Innovative Craft Beers Added with Purple Grape Pomace: Exploring Technological, Sensory, and Bioactive Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of the by-Product; Craft Beer Production; and Physicochemical, Technological, and Sensory Properties
2.2.1. Proximal Composition of Grape Pomace
2.2.2. Production of Craft Beer with Grape Pomace
2.2.3. Physicochemical Characterization, Technological Properties, and Color Profile
2.2.4. Bioactive Characterization
Preparation of Extracts
Total Phenolic Compounds
Total Anthocyanins
Flavonoids
Antioxidant Activity (ABTS, DPPH, and FRAP Methods)
2.2.5. Sensory Analysis
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical and Bioactive Characterization of Grape Pomace from Grape Juice Production
3.2. Physicochemical, Technological, and Color Characterization of Craft Beer Added with Grape Pomace
3.3. Bioactive Characterization
3.4. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Grape Juice—Worldwide. Available online: https://www.statista.com/outlook/cmo/non-alcoholic-drinks/juices/grape-juice/worldwide (accessed on 20 July 2024).
- Egea, M.B.; Santos, D.C.; Neves, J.F.; Lamas, I.B.; Oliveira-Filho, J.G.; Takeuchi, K.P. Physicochemical Characteristics and Rheological Properties of Soymilk Fermented with Kefir. Biointerface Res. Appl. Chem. 2023, 13, 1–10. [Google Scholar]
- Lira, M.M.; de Oliveira Filho, J.G.; de Sousa, T.L.; da Costa, N.M.; Lemes, A.C.; Fernandes, S.S.; Egea, M.B. Selected plants producing mucilage: Overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res. Int. 2023, 169, 112822. [Google Scholar] [CrossRef] [PubMed]
- Tridge. Grape Juice. Available online: https://www.tridge.com/intelligences/grape-juice/export (accessed on 20 July 2024).
- de Andrade Kaltbach, S.B.; Kaltbach, P.L.P.K.; Costa, V.B.; Bender, A.; Herter, F.G.; de Souza, A.L.K. Qualitative potential of grape juices produced at Campanha Gaúcha, Brazil. Rev. Thema 2023, 22, 283–297. [Google Scholar] [CrossRef]
- Mello, L.M.R. Vitivinicultura brasileira: Panorama 2018. Embrapa Uva e Vinho. 2019, 1, 1–12. [Google Scholar]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Onache, P.A.; Geana, E.-I.; Ciucure, C.T.; Florea, A.; Sumedrea, D.I.; Ionete, R.E.; Tița, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395. [Google Scholar] [CrossRef]
- Barbera, A.C.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 2013, 119, 43–53. [Google Scholar] [CrossRef]
- Lemes, A.C.; Egea, M.B.; de Oliveira Filho, J.G.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Front. Bioeng. Biotechnol. 2022, 9, 802543. [Google Scholar] [CrossRef]
- Daniela, T.-R.; del Socorro, L.-C.M.; Fortunata, S.-T.; Patricia, R.-M.; Felipe, G.-O.; Teresa, H.-B.M.; de la Paz, S.-C.M. Optimization of the Extraction of Bioactive Compounds from Cabernet Sauvignon Grape Pomace from Querétaro, Mexico, Using MSPD. Separations 2024, 11, 13. [Google Scholar] [CrossRef]
- Gerardi, C.; D’Amico, L.; Durante, M.; Tufariello, M.; Giovinazzo, G. Whole Grape Pomace Flour as Nutritive Ingredient for Enriched Durum Wheat Pasta with Bioactive Potential. Foods 2023, 12, 2593. [Google Scholar] [CrossRef]
- Rodríguez, L.A.; Toro, M.E.; Vazquez, F.; Correa-Daneri, M.L.; Gouiric, S.C.; Vallejo, M.D. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int. J. Hydrogen Energy 2010, 35, 5914–5917. [Google Scholar] [CrossRef]
- Gasiński, A.; Kawa-Rygielska, J.; Mikulski, D.; Kłosowski, G.; Głowacki, A. Application of white grape pomace in the brewing technology and its impact on the concentration of esters and alcohols, physicochemical parameteres and antioxidative properties of the beer. Food Chem. 2022, 367, 130646. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, N.; Bianchi, A.; Pettinelli, S.; Santini, G.; Merlani, G.; Bellincontro, A.; Baris, F.; Chinnici, F.; Mencarelli, F. Novelty of Italian Grape Ale (IGA) beer: Influence of the addition of Gamay macerated grape must or dehydrated Aleatico grape pomace on the aromatic profile. Heliyon 2023, 9, e20422. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Farber, M.; Barth, R. Mastering Brewing Science: Quality and Production, 1st ed.; Wiley: Chichester, UK, 2019; p. 592. [Google Scholar]
- Hejna, A. More than just a beer—The potential applications of by-products from beer manufacturing in polymer technology. Emerg. Mater. 2022, 5, 765–783. [Google Scholar] [CrossRef]
- Baiano, A. Craft beer: An overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1829–1856. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.C.; Dos Anjos, J.P.; Guarieiro, L.L.N.; Machado, B.A.S. A Simple Method for Evaluating the Bioactive Phenolic Compounds’ Presence in Brazilian Craft Beers. Molecules 2021, 26, 4716. [Google Scholar] [CrossRef]
- Silva, S.; Cruz, A.; Oliveira, R.; Oliveira, A.; Pinho, C. Potential biological activities of craft beer: A review. Acta Port. Nutr. 2021, 25, 84–89. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Zou, M.L.; Moughan, P.J.; Awati, A.; Livesey, G. Accuracy of the Atwater factors and related food energy conversion factors with low-fat, high-fiber diets when energy intake is reduced spontaneously. Am. J. Clin. Nutr. 2007, 86, 1649–1656. [Google Scholar] [CrossRef]
- Piva, R.C.; Verdan, M.H.; Mascarenhas Santos, M.D.S.; Batistote, M.; Cardoso, C.A.L. Manufacturing and characterization of craft beers with leaves from Ocimum selloi Benth. J. Food Sci. Technol. 2021, 58, 4403–4410. [Google Scholar] [CrossRef]
- Leike, A. Demonstration of the exponential decay law using beer froth. Eur. J. Phys. 2002, 23, 21–26. [Google Scholar] [CrossRef]
- BallL, S.; Lloyd, L. Analysis of typical components of alcoholic beverages. Food Beverage 2011, 1–2. [Google Scholar]
- Viana, A.C.; Pimentel, T.C.; Borges do Vale, R.; Clementino, L.S.; Januario Ferreira, E.T.; Magnani, M.; dos Santos Lima, M. American pale Ale craft beer: Influence of brewer’s yeast strains on the chemical composition and antioxidant capacity. LWT 2021, 152, 112317. [Google Scholar] [CrossRef]
- EBC. Analytical Methods for Breweries by EBC. 9.8—Bitterness of Beer (IM); EBC: Brussels, Belgium, 2007. [Google Scholar]
- dos Santos, D.C.; Pimentel, T.C.; de Sousa, T.L.; de Almeida, A.B.; Oliveira, M.S.; de Oliveira Filho, J.G.; Silva, F.G.; Egea, M.B. Cerrado cagaita (Eugenia dysenterica) cloudy and clarified beverages: Effect of kefir fermentation and inulin addition. Food Biosci. 2024, 61, 104767. [Google Scholar] [CrossRef]
- dos Santos, D.C.; de Sousa, T.L.; de Sousa Santana, J.F.; de Almeida, A.B.; Silva, F.G.; Egea, M.B. Commercial craft beers of midwest Brazil: Biochemical and physicochemical properties and their relationship with its sensory profile. Food Sci. Technol. 2023, 43, 1–11. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Almeida, F.D.L.; Cavalcante, R.S.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innov. Food Sci. Emerg. Technol. 2015, 32, 127–135. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Subhasree, B.; Baskar, R.; Laxmi Keerthana, R.; Lijina Susan, R.; Rajasekaran, P. Evaluation of antioxidant potential in selected green leafy vegetables. Food Chem. 2009, 115, 1213–1220. [Google Scholar] [CrossRef]
- do Socorro, M.; Rufino, M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.; Swaney-Stueve, M.; Chheang, S.L.; Hunter, D.; Pineau, B.; Ares, G. An assessment of the CATA-variant of the EsSense Profile®. Food Qual. Pref. 2018, 68, 360–370. [Google Scholar] [CrossRef]
- Silva, C.B.F.; Tavares Filho, E.R.; Pimentel, T.C.; Pagani, M.M.; Mársico, E.T.; Cruz, A.G.; Esmerino, E.A. The impact of information on the perception, emotional profile, and insights of Brazilian pet owners with different degrees of entomophobia. Food Qual. Pref. 2023, 110, 104967. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (a w) on Microbial Stability as a Hurdle in Food Preservation. In Water Activity in Foods; Wiley: Chichester, UK, 2020; pp. 323–355. [Google Scholar]
- Machado, A.R.; Voss, G.B.; Machado, M.; Paiva, J.A.P.; Nunes, J.; Pintado, M. Chemical characterization of the cultivar ‘Vinhão’ (Vitis vinifera L.) grape pomace towards its circular valorisation and its health benefits. Meas. Food 2024, 15, 100175. [Google Scholar] [CrossRef]
- Nicolai, M.; Pereira, P.; Rijo, P.; Amaral, O.; Amaral, A.; Palma, L. Vitis vinera L. pomace: Chemical and nutritional characterization. J. Biomed. Biopharm. Res. 2018, 15, 156–166. [Google Scholar] [CrossRef]
- Pereira, P.; Palma, M.L.; Palma, C.; Borges, C.; Maurício, E.; Fernando, A.L.; Duarte, M.P.; Lageiro, M.; Fernandes, A.; Mateus, N.; et al. Exploring the Benefits of Nutritional and Chemical Characteristics of Touriga Nacional and Arinto Varieties (Vitis vinifera L.). Foods 2024, 13, 1535. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; Morais, S.M.d.; Lima, A.d.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 132–142. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Rodrigues, E.; Gonzaga, L.V.; Caliari, V.; Genovese, M.I.; Gonçalves, A.E.d.S.S.; Fett, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, D. Economical and eco-friendly isolation of anthocyanins from grape pomace with higher efficiency. Food Chem. X 2022, 15, 100419. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, P.; Liu, Y.; Zha, L.; Ling, W.; Guo, H. A dose-response evaluation of purified anthocyanins on inflammatory and oxidative biomarkers and metabolic risk factors in healthy young adults: A randomized controlled trial. Nutrition 2020, 74, 110745. [Google Scholar] [CrossRef] [PubMed]
- Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. [Google Scholar] [CrossRef]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Wasilewski, T.; Hordyjewicz-Baran, Z.; Zarębska, M.; Stanek, N.; Zajszły-Turko, E.; Tomaka, M.; Bujak, T.; Nizioł-Łukaszewska, Z. Sustainable Green Processing of Grape Pomace Using Micellar Extraction for the Production of Value-Added Hygiene Cosmetics. Molecules 2022, 27, 2444. [Google Scholar] [CrossRef]
- Klimczak, K.; Cioch-Skoneczny, M. Changes in beer bitterness level during the beer production process. Eur. Food Res. Technol. 2023, 249, 13–22. [Google Scholar] [CrossRef]
- Oladokun, O.; James, S.; Cowley, T.; Dehrmann, F.; Smart, K.; Hort, J.; Cook, D. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chem. 2017, 230, 215–224. [Google Scholar] [CrossRef]
- Gänz, N.; Becher, T.; Drusch, S.; Titze, J. Interaction of proteins and amino acids with iso-α-acids during wort preparation in the brewhouse. Eur. Food Res. Technol. 2022, 248, 741–750. [Google Scholar] [CrossRef]
- Subiría-Cueto, C.R.; Muñoz-Bernal, Ó.A.; de la Rosa, L.A.; Wall-Medrano, A.; Rodrigo-García, J.; Martinez-Gonzalez, A.I.; González-Aguilar, G.; del Rocío Martínez-Ruiz, N.; Alvarez-Parrilla, E. Adsorption of grape pomace (Vitis vinifera) and pecan shell (Carya illinoensis) phenolic compounds to insoluble dietary fiber. Food Sci. Technol. 2022, 42, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K. Grape pomace as a biosorbent for fluoride removal from groundwater. RSC Adv. 2019, 9, 7767–7776. [Google Scholar] [CrossRef] [PubMed]
- Bamforth, C.W. The physics and chemistry of beer foam: A review. European Food Res. Technol. 2023, 249, 3–11. [Google Scholar] [CrossRef]
- Lyu, W.; Bauer, T.; Gatternig, B.; Delgado, A.; Schellin, T. Experimental and Numerical Investigation of Beer Foam. Phys. Fluids 2022, 35, 023318. [Google Scholar] [CrossRef]
- Wiesen, E.; Becker, T.; Gastl, M. Turbidity and Haze Formation in Beer—Insights and Overview. J. Inst. Brew. 2010, 116, 360–368. [Google Scholar] [CrossRef]
- Vidgren, V.; Londesborough, J. 125th Anniversary Review: Yeast Flocculation and Sedimentation in Brewing. J. Inst. Brew. 2011, 117, 475–487. [Google Scholar] [CrossRef]
- Ly, B.; Dyer, E.; Feig, J.; Chien, A.; Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3–12. [Google Scholar] [CrossRef]
- Li, K.; Zhong, W.; Li, P.; Ren, J.; Jiang, K.; Wu, W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int. J. Biol. Macromol. 2023, 251, 125992. [Google Scholar] [CrossRef]
- Luchian, C.; Cotea, V.; Vlase, L.; Toiu, A.; Colibaba, C.; Raschip, I.; Nadăş, G.; Vlase, A.-M.; Tuchiluş, C.; Liliana, R. Antioxidant and antimicrobial effects of grape pomace extracts. In BIO Web Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 15, p. 04006. [Google Scholar] [CrossRef]
- Nedyalkov, P.; Bakardzhiyski, I.; Shikov, V.; Kaneva, M.; Shopska, V. Possibilities for Utilization of Cherry Products (Juice and Pomace) in Beer Production. Beverages 2023, 9, 95. [Google Scholar] [CrossRef]
- Castro Marin, A.; Baris, F.; Romanini, E.; Lambri, M.; Montevecchi, G.; Chinnici, F. Physico-Chemical and Sensory Characterization of a Fruit Beer Obtained with the Addition of Cv. Lambrusco Grapes Must. Beverages 2021, 7, 34. [Google Scholar] [CrossRef]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef] [PubMed]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Deng, Y.; Lim, J.; Nguyen, T.T.H.; Mok, I.K.; Piao, M.; Kim, D. Composition and biochemical properties of ale beer enriched with lignans from Schisandra chinensis Baillon (omija) fruits. Food Sci. Biotechnol. 2020, 29, 609–617. [Google Scholar] [CrossRef]
- Sriwichai, W.; Detchewa, P.; Prasajak, P. Evaluation of The Physicochemical, Sensorial and Antioxidant Properties of Functional Ale Beer Brewed with Rice and Fruit by-Products. Chiang Mai Univ. J. Nat. Sci. 2021, 20, e2021031. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Feitosa, W.S.C.; Abreu, V.K.G.; Lemos, T.O.; Gomes, W.F.; Narain, N.; Rodrigues, S. Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Res. Int. 2017, 100, 603–611. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer: New York, NY, USA, 1999; Volume 1, p. 827. [Google Scholar]
Component | Wet Basis | Dry Basis |
---|---|---|
Moisture (%) | 78.27 ± 0.35 | - |
Protein (%) | 1.30 ± 0.20 | 6.56 ± 0.37 |
Ash (%) | 0.65 ± 0.04 | 3.00 ± 0.17 |
Ether extract (%) | 1.48 ± 0.05 | 6.85 ± 0.22 |
Carbohydrates (%) | 18.17 ± 0.41 | 84.08 ± 0.79 |
Energetic value (kcal) | 91.22 ± 1.12 | 424.34 ± 3.84 |
pH | 4.29 ± 0.10 | - |
Total titratable acidity (%) | 6.65 ± 0.09 | - |
Total phenolic compounds (mg GAE/L) | 3866.23 ± 1.45 | - |
Total anthocyanins (mg of cyanidin-3-glucoside/L) | 1368.37 ± 74.60 | - |
FRAP (mg of ascorbic acid/L) | 6499.03 ± 11.36 | - |
ABTS (µM Trolox/L) | 43,311.37 ± 13.44 | - |
DPPH (µM Trolox/L) | 33,549.36 ± 5.69 | - |
Analysis/Samples | Control | 1% | 5% | 10% |
---|---|---|---|---|
pH | 4.08 a ± 0.06 | 4.08 a ± 0.07 | 4.01 ab ± 0.05 | 3.94 b ± 0.05 |
Soluble solids (°Brix) | 5.26 b ± 0.11 | 6.48 a ± 0.10 | 6.40 a ± 0.06 | 6.35 a ± 0.03 |
Total titratable acidity (%) | 2.56 ± 0.31 b | 2.69 b ± 0.15 | 2.85 ab ± 0.17 | 3.13 a ± 0.17 |
Alcohol content (%) | 3.8 | 5.5 | 5.43 | 5.43 |
Bitterness (IBU) | 28.57 a ± 1.50 | 27.30 a ± 1.40 | 15.00 b ± 0.43 | 16.66 b ± 0.84 |
Beer foam (cm) | 2.75 a ± 0.25 | 1.83 b ± 0.15 | 1.4 b ± 0.15 | 0.95 c ± 0.05 |
Density (g/mL) | 1.0209 b ± 0.00 | 1.0256 a ± 0.00 | 1.0251 a ± 0.00 | 1.0250 a ± 0.00 |
Sedimentation at 25 °C (%) | 2.06 a ± 0.08 | 2.88 b ± 0.20 | 3.27 b ± 0.12 | 3.76 b ± 0.17 |
Sedimentation at 4 °C (%) | 1.93 a ± 0.17 | 2.49 b ± 0.01 | 2.64 b ± 0.18 | 3.40 c ± 0.20 |
Dry extract | 3.42 c ± 0.12 | 3.70 a ± 0.08 | 3.62 ab ± 0.01 | 3.43 bc ± 0.01 |
Color (EBC) | 14.99 d ± 0.03 | 19.41 c ± 0.03 | 21.01 b ± 0.03 | 22.50 a ± 0.03 |
L* | 81.15 d ± 1.86 | 74.85 c ± 2.61 | 70.54 b ± 0.94 | 62.24 a ± 2.40 |
a* | −0.06 d ± 0.02 | 1.17 c ± 0.19 | 8.94 b ± 0.25 | 18.00 a ± 1.05 |
b* | 3.13 b ± 1.27 | 8.22 a ± 2.62 | 8.33 a ± 0.4 | 10.11 a ± 0.86 |
c* | 3.13 d ± 1.27 | 8.56 c ± 2.78 | 12.22 b ± 0.46 | 20.65 a ± 1.34 |
H | 91.08 d ± 0.94 | 81.63 c ± 1.66 | 42.98 b ± 0.61 | 29.29 a ± 0.70 |
Analysis/Samples | Control | 1% | 5% | 10% |
---|---|---|---|---|
Total phenolic compounds (mg GAE/L) | 181.56 d ± 1.48 | 270.17 c ± 4.71 | 294.45 b ± 1.08 | 308.10 a ± 2.00 |
Total flavonoids (g of quercetin/L) | 0.0411 d ± 0.0 | 0.0441 c ± 0.0 | 0.0501 b ± 0.0 | 0.0542 a ± 0.0 |
Total anthocyanins (mg of cyanidin-3-glucoside/L) | 3.76 c ± 0.32 | 30.34 c ± 4.7 | 515.34 b ± 9.32 | 754.59 a ± 17.74 |
FRAP (mg of ascorbic acid/L) | 84.75 d ± 4.09 | 208.64 c ± 14.84 | 498.58 b ± 4.91 | 844.75 a ± 18.19 |
ABTS (µM Trolox/L) | 2468.33 d ± 16.67 | 3031.81 c ± 15.56 | 3860.11 b ± 12.03 | 4294.52 a ± 6.60 |
DPPH (µM Trolox/L) | 1044.82 d ± 4.24 | 1258.59 c ± 4.91 | 1456.52 b ± 6.06 | 1878.22 a ± 6.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luz, B.R.T.; da Silva, C.N.; Hercos, G.d.F.d.L.; Ribeiro, B.D.; Egea, M.B.; Lemes, A.C. Innovative Craft Beers Added with Purple Grape Pomace: Exploring Technological, Sensory, and Bioactive Characteristics. Beverages 2024, 10, 80. https://doi.org/10.3390/beverages10030080
Luz BRT, da Silva CN, Hercos GdFdL, Ribeiro BD, Egea MB, Lemes AC. Innovative Craft Beers Added with Purple Grape Pomace: Exploring Technological, Sensory, and Bioactive Characteristics. Beverages. 2024; 10(3):80. https://doi.org/10.3390/beverages10030080
Chicago/Turabian StyleLuz, Barbara Ribeiro Teixeira, Cristiane Nunes da Silva, Guilherme de Freitas de Lima Hercos, Bernardo Dias Ribeiro, Mariana Buranelo Egea, and Ailton Cesar Lemes. 2024. "Innovative Craft Beers Added with Purple Grape Pomace: Exploring Technological, Sensory, and Bioactive Characteristics" Beverages 10, no. 3: 80. https://doi.org/10.3390/beverages10030080
APA StyleLuz, B. R. T., da Silva, C. N., Hercos, G. d. F. d. L., Ribeiro, B. D., Egea, M. B., & Lemes, A. C. (2024). Innovative Craft Beers Added with Purple Grape Pomace: Exploring Technological, Sensory, and Bioactive Characteristics. Beverages, 10(3), 80. https://doi.org/10.3390/beverages10030080