Quality Characteristics of Piquette: A Potential Use of Grape Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Piquette Process
2.2. Impact of Pomace to Water Ratio
2.3. Impact of Yeast Strains
2.4. Chemical Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Chemical Parameters
3.2. Sensory Evaluation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Q.; O’Keefe, S.F.; Stewart, A.C.; Neilson, A.P.; Kim, Y.-T.; Huang, H. Techno-Economic Analysis of a Grape Pomace Biorefinery: Production of Seed Oil, Polyphenols, and Biochar. Food Bioprod. Process. 2021, 127, 139–151. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Watrelot, A. Iowa Wine Industry and Its Educational Needs. J. Ext. 2022, 60, 13. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity–A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Lutz, M.; Fuentes, E.; Ávila, F.; Alarcón, M.; Palomo, I. Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases. Molecules 2019, 24, 366. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of Grape Pomace Powder Addition on Chemical, Nutritional and Technological Properties of Cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef]
- Acan, B.G.; Kilicli, M.; Bursa, K.; Toker, O.S.; Palabiyik, I.; Gulcu, M.; Yaman, M.; Gunes, R.; Konar, N. Effect of Grape Pomace Usage in Chocolate Spread Formulation on Textural, Rheological and Digestibility Properties. LWT 2021, 138, 110451. [Google Scholar] [CrossRef]
- Harutyunyan, M.; Viana, R.; Granja-Soares, J.; Martins, M.; Ribeiro, H.; Malfeito-Ferreira, M. Adaptation of Ancient Techniques to Recreate ‘Wines’ and ‘Beverages’ Using Withered Grapes of Muscat of Alexandria. Fermentation 2022, 8, 85. [Google Scholar] [CrossRef]
- Pickard, C. What Is Piquette? Meet Wine’s Easy-Drinking, Low-Alcohol Style | Wine Enthusiast. Available online: https://www.wineenthusiast.com/culture/wine/piquette-easy-drinking-low-alcohol-wine/ (accessed on 4 May 2024).
- Nieuwoudt, H.H.; Prior, B.A.; Pretorius, L.S.; Bauer, F.F. Glycerol in South African Table Wines: An Assessment of Its Relationship to Wine Quality. S. Afr. J. Enol. Vitic. 2017, 23, 22–30. [Google Scholar] [CrossRef]
- Swiegers, J.; Bartowsky, E.; Henschke, P.; Pretorius, I. Yeast and Bacterial Modulation of Wine Aroma and Flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Carrau, F.; Gaggero, C.; Aguilar, P.S. Yeast Diversity and Native Vigor for Flavor Phenotypes. Trends Biotechnol. 2015, 33, 148–154. [Google Scholar] [CrossRef]
- Watrelot, A.A. Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods. Molecules 2021, 26, 4923. [Google Scholar] [CrossRef] [PubMed]
- Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [PubMed]
- Scharfetter, J.; Workmaster, B.A.; Atucha, A. Preveraison Leaf Removal Changes Fruit Zone Microclimate and Phenolics in Cold Climate Interspecific Hybrid Grapes Grown under Cool Climate Conditions. Am. J. Enol. Vitic. 2019, 70, 297–307. [Google Scholar] [CrossRef]
- CoSeteng, M.Y.; McLellan, M.R.; Downing, D.L. Influence of Titratable Acidity and pH on Intensity of Sourness of Citric, Malic, Tartaric, Lactic and Acetic Acids Solutions and on the Overall Acceptability of Imitation Apple Juice. Can. Inst. Food Sci. Technol. J. 1989, 22, 46–51. [Google Scholar] [CrossRef]
- Manns, D.C.; Lenerz, C.T.M.C.; Mansfield, A.K. Impact of Processing Parameters on the Phenolic Profile of Wines Produced from Hybrid Red Grapes Maréchal Foch, Corot noir, and Marquette. J. Food Sci. 2013, 78, C696–C702. [Google Scholar] [CrossRef]
- Burtch, C.E.; Mansfield, A.K.; Manns, D.C. Reaction Kinetics of Monomeric Anthocyanin Conversion to Polymeric Pigments and Their Significance to Color in Interspecific Hybrid Wines. J. Agric. Food Chem. 2017, 65, 6379–6386. [Google Scholar] [CrossRef]
- Rice, S.; Koziel, J.A.; Dharmadhikari, M.; Fennell, A. Evaluation of Tannins and Anthocyanins in Marquette, Frontenac, and St. Croix Cold-Hardy Grape Cultivars. Fermentation 2017, 3, 47. [Google Scholar] [CrossRef]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.M.; Gil-Muñoz, R.; Bautista-Ortín, A.B. The Extraction of Anthocyanins and Proanthocyanidins from Grapes to Wine during Fermentative Maceration Is Affected by the Enological Technique. J. Agric. Food Chem. 2011, 59, 5450–5455. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Baker, A.K.; Ross, C.F. Wine Finish in Red Wine: The Effect of Ethanol and Tannin Concentration. Food Qual. Prefer. 2014, 38, 65–74. [Google Scholar] [CrossRef]
- Tilloy, V.; Ortiz-Julien, A.; Dequin, S. Reduction of Ethanol Yield and Improvement of Glycerol Formation by Adaptive Evolution of the Wine Yeast Saccharomyces Cerevisiae under Hyperosmotic Conditions. Appl. Environ. Microbiol. 2014, 80, 2623–2632. [Google Scholar] [CrossRef]
- Fan, S.; Liu, C.; Li, Y.; Zhang, Y. Visual Representation of Red Wine Color: Methodology, Comparison and Applications. Foods 2023, 12, 924. [Google Scholar] [CrossRef]
- Peres, S.; Giraud-Heraud, E.; Masure, A.-S.; Tempere, S. Rose Wine Market: Anything but Colour? Foods 2020, 9, 1850. [Google Scholar] [CrossRef]
Name | Grape Variety | Yeast Strains | Pomace to Water Ratio |
---|---|---|---|
PPB1 | Petite Pearl | Exotics Mosaic | 1:5 |
PPB2 | 1:2.5 | ||
PP1 | ICV D254 | 1:2 | |
PP2 | Cross Evolution | ||
PP3 | Exotics Mosaic | ||
M1 | Marquette | ICV D254 | |
M2 | Cross Evolution | ||
M3 | Exotics Mosaic |
Samples | pH | Titratable Acidity (g/L Tartaric Acid eq.) | Ethanol Conc. (Vol %) | L* | a* | b* |
---|---|---|---|---|---|---|
M1 | 3.36 ± 0.00 b | 6.10 ± 0.09 bc | 4.77 ± 0.06 | 69.90 ± 2.00 a | 23.90 ± 0.52 ab | 14.55 ± 0.21 c |
M2 | 3.39 ± 0.01 b | 5.70 ± 0.42 bc | 4.60 ± 0.00 | 69.65 ± 0.92 ab | 22.49 ± 0.30 abc | 15.47 ± 0.18 bc |
M3 | 3.38 ± 0.02 b | 5.15 ± 0.71 c | 4.77 ± 0.21 | 74.43 ± 2.36 a | 21.60 ± 0.62 abc | 14.45 ± 0.75 c |
PP1 | 3.35 ± 0.00 b | 6.30 ± 0.21 bc | 3.50 ± 0.00 | 56.35 ± 7.99 ab | 22.14 ± 1.96 abc | 7.04 ± 0.16 d |
PP2 | 3.38 ± 0.00 b | 5.33 ± 0.95 bc | 4.15 ± 1.28 | 43.85 ± 0.07 b | 20.19 ± 0.17 abc | 6.88 ± 0.26 d |
PP3 | 3.38 ± 0.01 b | 5.15 ± 0.48 c | 4.83 ± 0.15 | 53.00 ± 16.89 ab | 26.39 ± 5.73 a | 5.84 ± 0.24 d |
PPB1 | 3.61 ± 0.03 a | 6.75 ± 0.52 b | 3.63 ± 0.35 | 59.83 ± 1.84 ab | 15.07 ± 0.21 bc | 16.55 ± 0.67 b |
PPB2 | 3.48 ± 0.12 b | 9.08 ± 0.53 a | 3.95 ± 0.00 | 60.10 ± 2.26 ab | 17.62 ± 0.62 c | 19.60 ± 0.46 a |
Samples | Tartaric Acid | Fructose | Lactic Acid | Acetic Acid | Glycerol |
---|---|---|---|---|---|
M1 | 1.55 ± 0.08 a | 0.39 ± 0.00 bc | 0.06 ±0.01 a | 0.10 ± 0.00 ab | 10.60 ±0.05 b |
M2 | 1.15 ± 0.19 a | 0.45 ± 0.11 b | 0.06 ± 0.01 a | 0.08 ± 0.01 ab | 10.77 ± 0.32 b |
M3 | 1.28 ± 0.11 a | 0.25 ± 0.02 bcd | 0.05 ± 0.03 a | 0.07 ± 0.00 b | 10.48 ± 0.07 b |
PP1 | 1.07 ± 0.04 a | 1.93 ± 0.20 a | 0.04 ± 0.00 a | 0.15 ± 0.00 ab | 13.24 ± 0.24 a |
PP2 | 1.05 ± 0.10 a | 0.00 ± 0.00 d | 0.04 ± 0.01 a | 0.07 ± 0.00 ab | 10.63 ± 0.11 b |
PP3 | 1.18 ± 0.22 a | 0.13 ± 0.11 cd | 0.04 ± 0.00 a | 0.08 ± 0.00 ab | 10.22 ± 0.19 b |
PPB1 | 1.00 ± 0.27 a | 0.23 ± 0.03 bcd | 0.09 ± 0.03 a | 0.13 ± 0.09 ab | 8.41 ± 1.10 c |
PPB2 | 1.25 ± 0.30 a | 0.05 ± 0.07 d | 0.09 ± 0.00 a | 0.21 ± 0.00 a | 7.91 ± 0.30 c |
Samples | Color | Appearance | Smell | Taste | Mouthfeel | Acceptability |
---|---|---|---|---|---|---|
M1 | 7.4 ± 1.2 a | 6.2 ± 2.1 ab | 7.0 ± 1.0 a | 6.2 ± 1.6 ab | 6.6 ± 1.6 ab | 6.3 ± 1.6 ab |
M2 | 7.1 ± 1.2 ab | 6.3 ± 1.7 ab | 6.4 ± 1.2 ab | 6.4 ± 1.2 ab | 6.5 ± 1.5 ab | 6.5 ± 1.3 ab |
M3 | 6.5 ± 1.8 b | 4.5 ± 2.5 c | 5.6 ± 2.5 ab | 5.6 ± 1.9 ab | 5.8 ± 2.0 b | 5.1 ± 1.9 c |
PP1 | 7.4 ± 1.3 a | 6.5 ± 1.9 a | 6.6 ± 1.6 a | 6.8 ± 1.4 a | 6.9 ± 1.7 a | 6.7 ± 1.6 a |
PP2 | 7.3 ± 1.6 a | 6.3 ± 1.9 a | 5.4 ± 2.5 ab | 5.6 ± 2.1 ab | 6.3 ± 1.8 ab | 5.7 ± 2.0 abc |
PP3 | 7.6 ± 1.7 a | 7.1 ± 1.9 a | 6.7 ± 1.6 ab | 6.4 ± 1.8 ab | 6.6 ± 2.0 ab | 6.7 ± 1.9 ab |
PPB1 | 6.0 ± 1.8 b | 4.4 ± 1.9 bc | 4.4 ± 2.7 bc | 5.0 ± 2.1 ab | 5.8 ± 1.9 ab | 4.8 ± 2.2 abc |
PPB2 | 5.8 ± 2.0 ab | 4.8 ± 2.0 ab | 3.5 ± 2.2 c | 4.5 ± 2.1 b | 5.4 ± 2.0 ab | 4.4 ± 2.2 bc |
Correlation | Color | Appearance | Smell | Taste | Mouthfeel | Acceptability |
---|---|---|---|---|---|---|
pH | −0.779 * | −0.679 | −0.734 * | −0.732 * | −0.630 | −0691 |
Titratable Acidity | −0.701 | −0.458 | −0.724 * | −0.685 | −0.577 | −0.604 |
Ethanol (vol%) | 0.328 | 0.272 | 0.487 | 0.317 | 0.184 | 0.303 |
L* | −0.243 | −0.400 | 0.146 | 0.102 | −0.091 | −0.095 |
a* | 0.846 ** | 0.787 * | 0.867 ** | 0.805 * | 0.709 * | 0.826 * |
b* | −0.801 * | −0.751 * | −0.584 | −0.623 | −0.630 | −0.680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watrelot, A.A.; Hollis, J. Quality Characteristics of Piquette: A Potential Use of Grape Pomace. Beverages 2024, 10, 64. https://doi.org/10.3390/beverages10030064
Watrelot AA, Hollis J. Quality Characteristics of Piquette: A Potential Use of Grape Pomace. Beverages. 2024; 10(3):64. https://doi.org/10.3390/beverages10030064
Chicago/Turabian StyleWatrelot, Aude A., and James Hollis. 2024. "Quality Characteristics of Piquette: A Potential Use of Grape Pomace" Beverages 10, no. 3: 64. https://doi.org/10.3390/beverages10030064
APA StyleWatrelot, A. A., & Hollis, J. (2024). Quality Characteristics of Piquette: A Potential Use of Grape Pomace. Beverages, 10(3), 64. https://doi.org/10.3390/beverages10030064