonochem. 2010, 17, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.C. Study of ultrasonic wave treatments for accelerating the aging process in a rice alcoholic beverage. Food Chem. 2005, 92, 337–342. [Google Scholar] [CrossRef]
- Krüger, R.T.; Alberti., A.; Nogueira, A. Current Technologies to Accelerate the Aging Process of Alcoholic Beverages: A Review. Beverages 2022, 8, 65. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, M.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; Barroso, C.G.; Castro, R. Use of ultrasound at a pilot scale to accelerate the ageing of sherry vinegar. Ultrason. Sonochem. 2020, 69, 105244. [Google Scholar] [CrossRef] [PubMed]
- El Darra, N.; Grimi, N.; Maroum, R.; Louka, N.; Vorobiev, E. Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. Eur. Food Res. Technol. 2013, 236, 47–56. [Google Scholar] [CrossRef]
- Meneses-Gelves, J.; Mendoza-Gamboa, D.; Rodríguez-Cortina, A.; Hernández-Carrión, M. Desarrollo de encapsulados de aceite de semilla de Sacha Inchi para la formulación de alimentos funcionales. Investig. Desarro. Cienc. Tecnol. Aliment. 2023, 8, 453–463. [Google Scholar] [CrossRef]
- Ratkovich, N.; Esser, C.; de Resende Machado, A.M.; Mendes, B.d.A.; Cardoso, M.d.G. The Spirit of Cachaça Production: An Umbrella Review of Processes, Flavour, Contaminants and Quality Improvement. Foods 2023, 12, 3325. [Google Scholar] [CrossRef] [PubMed]
- Adelina, N.M.; Wang, H.; Zhang, L.; Zhao, Y. Comparative analysis of volatile profiles in two grafted pine nuts by headspace-SPME/GC–MS and electronic nose as responses to different roasting conditions. Food Res. Int. 2021, 140, 110026. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, A.M. Chapter 3—Rum cachaça. In Distilled Spirits; Hill, A., Jack, F., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 61–74. [Google Scholar] [CrossRef]
- das G. Cardoso, M. Produção de Aguardente De Cana, 4th ed.; UFLA: Lavras, Brazil, 2021; ISBN 9786586561005. [Google Scholar]
- Medeiros, A.B.P.; de Matos, M.E.; de Pinho Monteiro, A.; de Carvalho, J.C.; Soccol, C.R. 16—Cachaca and rum. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Sanroman, M.A., Du, G., Soccol, C.R., Dussap, C.-G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 451–468. ISBN 978-0-444-63666-9. [Google Scholar]
- Gavahian, M.; Chu, R.; Ratchaneesiripap, P. An ultrasound-assisted extraction system to accelerate production of Mhiskey, a rice spirit-based product, inside oak barrel: Total phenolics, color, and energy consumption. J. Food Process Eng. 2022, 45, e13861. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi, Version 2.3. Computer Software. Available online: https://www.jamovi.org (accessed on 24 April 2024).
- Yang, H.F.; Wang, S.L.; Yu, S.J.; Zeng, X.A.; Sun, D.W. Characterization and Semiquantitative Analysis of Volatile Compounds in Six Varieties of Sugarcane Juice. Int. J. Food Eng. 2014, 10, 821–828. [Google Scholar] [CrossRef]
- De Souza, M.D.C.A.; Vásquez, P.; Del Mastro, N.L.; Acree, T.E.; Lavin, E.H. Characterization of cachaça and rum aroma. J. Agric. Food Chem. 2006, 54, 485–488. [Google Scholar] [CrossRef]
- Burnside, E. Characterization of Volatiles in Commercial and Self-Prepared Rum Ethers and Comparison with Key Aroma Compounds of Rum. Master’s Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2012. Available online: https://hdl.handle.net/2142/34368 (accessed on 3 June 2024).
Samples | Factors | ||
---|---|---|---|
Alcohol by Volume (ABV) | Ultrasound Duration (min) | Successive Cycles (Yes/No) | |
1 | 60 | 10 | Yes |
2 | 60 | 20 | Yes |
3 | 60 | 10 | No |
4 | 60 | 20 | No |
5 | 70 | 10 | Yes |
6 | 70 | 20 | Yes |
7 | 70 | 10 | No |
8 | 70 | 20 | No |
Sensors | Target Substances |
---|---|
W1C | Aromatic compounds |
W5S | Nitrogen oxides |
W3C | Ammonia and aromatic compounds |
W6S | Hydrogen |
W5C | Hydrocarbons, aromatic compounds |
W1S | Methane in the environment, with a broad range |
W1W | Sulfur compounds, pyrazine, many terpenes (i.e., limonene) |
W2S | Ethanol, some aromatic compounds, broad range |
W2W | Aromatic components, sulfur compounds |
W3S | Methane and some high-concentration compounds |
. | Total Volume (L) | Ethanol Content (% ABV) | Ethanol Volume (L) | Fraction of Total Volume (%) | Total Ethanol Fraction (% ABV) |
---|---|---|---|---|---|
Wash | 12.00 | 10.99 | 1.32 | 100.00 | 100.00 |
Head | 0.18 | 85.00 | 0.15 | 1.50 | 11.60 |
Heart | 1.56 | 65.00 | 1.01 | 13.00 | 76.89 |
Tail | 0.35 | 21.00 | 0.07 | 2.92 | 5.57 |
Vinasses | 9.91 | 1.00 | 0.10 | 82.58 | 7.51 |
Sample | Titratable Acidity (g/100 mL) | pH |
---|---|---|
REF | 0.012 | 4.309 |
1 | 0.011 | 4.375 |
2 | 0.008 | 4.228 |
3 | 0.009 | 4.360 |
4 | 0.009 | 4.387 |
5 | 0.010 | 4.599 |
6 | 0.010 | 4.627 |
7 | 0.011 | 4.541 |
8 | 0.009 | 4.582 |
Sample | X | Y | Z | L* | C* | H* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|---|---|
REF | 93.23 | 98.42 | 103.62 | 99.4 | 1.29 | 94 | −0.09 | 1.29 | - |
1 | 85.53 | 90.88 | 81.82 | 96.4 | 11.1 | 95.96 | −1.15 | 11.04 | 10.26 |
2 | 88.96 | 94.41 | 92.93 | 97.8 | 5.68 | 99.79 | −0.97 | 5.6 | 4.68 |
3 | 83.86 | 89.01 | 80.51 | 95.6 | 10.72 | 95.09 | −0.95 | 10.68 | 10.17 |
4 | 85.34 | 90.49 | 79.42 | 96.2 | 12.59 | 93.61 | −0.79 | 12.56 | 11.74 |
5 | 87.56 | 93.03 | 85.05 | 97.2 | 10.24 | 96.3 | −1.12 | 10.18 | 9.22 |
6 | 85.92 | 91.25 | 81.45 | 96.5 | 11.62 | 95.2 | −1.05 | 11.57 | 10.72 |
7 | 89.07 | 94.72 | 89.63 | 97.9 | 8.19 | 99.1 | −1.3 | 8.09 | 7.07 |
8 | 88.37 | 93.88 | 84.86 | 97.6 | 10.97 | 95.89 | −1.13 | 10.91 | 9.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caicedo-Narváez, S.; Aldana-Heredia, J.F.; Ratkovich, N. Study of Ultrasound-Assisted Technology for Accelerating the Aging Process in a Sugar Cane Honey Spirit. Beverages 2024, 10, 62. https://doi.org/10.3390/beverages10030062
Caicedo-Narváez S, Aldana-Heredia JF, Ratkovich N. Study of Ultrasound-Assisted Technology for Accelerating the Aging Process in a Sugar Cane Honey Spirit. Beverages. 2024; 10(3):62. https://doi.org/10.3390/beverages10030062
Chicago/Turabian StyleCaicedo-Narváez, Santiago, Juan Felipe Aldana-Heredia, and Nicolas Ratkovich. 2024. "Study of Ultrasound-Assisted Technology for Accelerating the Aging Process in a Sugar Cane Honey Spirit" Beverages 10, no. 3: 62. https://doi.org/10.3390/beverages10030062
APA StyleCaicedo-Narváez, S., Aldana-Heredia, J. F., & Ratkovich, N. (2024). Study of Ultrasound-Assisted Technology for Accelerating the Aging Process in a Sugar Cane Honey Spirit. Beverages, 10(3), 62. https://doi.org/10.3390/beverages10030062