Effect of Heat Pasteurization and Enzymatic Maceration on Yield, Color, Sugars, Organic Acids, and Phenolic Content in the ‘Merlot Kanthus’ Grape Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Enzyme Treatment of the Mash and Juice Preparation
2.3. Pressing Yield
2.4. Color Measurements
2.5. Sugar and Organic Acid Extraction and Determination
2.6. Phenolic Compounds Analysis on PDA–HPLC MSn System
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yield
3.2. Color of Grape Juice
3.3. Sugar and Organic Acid Content in Grape Juice
3.4. Effect of Heat Treatment on Phenolic Compound Content in Grape Mash
3.5. Effect of Enzyme Treatment on Phenolic Compound Content in Hot Grape Mash
3.6. Effect of Heat and Enzyme Treatments on the Content of Total and Individual Phenolic Compounds in Grape Juice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Total Anthocyanins | Total Flavonols | Total Stilbenes | Total Hydroxycinnamic Acid | Total Flavanols | Total Hydroxybenzoic Acid | Total Phenolics | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Heat Treatment | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. |
Mash cold | 1078.2 | 46.3 | a | 49.9 | 3.7 | a | 1.2 | 0.1 | a | 58.3 | 2.4 | a | 938.8 | 45.7 | a | 8.9 | 0.5 | a | 2135.3 | 93.7 | a |
Mash hot | 987.1 | 59.6 | a | 49.4 | 4.5 | a | 1.2 | 0.2 | a | 63.9 | 3.9 | a | 1092.9 | 85.3 | a | 7.8 | 0.5 | a | 2202.4 | 152.5 | a |
Total Anthocyanins | Total Flavonols | Total Stilbenes | Total Hydroxycinnamic Acid | Total Flavanols | Total Hydroxybenzoic Acid | Total Phenolics | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enzyme Treatment | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. | Mean | ±SE | Sign. |
No enzyme | 839.7 | 28.2 | a | 43.3 | 2.9 | a | 1.1 | 0.04 | a | 53.3 | 2.8 | a | 866.6 | 62.4 | a | 6.9 | 0.1 | a | 1810.9 | 90.5 | a |
Low enzyme | 1046.6 | 40.6 | b | 57.6 | 5.7 | a | 1.2 | 0.3 | b | 67.8 | 1.2 | a | 1174.9 | 40.1 | b | 8.3 | 0.1 | b | 2352.8 | 42.3 | b |
High enzyme | 1038.6 | 43.9 | b | 57.6 | 6.7 | a | 1.32 | 0.5 | b | 65.5 | 3.3 | a | 1116.3 | 25.1 | ab | 8.6 | 0.1 | b | 2287.9 | 79.7 | b |
References
- Cosme, F.; Pinto, T.; Vilela, A. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View. Beverages 2018, 4, 22. [Google Scholar] [CrossRef]
- Capanoglu, E.; de Vos, R.C.H.; Hall, R.D.; Boyacioglu, D.; Beekwilder, J. Changes in Polyphenol Content during Production of Grape Juice Concentrate. Food Chem. 2013, 139, 521–526. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 370438. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Ambriz-Pére, D.L.; Leyva-López, N.; Castillo-López, R.I.; Heredia, J.B. Review: Dietary Phenolic Compounds, Health Benefits and Bioaccessibility. Arch. Latinoam. Nutr. 2016, 66, 87–100. [Google Scholar]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, D.J.; Devaraj, S.; Grundy, S.M.; Jialal, I. Comparison of the Antioxidant Effects of Concord Grape Juice Flavonoids α-Tocopherol on Markers of Oxidative Stress in Healthy Adults. Am. J. Clin. Nutr. 2002, 76, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, D.; Dimitrova-Dimova, M.; Popova, A. Dietary Phenolic Compounds—Wellbeing and Perspective Applications. Int. J. Mol. Sci. 2024, 25, 4769. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Bendaali, Y.; Vaquero, C.; González, C.; Morata, A. Elaboration of an Organic Beverage Based on Grape Juice with Positive Nutritional Properties. Food Sci. Nutr. 2022, 10, 1768–1779. [Google Scholar] [CrossRef]
- Amuakwa-Mensah, F.; Amuakwa-Mensah, S.; Klege, R.; Adom, P. Stockpiling and Food Worries: Changing Habits and Choices in the Midst of COVID-19 Pandemic. Socio-Econ. Plan. Sci. 2022, 82, 101181. [Google Scholar] [CrossRef]
- Bogevska, Z.; Berjan, S.; El Bilali, H.; Allahyari, M.S.; Radosavac, A.; Davitkovska, M. Exploring Food Shopping, Consumption and Waste Habits in North Macedonia during the COVID-19 Pandemic. Socio-Econ. Plan. Sci. 2021, 82, 101150. [Google Scholar] [CrossRef] [PubMed]
- Burin, V.M.; Falcão, L.D.; Gonzaga, L.V.; Fett, R.; Rosier, J.P.; Bordignon-Luiz, M.T. Colour, Phenolic Content and Antioxidant Activity of Grape Juice. Food Sci. Technol. 2010, 30, 1027–1032. [Google Scholar] [CrossRef]
- Rodríguez Montealegre, R.; Romero Peces, R.; Chacón Vozmediano, J.L.; Martínez Gascueña, J.; García Romero, E. Phenolic Compounds in Skins and Seeds of Ten Grape Vitis vinifera Varieties Grown in a Warm Climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Kupe, M.; Karatas, N.; Unal, M.S.; Ercisli, S.; Baron, M.; Sochor, J. Phenolic Composition and Antioxidant Activity of Peel, Pulp and Seed Extracts of Different Clones of the Turkish Grape Cultivar ‘Karaerik’. Plants 2021, 10, 2154. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Choi, J.-S.; Lee, M.-H.; Jang, H.-H.; Kim, H.-S.; Kim, D.-Y.; Yeo, S.-H.; Park, H.-D. Effect of Pectinase Treatment on Extraction Yield and Physicochemical Properties of Aronia Juice. Korean J. Food Preserv. 2017, 24, 68–73. [Google Scholar] [CrossRef]
- Nehmé, L.; El Tekle, M.; Barakat, N.; El Khoury, A.; Azzi-Achkouty, S.; El Rayess, Y. Alternative Processes for Apple Juice Stabilization and Clarification: A Bibliometric and Comprehensive Review. Processes 2024, 12, 296. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Najafpour, G.D.; Mohammadi, M. Production of Pectinases for Quality Apple Juice through Fermentation of Orange Pomace. J. Food Sci. Technol. 2017, 54, 4123–4128. [Google Scholar] [CrossRef] [PubMed]
- Decanter, M. ROHAPECT® VR-L ROHAPECT® UF ROHAMENT® CL ROHALASE® AFL GAMMADEX CAL. Available online: https://www.abenzymes.com/media/2656/ab_enzymes_rohapect.pdf (accessed on 25 April 2024).
- Wilczy’nski, K.; Kobus, Z.; Dziki, D. Effect of Press Construction on Yield and Quality of Apple Juice. Sustainability 2019, 11, 3630. [Google Scholar] [CrossRef]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Measuring the Color of Table Grapes. Color Res. Appl. 1996, 21, 50–54. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Koron, D.; Rusjan, D. The Impact of Food Processing on the Phenolic Content in Products Made from Juneberry (Amelanchier lamarckii) Fruits. J. Food Sci. 2020, 85, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Singh Jadaun, J. Pectinase: A Useful Tool in Fruit Processing Industries. NFSIJ 2018, 5, 555673. [Google Scholar] [CrossRef]
- dos Santos Lima, M.; da Conceição Prudêncio Dutra, M.; Toaldo, I.M.; Corrêa, L.C.; Pereira, G.E.; de Oliveira, D.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic Compounds, Organic Acids and Antioxidant Activity of Grape Juices Produced in Industrial Scale by Different Processes of Maceration. Food Chem. 2015, 188, 384–392. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Ibarz, M.J.; Cacho, J.; Ferreira, V. Addition of Amino Acids to Grape Juice of the Merlot Variety: Effect on Amino Acid Uptake and Aroma Generation during Alcoholic Fermentation. Food Chem. 2006, 98, 300–310. [Google Scholar] [CrossRef]
- Praskova, Y.A.; Kiseleva, T.F.; Shkrabtak, N.V.; Pomozova, V.A.; Frolova, N.A. Study of the Effect of Enzymes on the Clarification of Juice from the Fruits of Amur Grapes. IOP Conf. Ser. Earth Environ. Sci. 2022, 1052, 012099. [Google Scholar] [CrossRef]
- Siddiq, M.; Dolan, K.D.; Perkins-Veazie, P.; Collins, J.K. Effect of Pectinolytic and Cellulytic Enzymes on the Physical, Chemical, and Antioxidant Properties of Blueberry (Vaccinium corymbosum L.) Juice. Lebensm. Wiss. Technol. 2018, 92, 127–132. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Puertas, B.; Fernández, M.I.; Palma, M.; Cantos-Villar, E. Induction of Stilbenes in Grapes by UV-C: Comparison of Different Subspecies of Vitis. Innov. Food Sci. Emerg. Technol. 2010, 11, 231–238. [Google Scholar] [CrossRef]
- Aguilar, T.; Loyola, C.; Bruijn, J.; Bustamante, L.; Vergara Rosales, C.; von Baer, D.; Mardones, C.; Serra Stepke, I. Effect of Thermomaceration and Enzymatic Maceration on Phenolic Compounds of Grape Must Enriched by Grape Pomace, Vine Leaves and Canes. Eur. Food Res. Technol. 2016, 242, 1149–1158. [Google Scholar] [CrossRef]
- Guler, A. Effects of Different Maceration Techniques on the Colour, Polyphenols and Antioxidant Capacity of Grape Juice. Food Chem. 2023, 404, 134603. [Google Scholar] [CrossRef]
- Romero-Cascales, I.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. The Effect of a Commercial Pectolytic Enzyme on Grape Skin Cell Wall Degradation and Colour Evolution during the Maceration Process. Food Chem. 2012, 130, 626–631. [Google Scholar] [CrossRef]
- Kontić, J.K.; Jelušić, I.R.; Tomaz, I.; Preiner, D.; Marković, Z.; Stupić, D.; Andabaka, Ž.; Maletić, E. Polyphenolic Composition of the Berry Skin of Six Fungus-Resistant Red Grapevine Varieties. Int. J. Food Prop. 2016, 19, 1809–1824. [Google Scholar] [CrossRef]
- Durner, D. 12—Improvement and Stabilization of Red Wine Color. In Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2016; pp. 239–264. ISBN 978-0-08-100371-8. [Google Scholar]
- Dimitrovska, M.; Bocevska, M.; Dimitrovski, D.; Murkovic, M. Anthocyanin Composition of Vranec, Cabernet Sauvignon, Merlot and Pinot Noir Grapes as Indicator of Their Varietal Differentiation. Eur. Food Res. Technol. 2011, 232, 591–600. [Google Scholar] [CrossRef]
- Ferreira, I.M.P.L.V.O.; Pérez-Palacios, M.T. Chapter 1—Anthocyanic Compounds and Antioxidant Capacity in Fortified Wines. In Processing and Impact on Antioxidants in Beverages; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 3–14. ISBN 978-0-12-404738-9. [Google Scholar]
- Peng, Z.; Hayasaka, Y.; Iland, P.G.; Sefton, M.; Høj, P.; Waters, E.J. Quantitative Analysis of Polymeric Procyanidins (Tannins) from Grape (Vitis vinifera) Seeds by Reverse Phase High-Performance Liquid Chromatography. J. Agric. Food Chem. 2001, 49, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, S.A.; Gualberto, N.C.; Neta, M.T.S.L.; Batista, R.A.; Araújo, S.M.; da Silveira Moreira, J.D.J.; Narain, N. Catechin and Epicatechin Contents in Wines Obtained from Brazilian Exotic Tropical Fruits. Food Nutr. Sci. 2014, 5, 449–457. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Talcott, S.T.; Lee, J.-H. Ellagic Acid and Flavonoid Antioxidant Content of Muscadine Wine and Juice. J. Agric. Food Chem. 2002, 50, 3186–3192. [Google Scholar] [CrossRef] [PubMed]
- Hornedo-Ortega, R.; González-Centeno, M.R.; Chira, K.; Jourdes, M.; Teissedre, P.-L.; Hornedo-Ortega, R.; González-Centeno, M.R.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception; IntechOpen: London, UK, 2020; ISBN 978-1-83962-576-3. [Google Scholar]
- Leblanc, M.R.; Johnson, C.E.; Wilson, P.W. Influence of Pressing Method on Juice Stilbene Content in Muscadine and Bunch Grapes. J. Food Sci. 2008, 73, H58–H62. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhang, Z.-W. Comparison on Phenolic Compounds and Antioxidant Properties of Cabernet Sauvignon and Merlot Wines from Four Wine Grape-Growing Regions in China. Molecules 2012, 17, 8804–8821. [Google Scholar] [CrossRef]
- Flamini, R. Mass Spectrometry in Grape and Wine Chemistry. Part I: Polyphenols. Mass Spectrom. Rev. 2003, 22, 218–250. [Google Scholar] [CrossRef]
Heat Treatment | Enzyme Treatment | L* | C* | h° | CIRG Index | Color |
---|---|---|---|---|---|---|
Unpasteurized juice | No enzyme | 23.3 ± 0.03 | 3.4 ± 0.07 | 63.2 ± 1.86 | 4.4 ± 0.06 ab | Red |
Low enzyme | 23.1 ± 0.06 | 3.3 ± 0.03 | 64.9 ± 1.13 | 4.4 ± 0.04 ab | Red | |
High enzyme | 23.1 ± 0.07 | 3.3 ± 0.03 | 69.3 ± 2.49 | 4.2 ± 0.08 a | Red | |
Pasteurized juice | No enzyme | 23.2 ± 0.12 | 3.3 ± 0.10 | 62.0 ± 1.17 | 4.5 ± 0.04 b | Red |
Low enzyme | 23.2 ± 0.03 | 3.4 ± 0.18 | 64.5 ± 0.57 | 4.3 ± 0.04 ab | Red | |
High enzyme | 23.2 ± 0.1 | 3.3 ± 0.09 | 63.3 ± 2.49 | 4.4 ± 0.09 b | Red | |
p heat treatment | 0.726 | 0.582 | 0.111 | 0.030 | ||
p enzyme treatment | 0.801 | 0.692 | 0.637 | 0.044 | ||
p INT | 0.968 | 0.871 | 0.863 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puzovic, A.; Pelacci, M.; Simkova, K.; Hudina, M.; Rusjan, D.; Veberic, R.; Mikulic-Petkovsek, M. Effect of Heat Pasteurization and Enzymatic Maceration on Yield, Color, Sugars, Organic Acids, and Phenolic Content in the ‘Merlot Kanthus’ Grape Juice. Beverages 2024, 10, 66. https://doi.org/10.3390/beverages10030066
Puzovic A, Pelacci M, Simkova K, Hudina M, Rusjan D, Veberic R, Mikulic-Petkovsek M. Effect of Heat Pasteurization and Enzymatic Maceration on Yield, Color, Sugars, Organic Acids, and Phenolic Content in the ‘Merlot Kanthus’ Grape Juice. Beverages. 2024; 10(3):66. https://doi.org/10.3390/beverages10030066
Chicago/Turabian StylePuzovic, Alema, Massimiliano Pelacci, Kristyna Simkova, Metka Hudina, Denis Rusjan, Robert Veberic, and Maja Mikulic-Petkovsek. 2024. "Effect of Heat Pasteurization and Enzymatic Maceration on Yield, Color, Sugars, Organic Acids, and Phenolic Content in the ‘Merlot Kanthus’ Grape Juice" Beverages 10, no. 3: 66. https://doi.org/10.3390/beverages10030066
APA StylePuzovic, A., Pelacci, M., Simkova, K., Hudina, M., Rusjan, D., Veberic, R., & Mikulic-Petkovsek, M. (2024). Effect of Heat Pasteurization and Enzymatic Maceration on Yield, Color, Sugars, Organic Acids, and Phenolic Content in the ‘Merlot Kanthus’ Grape Juice. Beverages, 10(3), 66. https://doi.org/10.3390/beverages10030066