The Effect of High Pressure on Levilactobacillus brevis in Beer—Inactivation and Sublethal Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Identification and Culture Conditions
2.2. Model Suspensions and Beers
2.3. HHP Device and Process Parameters
2.4. Analytical Methods
- N0—the number of bacteria before the HHP treatment (control sample)
- Nt—the the number of bacteria after the HHP treatment
- NA [CFU/mL]—number of colonies obtained on non-selective MRS agar
- SA [CFU/mL]—number of colonies obtained on selective MRS agar + 2% NaCl
- t—time period
2.5. Analysis of Growth Inhibition across a Range of Hop Concentrations
- Lt—OD at time t;
- t—time (h);
- A—asymptotic OD value as t decreases indefinitely;
- B—relative growth rate at D;
- C—the asymptotic amount of growth that occurs as t increases indefinitely;
- D—time at which the absolute growth rate is at its maximum (h).
- ODmax—the highest value of optical density observed during the process
- ODmin—the lowest value of optical density observed during the process
2.6. Statistical Analyses
3. Results
3.1. Growth Inhibition across a Range of Hop Concentrations
3.2. The Influence of Pressurization Conditions on Survivability and Sublethal Injuries
3.3. Effect of Storage on Survival and Regeneration of HHP-Sublethally Injured Lb. brevis KKP 3574
3.4. Effect of Pressure on the Survivability and Sublethal Injuries of Lb. brevis KKP 3574 Cells from Different Growth Phases
3.5. Effect of Storage Time on the Survivability and Sublethal Injuries of Lb. brevis KKP 3574 Cells Subjected to Pressurization in the Stationary and Logarithmic Growth Phases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bucka-Kolendo, J.; Kiousi, D.E.; Wojtczak, A.; Doulgeraki, A.I.; Galanis, A.; Sokołowska, B. Depiction of the In Vitro and Genomic Basis of Resistance to Hop and High Hydrostatic Pressure of Lactiplantibacillus Plantarum Isolated from Spoiled Beer. Genes 2023, 14, 1710. [Google Scholar] [CrossRef]
- Kiousi, D.E.; Bucka-Kolendo, J.; Wojtczak, A.; Sokołowska, B.; Doulgeraki, A.I.; Galanis, A. Genomic Analysis and In Vitro Investigation of the Hop Resistance Phenotype of Two Novel Loigolactobacillus Backii Strains, Isolated from Spoiled Beer. Microorganisms 2023, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.P.; Morgan, S.; Hill, C. Preservation and Fermentation: Past, Present and Future. Int. J. Food Microbiol. 2002, 79, 3–16. [Google Scholar] [CrossRef]
- Rodríguez-Saavedra, M.; González de Llano, D.; Moreno-Arribas, M.V. Beer Spoilage Lactic Acid Bacteria from Craft Brewery Microbiota: Microbiological Quality and Food Safety. Food Res. Int. 2020, 138, 109762. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Iijima, K.; Sakamoto, K.; Saihi, M.; Yamashita, H. A Review of Hop Resistance in Beer Spoilage Lactic Acid Bacteria. J. Inst. Brew. 2006, 112, 173–191. [Google Scholar] [CrossRef]
- Suzuki, K. 125th Anniversary Review: Microbiological Instability of Beer Caused by Spoilage Bacteria. J. Inst. Brew. 2011, 117, 131–155. [Google Scholar] [CrossRef]
- Behr, J.; Vogel, R.F. Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction. Appl. Environ. Microbiol. 2010, 76, 142–149. [Google Scholar] [CrossRef]
- Iijima, K.; Suzuki, K.; Ozaki, K.; Yamashita, H. HorC Confers Beer-Spoilage Ability on Hop-Sensitive Lactobacillus Brevis ABBC45cc. J. Appl. Microbiol. 2006, 100, 1282–1288. [Google Scholar] [CrossRef]
- Suzuki, K. Emergence of New Spoilage Microorganisms in the Brewing Industry and Development of Microbiological Quality Control Methods to Cope with This Phenomenon–A Review. J. Am. Soc. Brew. Chem. 2020, 78, 245–259. [Google Scholar] [CrossRef]
- Ulmer, H.M.; Herberhold, H.; Fahsel, S.; Gänzle, M.G.; Winter, R.; Vogel, R.F. Effects of Pressure-Induced Membrane Phase Transitions on Inactivation of HorA, an ATP-Dependent Multidrug Resistance Transporter, in Lactobacillus Plantarum. Appl. Environ. Microbiol. 2002, 68, 1088–1095. [Google Scholar] [CrossRef]
- Fischer, S.; Ruß, W.; Meyer-Pittroff, R.; Buckow, R.; Heinz, V.; Knorr, D.; Ulmer, H.; Behr, J.; Vogel, R.F. Effects of Hydrostatic High Pressure on Micro-Biological and Technological Characteristics of Beer. Monatsschrift Brauwiss. 2006, 59, 90–99. [Google Scholar]
- Behr, J.; Gänzle, M.G.; Vogel, R.F. Characterization of a Highly Hop-Resistant Lactobacillus Brevis Strain Lacking Hop Transport. Appl. Environ. Microbiol. 2006, 72, 6483–6492. [Google Scholar] [CrossRef]
- Sakamoto, K.; Margolles, A.; Van Veen, H.W.; Konings, W.N. Hop Resistance in the Beer Spoilage Bacterium Lactobacillus Brevis Is Mediated by the ATP-Binding Cassette Multidrug Transporter HorA. J. Bacteriol. 2001, 183, 5371–5375. [Google Scholar] [CrossRef]
- Behr, J.; Geißler, A.J.; Preissler, P.; Ehrenreich, A.; Angelov, A.; Vogel, R.F. Identification of Ecotype-Specific Marker Genes for Categorization of Beer-Spoiling Lactobacillus Brevis. Food Microbiol. 2015, 51, 130–138. [Google Scholar] [CrossRef]
- Saranraj, P.; Naidu, M.; Sivasakthivelan, P. Lactic Acid Bacteria and Its Antimicrobial Properties: A Review. Int. J. Pharm. Biol. Arch. 2013, 4, 1124–1133. [Google Scholar]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar]
- Preissler, P.; Behr, J.; Vogel, R.F. Detection of Beer-Spoilage Lactobacillus Brevis Strains by Reduction of Resazurin. J. Inst. Brew. 2010, 116, 399–404. [Google Scholar] [CrossRef]
- Huang, H.W.; Wu, S.J.; Lu, J.K.; Shyu, Y.T.; Wang, C.Y. Current Status and Future Trends of High-Pressure Processing in Food Industry. Food Control. 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Suárez-Jacobo, Á.; Rüfer, C.E.; Gervilla, R.; Guamis, B.; Roig-Sagués, A.X.; Saldo, J. Influence of Ultra-High Pressure Homogenisation on Antioxidant Capacity, Polyphenol and Vitamin Content of Clear Apple Juice. Food Chem. 2011, 127, 447–454. [Google Scholar] [CrossRef]
- Wang, C.Y.; Huang, H.W.; Hsu, C.P.; Yang, B.B. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology. Crit. Rev. Food Sci. Nutr. 2016, 56, 527–540. [Google Scholar] [CrossRef]
- Queirós, R.P.; González-Angulo, M.; Polanco-Estibález, B.; Serment-Moreno, V.; Tonello-Samson, C. Exploring the Effects of High Pressure Processing on the Quality of Craft Beer at an Industrial Scale. LWT 2024, 194, 115824. [Google Scholar] [CrossRef]
- Buzrul, S. High Hydrostatic Pressure Treatment of Beer and Wine: A Review. Innov. Food Sci. Emerg. Technol. 2012, 13, 1–12. [Google Scholar] [CrossRef]
- Prieto-Calvo, M.; Prieto, M.; López, M.; Alvarez-Ordóñez, A. Effects of High Hydrostatic Pressure on Escherichia Coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by Ftir Spectroscopy and Microscopic Imaging Techniques. Molecules 2014, 19, 21310–21323. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Sheen, S.; Sites, J.; Huang, L.; Wu, J.S.B. Effect of High Pressure Treatment on the Survival of Shiga Toxin-Producing Escherichia Coli in Strawberry Puree. Food Microbiol. 2014, 40, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Lung, H.M.; Chang, Y.H.; Yang, B.B.; Wang, C.Y. Inactivation of Pathogenic Listeria Monocytogenes in Raw Milk by High Hydrostatic Pressure. Foodborne Pathog. Dis. 2015, 12, 139–144. [Google Scholar] [CrossRef]
- Akimowicz, M.; Bucka-Kolendo, J. MALDI-TOF MS-Application in Food Microbiology. Acta Biochim. Pol. 2020, 67, 327–332. [Google Scholar] [CrossRef]
- Somolinos, M.; García, D.; Pagán, R.; Mackey, B. Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or Tert-Butyl Hydroquinone. Appl. Environ. Microbiol. 2008, 74, 7570–7577. [Google Scholar] [CrossRef]
- Espina, L.; García-Gonzalo, D.; Pagán, R. Detection of Thermal Sublethal Injury in Escherichia Coli via the Selective Medium Plating Technique: Mechanisms and Improvements. Front Microbiol. 2016, 7, 1376. [Google Scholar] [CrossRef] [PubMed]
- Siderakou, D.; Zilelidou, E.; Poimenidou, S.; Tsipra, I.; Ouranou, E.; Papadimitriou, K.; Skandamis, P. Assessing the Survival and Sublethal Injury Kinetics of Listeria Monocytogenes under Different Food Processing-Related Stresses. Int. J. Food Microbiol. 2021, 346, 109159. [Google Scholar] [CrossRef]
- Hochman, A. Programmed Cell Death in Prokaryotes. Crit. Rev. Microbiol. 1997, 23, 207–214. [Google Scholar] [CrossRef]
- Wesche, A.M.; Gurtler, J.B.; Marks, B.P.; Ryser, E.T. Stress, Sublethal Injury, Resuscitation, and Virulence of Bacterial Foodborne Pathogens †. J. Food Prot. 2009, 72, 1121–1138. [Google Scholar] [CrossRef] [PubMed]
- Alpas, H.; Kalchayanand, N.; Bozoglu, F.; Ray, B. Interactions of High Hydrostatic Pressure, Pressurization Temperature and PH on Death and Injury of Pressure-Resistant and Pressure-Sensitive Strains of Foodborne Pathogens. Int. J. Food Microbiol. 2000, 60, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. The Efficacy and Safety of High-Pressure Processing of Food. EFSA J. 2022, 20, e07128. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.F.; Linton, M.; Doona, C.J. Introduction to High Pressure Processing of Foods. In High Pressure Processing of Foods; Wiley: Hoboken, NJ, USA, 2007; pp. 1–14. [Google Scholar]
- Bucka-Kolendo, J.; Sokołowska, B.; Winiarczyk, S. Influence of High Hydrostatic Pressure on the Identification of Lactobacillus by MALDI-TOF MS-Preliminary Study. Microorganisms 2020, 8, 813. [Google Scholar] [CrossRef]
- PN ISO 15214:2002; Microbiology of Food And Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Dawan, J.; Ahn, J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022, 10, 1385. [Google Scholar] [CrossRef]
- Beskrovnaya, P.; Janusz, N.; Omazic, L.; Perry, F. Treatment of Escherichia Coli K-12 with Sub-Inhibitory Concentrations of Antimicrobial Agents Does Not Induce RpoS-Mediated Cross-Protection to T7 Bacteriophage Infection. UJEMI 2018, 22, 1–10. [Google Scholar]
- Buzrul, S.; Alpas, H.; Bozoglu, F. Effect of High Hydrostatic Pressure on Quality Parameters of Lager Beer. J. Sci. Food Agric. 2005, 85, 1672–1676. [Google Scholar] [CrossRef]
- Castellari, M.; Arfelli, G.; Riponi, C.; Carpi, G.; Amati, A. High Hydrostatic Pressure Treatments for Beer Stabilization. J. Food Sci. 2000, 65, 974–977. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Ulmer, H.M.; Vogel, R.F. High Pressure Inactivation of Lactobacillus Plantarum in a Model Beer System. J. Food Sci. 2001, 66, 1174–1181. [Google Scholar] [CrossRef]
- Yin, H.; Dong, J.; Yu, J.; Chang, Z.; Qian, Z.; Liu, M.; Huang, S.; Hu, X.; Liu, X.; Deng, Y.; et al. A Preliminary Study about the Influence of High Hydrostatic Pressure Processing on the Physicochemical and Sensorial Properties of a Cloudy Wheat Beer. J. Inst. Brew. 2016, 122, 462–467. [Google Scholar] [CrossRef]
- Santos, S.R.; Ochman, H. Identification and Phylogenetic Sorting of Bacterial Lineages with Universally Conserved Genes and Proteins. Environ. Microbiol. 2004, 6, 754–759. [Google Scholar] [CrossRef]
- Ulmer, H.M.; Ga¨nzle, M.G.; Ga¨nzle, G.; Vogel, R.F. Effects of High Pressure on Survival and Metabolic Activity of Lactobacillus Plantarum TMW1.460. Appl. Environ. Microbiol. 2000, 66, 3966–3973. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.M.R.; Oliveira, F.A.; Ferreira, E.H.R.; Rosenthal, A. Application and Possible Benefits of High Hydrostatic Pressure or High-Pressure Homogenization on Beer Processing: A Review. Food Sci. Technol. Int. 2017, 23, 561–581. [Google Scholar] [CrossRef] [PubMed]
- Gervilla, R.; Ferragut, V.; Guamis, B. High Pressure Inactivation of Microorganisms Inoculated into Ovine Milk of Different Fat Contents. J. Dairy Sci. 2000, 83, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Graells, C.; Hauben, K.J.A.; Michiels, C.W. High-Pressure Inactivation and Sublethal Injury of Pressure-Resistant Escherichia Coli Mutants in Fruit Juices. Appl. Environ. Microbiol. 1998, 64, 1566–1568. [Google Scholar] [CrossRef]
- Sokołowska, B.; Skąpska, S.; Niezgoda, J.; Rutkowska, M.; Dekowska, A.; Rzoska, S.J. Inactivation and Sublethal Injury of Escherichia Coli and Listeria Innocua by High Hydrostatic Pressure in Model Suspensions and Beetroot Juice. High Press Res. 2014, 34, 147–155. [Google Scholar] [CrossRef]
- Huang, H.W.; Lung, H.M.; Yang, B.B.; Wang, C.Y. Responses of Microorganisms to High Hydrostatic Pressure Processing. Food Control. 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Kimura, K.; Morimatsu, K.; Inaoka, T.; Yamamoto, K. Injury and Recovery of Escherichia Coli ATCC25922 Cells Treated by High Hydrostatic Pressure at 400–600 MPa. J. Biosci. Bioeng. 2017, 123, 698–706. [Google Scholar] [CrossRef]
- Nasiłowska, J.; Sokołowska, B.; Fonberg-Broczek, M. Behavior of Listeria Innocua Strains Under Pressure Treatment—Inactivation and Sublethal Injury. Pol. J. Food Nutr. Sci. 2019, 69, 45–52. [Google Scholar] [CrossRef]
- Yamamoto, K.; Zhang, X.; Inaoka, T.; Morimatsu, K.; Kimura, K.; Nakaura, Y. Bacterial Injury Induced by High Hydrostatic Pressure. Food Eng. Rev. 2021, 13, 442–453. [Google Scholar] [CrossRef]
- Shao, L.; Sun, Y.; Zou, B.; Zhao, Y.; Li, X.; Dai, R. Sublethally Injured Microorganisms in Food Processing and Preservation: Quantification, Formation, Detection, Resuscitation and Adaption. Food Res. Int. 2023, 165, 112536. [Google Scholar] [CrossRef] [PubMed]
Name | Viena Lager Beer | Pale Lager Beer | 10% Wort |
---|---|---|---|
Type | unfiltered full beer | pasteurized, light beer | semi-product for beer production |
Alcohol, % (m/m) | 4.62 ± 0.16 | 4.31 ± 0.15 | - |
Alcohol, % (v/v) | 5.91 ± 0.16 | 5.45 ± 0.15 | - |
Apparent Extract, % (w/w) | 2.88 ± 0.09 | <0.50 | - |
Real Extract, % (w/w) | 4.99 ± 0.06 | 2.03 ± 0.03 | - |
Original wort Extract, % (m/m) | 13.85 ± 0.14 | 10.46 ± 0.11 | 10.00 ± 0.2 |
Bitterness (International Bitterness Units—IBUs) | 20.0 | 20.4 | - |
5 IBU | 10 IBU | 20 IBU | 30 IBU | Beer 43.6 IBU | Control | |
---|---|---|---|---|---|---|
MRS broth concentrate (2×) | 50% | 50% | 50% | - | - | 50% |
MRS broth concentrate (4×) | - | - | - | 25% | - | - |
Water | 12.5% | 25% | - | - | 50% | |
Beer (40 IBU) | 37.5% | 25% | 50% | 75% | - | - |
Beer (43.6 IBU) | - | - | - | - | 100% | - |
Medium | μ | ΔOD |
---|---|---|
Control | 0.171 ± 0.003 e | 1.696 ± 0.006 e |
5 IBU | 0.252 ± 0.004 f | 1.829 ± 0.006 f |
10 IBU | 0.168 ± 0.004 d | 1.611 ± 0.011 d |
20 IBU | 0.101 ± 0.004 c | 1.189 ± 0.029 c |
30 IBU | 0.035 ± 0.001 b | 0.555 ± 0.038 b |
Beer 43.6 IBU | 0.018 ± 0.001 a | 0.480 ± 0.016 a |
Pressure [MPa]/Time [min] | 10% Wort | Pale Lager Beer | Viena Lager Beer |
---|---|---|---|
log [CFU/mL] | |||
300/5 | 0.52 ± 0.07 aA | 1.08 ± 0.23 aB | 2.96 ± 0.08 aC |
400/5 | 5.03 ± 0.27 bA | 6.99 ± 0.49 bB | 6.96 ± 0.54 bC |
500/5 | 7.07 ± 0.75 cA | 7.77 ± 0.86 cB | 7.59 ± 0.32 cC |
Pressure [MPa]/Time [min] | 10% Wort | Pale Lager Beer | Viena Lager Beer |
---|---|---|---|
log [CFU/mL] | |||
300/5 | 0.24 ± 0.02 aB | 0.06 ± 0.00 aA | 0.04 ± 0.01 bA |
400/5 | 1.09 ± 0.03 bB | 0.07 ± 0.01 aA | 0.01 ± 0.00 aA |
500/5 | 0.18 ± 0.00 aB | 0.33 ± 0.01 bC | 0.01 ± 0.00 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiłowska, J.; Sokołowska, B.; Woszczyk, M.; Bucka-Kolendo, J.; Wojtczak, A. The Effect of High Pressure on Levilactobacillus brevis in Beer—Inactivation and Sublethal Injury. Beverages 2024, 10, 83. https://doi.org/10.3390/beverages10030083
Nasiłowska J, Sokołowska B, Woszczyk M, Bucka-Kolendo J, Wojtczak A. The Effect of High Pressure on Levilactobacillus brevis in Beer—Inactivation and Sublethal Injury. Beverages. 2024; 10(3):83. https://doi.org/10.3390/beverages10030083
Chicago/Turabian StyleNasiłowska, Justyna, Barbara Sokołowska, Marzena Woszczyk, Joanna Bucka-Kolendo, and Adrian Wojtczak. 2024. "The Effect of High Pressure on Levilactobacillus brevis in Beer—Inactivation and Sublethal Injury" Beverages 10, no. 3: 83. https://doi.org/10.3390/beverages10030083
APA StyleNasiłowska, J., Sokołowska, B., Woszczyk, M., Bucka-Kolendo, J., & Wojtczak, A. (2024). The Effect of High Pressure on Levilactobacillus brevis in Beer—Inactivation and Sublethal Injury. Beverages, 10(3), 83. https://doi.org/10.3390/beverages10030083