Supplementation of Chlorella vulgaris Extracts During Brewing: The Effects on Fermentation Properties, Phytochemical Activity and the Abundance of Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Water Extraction of Chlorella vulgaris
Extract Characterization
2.3. Brewing, Fermentation, and Carbonation of Beer
2.4. Monitoring of Yeast Growth/Viability During Fermentation
2.5. Physicochemical Analysis of Ferments and Green Beer
2.6. Phytochemical Analyses
2.6.1. Determination of Total Phenolic Content
2.6.2. Determination of Total Flavonoid Content
2.7. Antioxidant Activity
2.7.1. In Vitro DPPH● Antioxidant Activity
2.7.2. Hydrogen Peroxide (H2O2) Scavenging Activity
2.8. Quantification of Volatile Organic Compounds
2.9. Sensory Evaluation of Beer Samples
2.10. Statistical Analysis
3. Results and Discussions
3.1. Effect of Chlorella vulgaris Water Extracts on Wort Fermentation
Extraction Yield, Yeast Cells in Suspension, Wort Gravity, and pH
3.2. Physicochemical and Sensory Properties of the Final Beer
3.3. Phytochemical Composition and Antioxidant Activity of Final Beer Samples
3.4. Abundance of Volatile Organic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, P.A.; Vidal, J.; Ávila, M.I.; Labbe, M.; Cohen, S.; Salazar, F.N. Effect of the addition of propolis extract on bioactive compounds and antioxidant activity of craft beer. J. Chem. 2017, 2017, 6716053. [Google Scholar] [CrossRef]
- Bustos, L.; Soto, E.; Parra, F.; Echiburu-Chau, C.; Parra, C. Brewing of a porter craft beer enriched with the plant Parastrephia lucida: A promising source of antioxidant compounds. J. Am. Soc. Brew. Chem. 2019, 77, 261–266. [Google Scholar] [CrossRef]
- Dantas, D.M.; Cahú, T.B.; Oliveira, C.Y.B.; Abadie-Guedes, R.; Roberto, N.A.; Santana, W.M.; Gálvez, A.O.; Guedes, R.C.; Bezerra, R.S. Chlorella vulgaris functional alcoholic beverage: Effect on propagation of cortical spreading depression and functional properties. PLoS ONE 2021, 16, e0255996. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef]
- Ghiselli, A.; Natella, F.; Guidi, A.; Montanari, L.; Fantozzi, P.; Scaccini, C. Beer increases plasma antioxidant capacity in humans. J. Nutr. Biochem. 2000, 11, 76–80. [Google Scholar] [CrossRef]
- Gorjanovic, S.Z.; Novakovic, M.M.; Potkonjak, N.I.; Leskosek-Cukalovic, I.; Suznjevic, D.Z. Application of a novel antioxidative assay in beer analysis and brewing process monitoring. J. Agric. Food Chem. 2010, 58, 744–751. [Google Scholar] [CrossRef]
- Horincar, G.; Enachi, E.; Bolea, C.; Râpeanu, G.; Aprodu, I. Value-added lager beer enriched with eggplant (Solanum melongena L.) peel extract. Molecules 2020, 25, 731. [Google Scholar] [CrossRef]
- Ditrych, M.; Kordialik-Bogacka, E.; Czyżowska, A. Antiradical and reducing potential of commercial beers. Czech J. Food Sci. 2015, 33, 261–266. [Google Scholar] [CrossRef]
- Michalak-Tomczyk, M.; Rymuszka, A.; Kukula-Koch, W.; Szwajgier, D.; Baranowska-Wójcik, E.; Jachuła, J.; Welman-Styk, A.; Kędzierska, K. Studies on the Effects of Fermentation on the Phenolic Profile and Biological Activity of Three Cultivars of Kale. Molecules 2024, 29, 1727. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A.; Gabriela Medina-Meza, I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [PubMed]
- Melini, F.; Melini, V. Impact of fermentation on phenolic compounds and antioxidant capacity of quinoa. Fermentation 2021, 7, 20. [Google Scholar] [CrossRef]
- Harbaum, B.; Hubbermann, E.M.; Zhu, Z.; Schwarz, K. Impact of fermentation on phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea Coss). J. Agric. Food Chem. 2008, 56, 148–157. [Google Scholar] [CrossRef]
- Beisler, N.; Sandmann, M. Integration of Arthrospira platensis (spirulina) into the brewing process to develop new beers with unique sensory properties. Front. Sustain. Food Syst. 2022, 6, 918772. [Google Scholar] [CrossRef]
- Carnovale, G.; Leivers, S.; Rosa, F.; Norli, H.-R.; Hortemo, E.; Wicklund, T.; Horn, S.J.; Skjånes, K. Starch-rich microalgae as an active ingredient in beer brewing. Foods 2022, 11, 1449. [Google Scholar] [CrossRef]
- Okechukwu, Q.N.; Adadi, P.; Kovaleva, E.G. Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder. Fermentation 2022, 8, 581. [Google Scholar] [CrossRef]
- Taiti, C.; Stefano, G.; Percaccio, E.; Di Giacomo, S.; Iannone, M.; Marianelli, A.; Di Sotto, A.; Garzoli, S. Addition of spirulina to craft beer: Evaluation of the effects on volatile flavor profile and cytoprotective properties. Antioxidants 2023, 12, 1021. [Google Scholar] [CrossRef]
- Okechukwu, Q.N.; Kanwugu, O.N.; Adadi, P.; Okpala, C.O.R.; Kovaleva, E.G. Potential of Chlorella vulgaris powder to enhance ethanol-cultured Saccharomyces cerevisiae. J. Taibah Univ. Sci. 2023, 17, 2187602. [Google Scholar] [CrossRef]
- Okechukwu, Q.N.; Yama, I.; Kovaleva, E.G. Enzymatic extraction of growth factor in Chlorella and possible protective effects of Chlorella extracts on yeast growth. AIP Conf. Proc. 2020, 2280, 30013. [Google Scholar] [CrossRef]
- Adadi, P.; Kovaleva, E.; Glukhareva, T.; Barakova, N. Production and investigations of antioxidant rich beverage: Utilizing Monascus purpureus IHEM LY2014-0696 and various malts. Agron. Res. 2018, 16, 1312–1321. [Google Scholar] [CrossRef]
- Adadi, P.; Kovaleva, E.; Glukhareva, T.; Shatunova, S.; Petrov, A. Production and analysis of non-traditional beer supplemented with sea buckthorn. Agron. Res. 2017, 15, 1831–1845. [Google Scholar] [CrossRef]
- Essiedu, J.A.; Adadi, P.; Kovaleva, E.G. Production and characterization of beer supplemented with Hibiscus sabdariffa (Malvaceae). Food Front. 2022, 3, 328–338. [Google Scholar] [CrossRef]
- American Society of Brewing Chemists. ASBC Methods of Analysis; The American Society of Brewing Chemists: Saint Paul, MN, USA, 2009. [Google Scholar]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Huang, R.; Wu, W.; Shen, S.; Fan, J.; Chang, Y.; Chen, S.; Ye, X. Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse. Anal. Methods 2018, 10, 2575–2587. [Google Scholar] [CrossRef]
- Haida, Z.; Hakiman, M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef]
- Adadi, P.; Harris, A.; Bremer, P.; Silcock, P.; Ganley, A.R.; Jeffs, A.G.; Eyres, G.T. The effect of sound frequency and intensity on yeast growth, fermentation performance and volatile composition of beer. Molecules 2021, 26, 7239. [Google Scholar] [CrossRef]
- Adadi, P. The Effect of Audible Sound on Fermentation and the Abundance of Volatile Organic Compounds of Beer; University of Otago: Dunedin, New Zealand, 2022. [Google Scholar]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Cui, Y.; Yuan, W. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrason. Sonochem. 2022, 87, 106054. [Google Scholar] [CrossRef]
- Zou, X.; Xu, K.; Chang, W.; Qu, Y.; Li, Y. Rapid extraction of lipid from wet microalgae biomass by a novel buoyant beads and ultrasound assisted solvent extraction method. Algal Res. 2021, 58, 102431. [Google Scholar] [CrossRef]
- Adadi, P.; Barakova, N.V.; Krivoshapkina, E.F. Selected methods of extracting carotenoids, characterization, and health concerns: A review. J. Agric. Food Chem. 2018, 66, 5925–5947. [Google Scholar] [CrossRef] [PubMed]
- Csatlos, N.-I.; Simon, E.; Teleky, B.-E.; Szabo, K.; Diaconeasa, Z.M.; Vodnar, D.-C.; Ciont, C.; Pop, O.-L. Development of a fermented beverage with Chlorella vulgaris powder on soybean-Based fermented beverage. Biomolecules 2023, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Ścieszka, S.; Gorzkiewicz, M.; Klewicka, E. Innovative fermented soya drink with the microalgae Chlorella vulgaris and the probiotic strain Levilactobacillus brevis ŁOCK 0944. LWT 2021, 151, 112131. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. Bacteria. Foods 2020, 9, 959. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Darani, K.K. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur. Food Res. Technol. 2012, 235, 719–728. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Guldas, M.; Irkin, R. Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk. Mljekarstvo Čas. Unaprjeđenje Proizv. Prerade Mlijeka 2010, 60, 237–243. [Google Scholar]
- Okechukwu, Q.N. Phytochemical and antioxidant composition of crude water extracts of Chlorella vulgaris and its effects on Saccharomyces cerevisiae growth in an ethanolic medium. Food Process. Tech. Technol. 2024, 54, 298–309. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Bon, E.P.d.S. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzym. Res. 2011, 2011, 405603. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, Y.; Wu, X.; Gong, X.; Wang, Q. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour. Technol. 2011, 102, 10158–10161. [Google Scholar] [CrossRef]
- Garofalo, C.; Norici, A.; Mollo, L.; Osimani, A.; Aquilanti, L. Fermentation of microalgal biomass for innovative food production. Microorganisms 2022, 10, 2069. [Google Scholar] [CrossRef] [PubMed]
- Ambra, R.; Pastore, G.; Lucchetti, S. The role of bioactive phenolic compounds on the impact of beer on health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef] [PubMed]
- Dinev, T.; Tzanova, M.; Velichkova, K.; Dermendzhieva, D.; Beev, G. Antifungal and antioxidant potential of methanolic extracts from Acorus calamus L., Chlorella vulgaris Beijerinck, Lemna minuta Kunth and Scenedesmus dimorphus (Turpin) Kützing. Appl. Sci. 2021, 11, 4745. [Google Scholar] [CrossRef]
- Jayshree, A.; Jayashree, S.; Thangaraju, N. Chlorella vulgaris and Chlamydomonas reinhardtii: Effective antioxidant, antibacterial and anticancer mediators. Indian J. Pharm. Sci. 2016, 78, 575–581. [Google Scholar] [CrossRef]
- Mtaki, K.; Kyewalyanga, M.S.; Mtolera, M.S. Assessment of antioxidant contents and free radical-scavenging capacity of chlorella vulgaris cultivated in low cost media. Appl. Sci. 2020, 10, 8611. [Google Scholar] [CrossRef]
- Danielli, M.; Costa, R.M.; Carneiro-Da-Cunha, M.G.; Galvez, A.; Drummond, A.; Bezerra, R.S.; Bezerra, R.S. Bioproduction, antimicrobial and antioxidant activities of compounds from Chlorella vulgaris. Res. Rev. J. Bot. 2015, 21, 12–18. [Google Scholar]
- Vieira, M.V.; Turkiewicz, I.P.; Tkacz, K.; Fuentes-Grünewald, C.; Pastrana, L.M.; Fuciños, P.; Wojdyło, A.; Nowicka, P. Microalgae as a potential functional ingredient: Evaluation of the phytochemical profile, antioxidant activity and in-vitro enzymatic inhibitory effect of different species. Molecules 2021, 26, 7593. [Google Scholar] [CrossRef]
- Deng, Y.; Lim, J.; Nguyen, T.T.H.; Mok, I.-K.; Piao, M.; Kim, D. Composition and biochemical properties of ale beer enriched with lignans from Schisandra chinensis Baillon (omija) fruits. Food Sci. Biotechnol. 2020, 29, 609–617. [Google Scholar] [CrossRef]
- Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A review of flavour formation in continuous beer fermentations. J. Inst. Brew. 2008, 114, 3–13. [Google Scholar] [CrossRef]
- Stewart, G.G. The production of secondary metabolites with flavour potential during brewing and distilling wort fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef]
- Xu, Z.; Theodoropoulos, C.; Pittman, J.K. Optimization of a Chlorella–Saccharomyces co–culture system for enhanced metabolite productivity. Algal Res. 2024, 79, 103455. [Google Scholar] [CrossRef]
- Saerens, S.M.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Verstrepen, K.J.; Van Laere, S.D.; Vanderhaegen, B.M.; Derdelinckx, G.; Dufour, J.-P.; Pretorius, I.S.; Winderickx, J.; Thevelein, J.M.; Delvaux, F.R. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl. Environ. Microbiol. 2003, 69, 5228–5237. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Okumura, E.; Fujishima, M.; Watanabe, F. Potential of Chlorella as a dietary supplement to promote human health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef]
- Ashtiani, F.-R.; Jalili, H.; Rahaie, M.; Sedighi, M.; Amrane, A. Effect of mixed culture of yeast and microalgae on acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase expression. J. Biosci. Bioeng. 2021, 131, 364–372. [Google Scholar] [CrossRef]
- Wang, J.; Tian, Q.; Zhou, H.; Kang, J.; Yu, X.; Shen, L. Key metabolites and regulatory network mechanisms in co-culture of fungi and microalgae based on metabolomics analysis. Bioresour. Technol. 2023, 388, 129718. [Google Scholar] [CrossRef]
- Kimura, M.; Ito, M. Bioconversion of essential oil components of Perilla frutescens by Saccharomyces cerevisiae. J. Nat. Med. 2020, 74, 189–199. [Google Scholar] [CrossRef]
- Steyer, D.; Erny, C.; Claudel, P.; Riveill, G.; Karst, F.; Legras, J.-L. Genetic analysis of geraniol metabolism during fermentation. Food Microbiol. 2013, 33, 228–234. [Google Scholar] [CrossRef]
- Takoi, K.; Koie, K.; Itoga, Y.; Katayama, Y.; Shimase, M.; Nakayama, Y.; Watari, J. Biotransformation of hop-derived monoterpene alcohols by lager yeast and their contribution to the flavor of hopped beer. J. Agric. Food Chem. 2010, 58, 5050–5058. [Google Scholar] [CrossRef]
- Roberts, R.; Khomenko, I.; Eyres, G.T.; Bremer, P.; Silcock, P.; Betta, E.; Biasioli, F. Investigation of geraniol biotransformation by commercial Saccharomyces yeast strains by two headspace techniques: Solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS) and proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). Fermentation 2023, 9, 294. [Google Scholar] [CrossRef]
- Abdel-Baky, H.H.; Shallan, M.; El-Baroty, G.; El-Baz, F. Volatile compounds of the microalga Chlorella vulgaris and their phytotoxic effect. Pak. J. Biol. Sci. 2002, 5, 61–65. [Google Scholar] [CrossRef]
- de Oliveira, Á.S.; Vieira, K.R.; Pinheiro, P.N.; Caetano, P.A.; Wagner, R.; Lopes, E.J.; Zepka, L.Q. Study of the volatile profile of the microalgal biomass of Chlorella vulgaris. Braz. J. Dev. 2021, 7, 53630–53646. [Google Scholar] [CrossRef]
- Lafarge, C.; Cayot, N. Insight on a comprehensive profile of volatile compounds of Chlorella vulgaris extracted by two “green” methods. Food Sci. Nutr. 2019, 7, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Van Durme, J.; Goiris, K.; De Winne, A.; De Cooman, L.; Muylaert, K. Evaluation of the volatile composition and sensory properties of five species of microalgae. J. Agric. Food Chem. 2013, 61, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
Samples | Final Gravity (°Bx) | Alcohol (ABV%) | Bitterness (IBU) | Color (EBC Unit) | pH | FAN | |
---|---|---|---|---|---|---|---|
B/F | A/F | ||||||
GPB | 5.34 ± 0.09 b | 3.69 ± 0.05 a | 6.00 ± 0.00 a | 5.91 ± 0.09 b | 4.29 ± 0.01 a | 87.96 ± 6.38 a | 86.87 ± 12.29 a |
CEB1 | 5.34 ± 009 b | 3.69 ± 0.05 a | 4.33 ± 0.46 b | 6.10 ± 0.18 b | 4.26 ± 0.00 a | 81.82 ± 1.24 a | 86.41 ± 0.89 a |
CEB2 | 5.37 ± 0.05 b | 3.67 ± 0.03 a | 5.08 ± 0.11 ab | 6.42 ± 0.09 b | 4.26 ± 0.00 a | 79.31 ± 14.37 a | 86.91 ± 0.53 a |
CEB3 | 5.84 ± 0.05 a | 3.42 ± 0.03 b | 5.65 ± 0.00 a | 7.88 ± 0.36 a | 4.29 ± 0.02 a | 86.08 ± 4.79 a | 94.56 ± 2.48 a |
Samples | Total Polyphenol Content (mg GAE/L) | Total Flavonoid Content (mg QE/L) | DPPH● Antioxidant Activity (%) | H2O2 Scavenging Activity (%) |
---|---|---|---|---|
GPB | 245.75 ± 22.64 c | 97.36 ± 13.64 c | 16.52 ± 3.40 c | 94.71 ± 0.23 b |
CEB1 | 333.68 ± 13.03 b | 1150.95 ± 57.24 b | 60.66 ± 2.12 b | 95.54 ± 1.17 ab |
CEB2 | 411.32 ± 55.82 ab | 1227.14 ± 40.41 ab | 69.07 ± 3.40 ab | 96.70 ± 0.00 ab |
CEB3 | 480.61 ± 53.34 a | 1359.29 ± 75.76 a | 77.63 ± 1.27 a | 97.32 ± 0.20 a |
Codes | Volatile Compounds | Classes | RI (Lit) | RI (Cal) | Method of ID |
---|---|---|---|---|---|
V1 | 1-propanol | Higher alcohols | 1036 | 1030 | NIST, IS |
V2 | 2-methyl-1-propanol | Higher alcohols | 1092 | 1085 | NIST, IS |
V3 | 1-hexanol | Higher alcohols | 1340 | 1355 | NIST, IS |
V4 | 2-methyl-1-butanol | Higher alcohols | 1208 | 1203 | NIST |
V5 | 3-ethoxy-1-propanol | Higher alcohols | 1373 | 1370 | NIST |
V6 | Phenylethyl alcohol | Higher alcohols | 1906 | 1901 | NIST, IS |
V7 | 1-decanol | Higher alcohols | 1760 | 1957 | NIST |
V8 | 2-nonen-1-ol | Higher alcohols | 1105 | 1109 | NIST |
V9 | 3-methyl-1-butanol | Higher alcohols | 1209 | 1206 | NIST |
V10 | Isopentyl hexanoate | Esters | 1452 | 1450 | NIST, IS |
V11 | 2-methylpropyl octanoate | Esters | 1548 | 1530 | NIST |
V12 | Propyl octanoate | Esters | 1510 | 1503 | NIST |
V13 | Ethyl acetate | Esters | 888 | 881 | NIST, IS |
V14 | Ethyl hexanoate | Esters | 1233 | 1210 | NIST, IS |
V15 | Ethyl caprylate | Esters | 1429 | 1411 | NIST, IS |
V16 | 2-phenylethyl hexanoate | Esters | 1185 | 1181 | NIST |
V17 | Ethyl undecanoate | Esters | 1739 | 1740 | NIST |
V18 | Methyl octanoate | Esters | 1386 | 1390 | NIST |
V19 | Heptyl acetate | Esters | 1377 | 1370 | NIST |
V20 | Ethyl 3-hexenoate | Esters | 1294 | 1280 | NIST |
V21 | Acetic acid | Organic acids | 1449 | 1440 | NIST |
V22 | Octanoic acid | Organic acids | 2060 | 2058 | NIST |
V23 | Heptanoic acid | Organic acids | 1950 | 1940 | NIST |
V24 | 2-ethyl-hexanoic acid | Organic acids | 1910 | 1907 | NIST |
V25 | β-Myrcene | Monoterpenes | 1161 | 1150 | NIST, IS |
V26 | Geranyl acetate | Monoterpenes | 1752 | 1750 | NIST |
V27 | 2-eethylbutyl isobutyrate | Monoterpenes | 1185 | 1181 | NIST |
V28 | Linalool | Monoterpenes | 1547 | 1530 | NIST, IS |
V29 | Citronellol | Monoterpenes | 1765 | 1758 | NIST, IS |
V30 | Humulene | Monoterpenes | 1667 | 1670 | NIST |
V31 | (E)-2-octenal | Aldehydes | 1430 | NIST | |
V32 | 3-methyl-2(5H)-furanone | Ketone | NIST | ||
V33 | 4-cyclopentene-1,3-dione | Ketone | NIST | ||
V34 | 2,5-dimethyl-4-hydroxy-3(2H)-furanone | Ketone | NIST |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okechukwu, Q.N.; Adadi, P.; Kovaleva, E.G. Supplementation of Chlorella vulgaris Extracts During Brewing: The Effects on Fermentation Properties, Phytochemical Activity and the Abundance of Volatile Organic Compounds. Beverages 2024, 10, 104. https://doi.org/10.3390/beverages10040104
Okechukwu QN, Adadi P, Kovaleva EG. Supplementation of Chlorella vulgaris Extracts During Brewing: The Effects on Fermentation Properties, Phytochemical Activity and the Abundance of Volatile Organic Compounds. Beverages. 2024; 10(4):104. https://doi.org/10.3390/beverages10040104
Chicago/Turabian StyleOkechukwu, Queency N., Parise Adadi, and Elena G. Kovaleva. 2024. "Supplementation of Chlorella vulgaris Extracts During Brewing: The Effects on Fermentation Properties, Phytochemical Activity and the Abundance of Volatile Organic Compounds" Beverages 10, no. 4: 104. https://doi.org/10.3390/beverages10040104
APA StyleOkechukwu, Q. N., Adadi, P., & Kovaleva, E. G. (2024). Supplementation of Chlorella vulgaris Extracts During Brewing: The Effects on Fermentation Properties, Phytochemical Activity and the Abundance of Volatile Organic Compounds. Beverages, 10(4), 104. https://doi.org/10.3390/beverages10040104