Influence of Terroir on the Grain Composition, and Volatile Profile of Irish Grain (Wheat) New Make Spirit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grain Samples
2.2. Grain Composition Analysis
- β-Glucan, Arabinoxylans, and starch analysis:
- Moisture content determination:
2.3. Whiskey Sample Preparation
2.4. Volatile Profile Analysis
- HS-SPME GCMS analysis
- SPME: Sample preparation
- GCMS Method
2.5. Statistical Analysis
3. Results and Discussion
3.1. Grain Composition Analysis
Statistical Analysis of Variability
3.2. Volatile Profile Analysis
Principal Component Analysis
- Volatiles distribution
- (a) Aldehyde and Ester
- (b) Acetals and Alcohol Ester
4. Conclusions
- Influence of Terroir on grain composition:
- The harvest year (vintage effect) significantly impacted the protein, starch, β-glucan, and arabinoxylan contents. The 2020 samples exhibited higher protein and β-glucan content compared to 2021, likely due to favourable climatic conditions such as rainfall and temperature. However, caution needs to be taken as a high β-glucan content in grain can also result in processability issues due to increased viscosity.
- Location (Tipperary vs. Carlow): The location of wheat cultivation significantly influenced its starch, β-glucan, and arabinoxylan content. Tipperary showed consistently higher starch content compared to Carlow, likely due to its nutrient-rich, loamy soils. The higher starch content supports greater sugar availability during mashing, favouring the production of esters, which impart fruity and floral notes. In contrast, arabinoxylans and β-glucan can influence viscosity and affect fermentation kinetics, ultimately contributing to flavour complexity.
- Variety: The variety of wheat plays an essential role in defining the starch, protein, and non-starch polysaccharide content. Torp and Revelation varieties had higher protein content, which enhances yeast activity and results in increased fusel alcohol production. Viscount, with its higher starch content, contributes more to a light and fruity character, and increased alcohol content. Understanding these varietal effects allows distillers to control grain characteristics that ultimately affect the flavour development and mouthfeel of the whiskey.
- The interaction effect of variety x location x year significantly affected the non-starch polysaccharide content.
- Influence of Terroir on Volatile Distribution:
- The result illustrates a clear separation between the 2020 and 2021 samples, with the year contributing to the distinct volatile profiles. This difference aligns with the variation in environmental conditions such as rainfall and temperature; the 2020 season was warmer compared to 2021, affecting the grain composition and volatile formation.
- The PCA plot by location shows greater dispersion in Carlow samples compared to Tipperary, suggesting more variable environmental conditions, potentially due to its heterogeneous soil types and microclimate. In contrast, Tipperary’s more uniform soil and climate conditions contribute to a narrower range of volatiles.
- The wheat spirit was characterised by a wide range of volatile compounds, but the overall variability in the volatile profile was relatively low compared to the malt whiskey profile, as during the malting process, barley undergoes enzymatic changes that lead to the development of numerous flavour compounds [9].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
S.No. | Table and Plot Codes | Sample ID | ABV% |
---|---|---|---|
1 | Rev Carl ‘21 | Revelation Carlow 2021 | 5 |
2 | Rev Tipp ‘21 | Revelation Tipperary 2021 | 8 |
3 | Rev Tipp ‘20 | Revelation Tipperary 2020 | 4 |
4 | Rev Carl ‘20 | Revelation Carlow 2020 | 6 |
5 | Vis Tipp ‘20 | Viscount Tipperary 2020 | 5 |
6 | Vis Tipp ‘21 | Viscount Tipperary 2021 | 5 |
7 | Vis Carl ‘20 | Viscount Carlow 2020 | 3 |
8 | Vis Carl ‘21 | Viscount Carlow 2021 | 4 |
9 | Ela Carl ‘20 | Elation Carlow 2020 | 6 |
10 | Ela Carl ‘21 | Elation Carlow 2021 | 8 |
11 | Ela Tipp ‘20 | Elation Tipperary 2020 | 8 |
12 | Ela Tipp ‘21 | Elation Tipperary 2021 | 4 |
13 | Ast Carl ‘20 | LG Astronomer Carlow 2020 | 5 |
14 | Ast Carl ‘21 | LG Astronomer Carlow 2021 | 7 |
15 | Ast Tipp ‘20 | LG Astronomer Tipperary 2020 | 3 |
16 | Ast Tipp ‘21 | LG Astronomer Tipperary 2021 | 5 |
17 | Torp Tipp ‘20 | Torp Tipperary 2020 | 5 |
18 | Torp Tipp ‘21 | Torp Tipperary 2021 | 5 |
19 | Torp KB ‘20 | Torp Carlow 2020 | 5 |
20 | Torp KB ‘21 | Torp Carlow 2021 | 5 |
Variety | Year | Location | Protein ± SD | Starch ± SD | Arabinoxylans ± SD | β-glucan ± SD |
---|---|---|---|---|---|---|
Elation | 2020 | Tipperary | 9.82 ± 0.44 | 77.07 ± 3.76 | 6.172 ± 1.42 | 3.16 ± 0.2 |
Elation | 2020 | Carlow | 10.06 ± 0.11 | 62.44 ± 0.12 | 3.86 ± 0.45 | 7.12 ± 1.45 |
Elation | 2021 | Tipperary | 8.38 ± 0.22 | 74.04 ± 3.72 | 0.23 ± 0.05 | 4.97 ± 0.92 |
Elation | 2021 | Carlow | 7.64 ± 0.22 | 73.76 ± 2.03 | 16.42 ± 2.46 | 7.69 ± 1.04 |
LG Astronomer | 2020 | Tipperary | 9.83 ± 0.21 | 85.90 ± 1.87 | 11.097 ± 2.56 | 4.97 ± 2.48 |
LG Astronomer | 2020 | Carlow | 10.36 ± 0.28 | 70.58 ± 1.20 | 15.94 ± 1.88 | 5.22 ± 0.65 |
LG Astronomer | 2021 | Tipperary | 8.76 ± 0.4 | 73.82 ± 5.07 | 15.85 ± 3.71 | 3.15 ± 0.57 |
LG Astronomer | 2021 | Carlow | 8.31 ± 0.22 | 54.25 ± 0.69 | 9.25 ± 1.3 | 7.85 ± 1.04 |
Revelation | 2020 | Tipperary | 10.23 ± 0.39 | 81.53 ± 7.67 | 11.166 ± 2.56 | 2.97 ± 0.15 |
Revelation | 2020 | Carlow | 10.07 ± 0.24 | 69.17 ± 3.05 | 15.7 ± 1.83 | 5.62 ± 1.03 |
Revelation | 2021 | Tipperary | 8.69 ± 0.18 | 89.18 ± 1.96 | 10.91 ± 2.56 | 2.2 ± 0.08 |
Revelation | 2021 | Carlow | 8.5 ± 0.34 | 63.08 ± 10.54 | 12.08 ± 2.84 | 4.84 ± 0.62 |
Torp | 2020 | Tipperary | 10.31 ± 0.36 | 77.76 ± 1.6 | 15.811 ± 3.63 | 3.4 ± 0.33 |
Torp | 2020 | Carlow | 11.78 ± 0.09 | 73.65 ± 8.29 | 10.11 ± 0.77 | 10.05 ± 0.83 |
Torp | 2021 | Tipperary | 8.8 ± 0.45 | 82.55 ± 21.75 | 10.15 ± 2.39 | 3.9 ± 0.05 |
Torp | 2021 | Carlow | 8.64 ± 0.21 | 68.61 ± 3.46 | 16.76 ± 2.11 | 3.7 ± 0.15 |
Viscount | 2020 | Tipperary | 10.024 ± 0.48 | 88.279 ± 2.14 | 15.32 ± 3.51 | 5.98 ± 1.1 |
Viscount | 2021 | Carlow | 10.35 ± 0.32 | 75.86 ± 2.044 | 11.34 ± 0.72 | 7.51 ± 2.3 |
Viscount | 2021 | Tipperary | 8.44 ± 0.26 | 91.89 ± 1.97 | 12.01 ± 2.81 | 3.79 ± 0.28 |
Viscount | 2021 | Carlow | 7.79 ± 0.13 | 63.89 ± 41.09 | 14.39 ± 3.61 | 3.85 ± 0.77 |
Name | CAS | RI | Ref RI | Rev Carl ‘21 | Rev Tipp ‘21 | Rev Tipp ‘20 | Rev Carl ‘20 | Vis Tipp ‘20 | Vis Tipp ‘21 | Vis Carl ‘20 | Vis Carl ‘21 | Ela Carl ‘20 | Ela Carl ‘21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetal | |||||||||||||
Diethyl acetal | 105-57-7 | 742 | 747 | 0 | 30,871 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28,584 |
3-Methylbutanal, diethyl acetal | 03-03-3842 | 960 | * | 0 | 4581 | 0 | 0 | 0 | 0 | 2507 | 0 | 2453 | 5855 |
Alcohol | |||||||||||||
Ethanol | 64-17-5 | 489 | 506 | 3,658,448 | 5,926,241 | 2,089,463 | 2,570,413 | 1,870,733 | 3,232,613 | 3,2867,58 | 2,136,321 | 1,996,144 | 7,608,948 |
1-Propanol, 2-methyl- | 78-83-1 | 673 | 678 | 74,491 | 139,037 | 103,936 | 103,228 | 85,015 | 77,912 | 124,427 | 53,882 | 112,148 | 126,817 |
1-Butanol, 3-methyl- | 123-51-3 | 779 | 784 | 1,579,432 | 2,367,820 | 1,063,291 | 1,169,229 | 1,147,384 | 1,275,580 | 1,119,081 | 1,219,898 | 1,510,003 | 1,965,940 |
1-Butanol, 2-methyl- | 137-32-6 | 782 | 789 | 887,119 | 1,288,811 | 868,408 | 937,931 | 929,593 | 757,457 | 751,201 | 683,873 | 973,218 | 1,193,111 |
1-Hexanol | 111-27-3 | 911 | 915 | 77,158 | 102,252 | 88,872 | 96,213 | 93,247 | 105,157 | 90,652 | 64,701 | 122,381 | 63,404 |
2-Heptanol | 543-49-7 | 938 | 947 | 0 | 0 | 20,480 | 20,626 | 0 | 0 | 0 | 0 | 0 | 0 |
1-Heptanol | 111-70-6 | 1011 | 1016 | 7241 | 6211 | 6772 | 7187 | 4754 | 7153 | 5771 | 2940 | 6842 | 0 |
2-Octanol, (S) | 08-06-6169 | 1032 | * | 0 | 0 | 0 | 0 | 3042 | 0 | 0 | 0 | 0 | 0 |
1-Octanol | 111-87-5 | 1112 | 1118 | 6704 | 7362 | 6242 | 5738 | 7183 | 7256 | 14,204 | 7239 | 14,528 | 7484 |
2-Nonanol | 628-99-9 | 1136 | 1143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenylethyl Alcohol | 60-12-8 | 1194 | 1201 | 1,320,950 | 1,588,485 | 1,603,174 | 1,430,394 | 1,842,483 | 1,354,686 | 941,109 | 1,080,744 | 1,226,542 | 2,278,321 |
2-Furanmethanol | 98-00-0 | 924 | * | 4180 | 0 | 8398 | 9722 | 0 | 3163 | 0 | 0 | 0 | 0 |
Aldehyde | |||||||||||||
Butanal, 3-methyl- | 590-86-3 | 687 | 692 | 5285 | 14,163 | 6824 | 11,337 | 36,088 | 5969 | 29,434 | 18,860 | 39,224 | 16,673 |
Butanal, 2-methyl- | 96-17-3 | 695 | 700 | 23,714 | 4951 | 5761 | 7115 | 18,954 | 4706 | 14,973 | 10,322 | 16,807 | 10,211 |
Hexanal | 66-25-1 | 834 | 839 | 0 | 8433 | 0 | 0 | 19,255 | 0 | 32,237 | 16,804 | 38,371 | 9770 |
Furfural | 98-01-1 | 894 | 899 | 0 | 12,769 | 0 | 0 | 73,454 | 0 | 366,244 | 81,629 | 261,486 | 31,537 |
Heptanal | 111-71-7 | 936 | 943 | 0 | 0 | 0 | 0 | 2805 | 0 | 4694 | 2637 | 3916 | 0 |
Benzaldehyde | 100-52-7 | 1024 | 1031 | 0 | 2173 | 0 | 0 | 6426 | 0 | 43,866 | 12,277 | 28,300 | 3051 |
Benzenacetaldehyde | 122-78-1 | 1114 | * | 0 | 4305 | 0 | 0 | 25,416 | 0 | 279,059 | 2585 | 108,461 | 18,543 |
Nonanal | 124-19-6 | 1143 | 1150 | 3448 | 9734 | 2385 | 1370 | 6796 | 772 | 13,537 | 14,016 | 6980 | 8872 |
Benzaldehyde, 4-propyl- | 28785-06-0 | 1357 | * | 0 | 18,739 | 4338 | 6002 | 23,560 | 3689 | 17,438 | 17,509 | 10,527 | 14,337 |
Benzene | |||||||||||||
Styrene | 100-42-5 | 923 | 929 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
o-Xylene | 108-38-3 | 922 | 929 | 5084 | 3676 | 4291 | 5052 | 7449 | 4622 | 5330 | 3605 | 0 | 0 |
Ester | |||||||||||||
Ethyl acetate | 141-78-6 | 636 | 642 | 3,285,572 | 265,629 | 6,266,471 | 6,384,798 | 235,939 | 7,142,368 | 103,024 | 147,009 | 252,082 | 544,533 |
Ethyl propanoate | 105-37-3 | 732 | 737 | 14,319 | 0 | 31,339 | 40,564 | 10,547 | 28,353 | 0 | 4230 | 12,874 | 9020 |
n-Propyl acetate | 109-60-4 | 738 | 0 | 0 | 7563 | 20,808 | 0 | 17,335 | 0 | 0 | 0 | 0 | |
Isobutyl acetate | 110-19-0 | 795 | 800 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ethyl butanoate | 105-54-4 | 820 | 826 | 5402 | 4974 | 4399 | 4945 | 7823 | 4521 | 0 | 3166 | 6464 | 7613 |
Isoamyl acetate | 123-92-2 | 898 | 902 | 320,930 | 75,612 | 411,020 | 464,540 | 121,647 | 518,464 | 75,832 | 82,041 | 205,476 | 115,743 |
2-Methylbutyl acetate | 624-41-9 | 901 | 906 | 108,183 | 0 | 182,515 | 201,899 | 54,666 | 173,550 | 18,491 | 0 | 77,946 | 115,595 |
Ethyl pentanoate | 539-82-2 | 920 | 924 | 2414 | 3737 | 2684 | 0 | 5392 | 8063 | 3790 | 2651 | 10,624 | 4030 |
Isopropyl pentanoate | 18362-97-5 | 957 | * | 4603 | 3246 | 5769 | 5439 | 8164 | 4947 | 4323 | 4423 | 7377 | 2101 |
Ethyl hexanoate | 123-66-0 | 1017 | 1024 | 193,226 | 140,281 | 82,842 | 62,344 | 142,815 | 285,002 | 141,487 | 116,807 | 611,323 | 173,458 |
Hexyl acetate | 142-92-7 | 1034 | * | 24,461 | 0 | 40,009 | 38,010 | 0 | 62,198 | 0 | 0 | 0 | 0 |
Ethyl heptanoate | 106-30-9 | 1115 | * | 5185 | 2417 | 2440 | 9399 | 1928 | 6243 | 2427 | 1804 | 20,061 | 4262 |
Ethyl octanoate | 106-32-1 | 1216 | 1222 | 115,602 | 4251 | 2955 | 0 | 3102 | 20,604 | 5364 | 8243 | 102,467 | 60,572 |
Ethyl benzoate | 93-89-0 | 1225 | 1232 | 1636 | 1648 | 0 | 0 | 0 | 0 | 1938 | 0 | 3867 | 2176 |
Octyl acetate | 112-14-1 | 1215 | * | 0 | 0 | 0 | 0 | 0 | 0 | 10,159 | 4470 | 0 | 0 |
B-Phenylethyl acetate | 103-45-7 | 1313 | 1322 | 40,527 | 12,721 | 73,283 | 69,985 | 8259 | 77,165 | 20,195 | 21,820 | 16,808 | 22,582 |
Ethyl nonanoate | 123-29-5 | 1314 | * | 4470 | 0 | 1651 | 0 | 0 | 2519 | 0 | 0 | 1710 | 0 |
Ethyl decanoate | 110-38-3 | 1414 | 1422 | 5072 | 0 | 0 | 0 | 0 | 0 | 0 | 2012 | 10,031 | 3325 |
Ethyl benzeneacetate | 101-97-3 | 1298 | * | 10,189 | 14,785 | 0 | 0 | 1767 | 2412 | 6214 | 0 | 3793 | 18,290 |
Ether | |||||||||||||
Difurfuryl ether | 4437-22-3 | 926 | * | 0 | 0 | 0 | 0 | 0 | 0 | 4023 | 0 | 0 | 0 |
Furan | |||||||||||||
Furfuryl acetate | 623-17-6 | 1030 | * | 0 | 0 | 3377 | 3303 | 0 | 1358 | 0 | 0 | 0 | 0 |
Ketone | |||||||||||||
2-Heptanone | 110-43-0 | 930 | 936 | 24,503 | 0 | 133,423 | 127,576 | 12,130 | 9350 | 12,933 | 7078 | 10,681 | 0 |
3-Octanone | 106-68-3 | 1022 | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4-Nonanone, 2,6,8-trimethyl- | 123-18-2 | 1247 | * | 3942 | 4874 | 5234 | 4072 | 4654 | 5058 | 4151 | 3839 | 5206 | 4817 |
Lactone | |||||||||||||
γ-Nonalactone | 104-61-0 | 1484 | * | 31,873 | 52,879 | 22,125 | 18,433 | 28,241 | 64,719 | 51,897 | 25,520 | 61,895 | 46,106 |
Phenol | |||||||||||||
2,4-Di-tert-butylphenol | 96-76-4 | 1592 | 1644 | 33,250 | 36,216 | 33,091 | 30,931 | 35,051 | 38,713 | 29,773 | 20,547 | 61,121 | 34,506 |
Name | CAS | RI | Ref RI | Ela Tipp ‘20 | Ela Tipp ‘21 | Ast Carl ‘20 | Ast Carl ‘21 | Ast Tipp ‘20 | Ast Tipp ‘21 | Torp Tipp ‘20 | Torp Tipp ‘21 | Torp KB ‘20 | Torp KB ‘21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetal | |||||||||||||
Diethyl acetal | 105-57-7 | 742 | 747 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3-Methylbutanal, diethyl acetal | 03-03-3842 | 960 | * | 4985 | 0 | 0 | 2719 | 0 | 0 | 0 | 2437 | 2441 | 0 |
Alcohol | |||||||||||||
Ethanol | 64-17-5 | 489 | 506 | 5,257,459 | 2,715,097 | 1,970,918 | 4,789,790 | 3,056,767 | 2,330,556 | 2,532,878 | 3,514,650 | 2,738,950 | 3,216,485 |
1-Propanol, 2-methyl- | 78-83-1 | 673 | 678 | 69,527 | 113,733 | 107,524 | 80,899 | 81,212 | 59,137 | 101,917 | 89,568 | 142,289 | 76,400 |
1-Butanol, 3-methyl- | 123-51-3 | 779 | 784 | 1,262,577 | 1,032,851 | 1,622,604 | 1,514,584 | 952,109 | 1,239,367 | 1,112,751 | 1,792,022 | 1,134,854 | 1,221,304 |
1-Butanol, 2-methyl- | 137-32-6 | 782 | 789 | 669,247 | 57,3149 | 889,173 | 908,836 | 779,533 | 693,110 | 946,563 | 872,999 | 740,315 | 642,925 |
1-Hexanol | 111-27-3 | 911 | 915 | 78,012 | 78,875 | 161,625 | 74,317 | 76,276 | 75,196 | 62,859 | 91,487 | 86,675 | 54,189 |
2-Heptanol | 543-49-7 | 938 | 947 | 0 | 0 | 152,703 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1-Heptanol | 111-70-6 | 1011 | 1016 | 5164 | 4483 | 19,280 | 7970 | 5433 | 0 | 6165 | 3730 | 3766 | 0 |
2-Octanol, (S) | 08-06-6169 | 1032 | * | 0 | 0 | 12,432 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1-Octanol | 111-87-5 | 1112 | 1118 | 5764 | 4588 | 6748 | 6375 | 4019 | 8275 | 4588 | 8849 | 15,465 | 6091 |
2-Nonanol | 628-99-9 | 1136 | 1143 | 0 | 0 | 249,369 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenylethyl Alcohol | 60-12-8 | 1194 | 1201 | 1,543,105 | 868,736 | 969,069 | 1,597,147 | 1,325,589 | 1,336,868 | 1,560,983 | 2,055,401 | 847,927 | 1,446,128 |
2-Furanmethanol | 98-00-0 | 924 | * | 0 | 0 | 11,720 | 0 | 0 | 0 | 3496 | 0 | 0 | 0 |
Aldehyde | |||||||||||||
Butanal, 3-methyl- | 590-86-3 | 687 | 692 | 14,080 | 2615 | 2705 | 22,557 | 21,961 | 21,800 | 0 | 23,375 | 33,697 | 20,258 |
Butanal, 2-methyl- | 96-17-3 | 695 | 700 | 5962 | 6438 | 5845 | 9985 | 7644 | 7890 | 0 | 0 | 18,058 | 9378 |
Hexanal | 66-25-1 | 834 | 839 | 9945 | 0 | 0 | 7481 | 0 | 18,822 | 0 | 20,502 | 40,568 | 17,604 |
Furfural | 98-01-1 | 894 | 899 | 78,683 | 29,958 | 0 | 253,996 | 86,332 | 91,317 | 0 | 367,941 | 345,793 | 183,414 |
Heptanal | 111-71-7 | 936 | 943 | 2142 | 0 | 0 | 2707 | 0 | 3592 | 0 | 3977 | 7005 | 2489 |
Benzaldehyde | 100-52-7 | 1024 | 1031 | 4457 | 7481 | 0 | 21,626 | 7158 | 14,468 | 0 | 28,580 | 48,370 | 13,763 |
Benzenacetaldehyde | 122-78-1 | 1114 | * | 28,305 | 1730 | 0 | 22,275 | 2557 | 0 | 0 | 30,919 | 214,466 | 26,191 |
Nonanal | 124-19-6 | 1143 | 1150 | 8963 | 1569 | 0 | 6690 | 7273 | 13,796 | 992 | 22,463 | 16,959 | 15,245 |
Benzaldehyde, 4-propyl- | 28785-06-0 | 1357 | * | 17,233 | 5843 | 0 | 22,308 | 16,027 | 19,601 | 0 | 25,444 | 18,691 | 20,997 |
Benzene | |||||||||||||
Styrene | 100-42-5 | 923 | 929 | 0 | 10,184 | 0 | 0 | 0 | 0 | 2299 | 0 | 1097 | 1222 |
o-Xylene | 108-38-3 | 922 | 929 | 2443 | 0 | 7250 | 6023 | 6233 | 4349 | 5714 | 5984 | 4769 | 6240 |
Ester | |||||||||||||
Ethyl acetate | 141-78-6 | 636 | 642 | 196,102 | 2,593,055 | 2,150,842 | 225,220 | 175,361 | 165,889 | 7,520,894 | 425,306 | 141,353 | 221,336 |
Ethyl propanoate | 105-37-3 | 732 | 737 | 0 | 39,820 | 22,481 | 5393 | 13,938 | 6314 | 45,558 | 0 | 0 | 0 |
n-Propyl acetate | 109-60-4 | 738 | 0 | 0 | 0 | 0 | 0 | 0 | 38,102 | 0 | 0 | 0 | |
Isobutyl acetate | 110-19-0 | 795 | 800 | 0 | 0 | 35,914 | 0 | 0 | 0 | 37,543 | 0 | 0 | 0 |
Ethyl butanoate | 105-54-4 | 820 | 826 | 2978 | 1117 | 5188 | 4538 | 5253 | 4665 | 5082 | 4245 | 885 | 4442 |
Isoamyl acetate | 123-92-2 | 898 | 902 | 40,886 | 237,443 | 433,820 | 92,222 | 92,689 | 104,991 | 644,723 | 134,687 | 105,384 | 117,554 |
2-Methylbutyl acetate | 624-41-9 | 901 | 906 | 27,674 | 64,857 | 151,657 | 91,890 | 68,706 | 100,866 | 305,136 | 132,971 | 45,609 | 116,627 |
Ethyl pentanoate | 539-82-2 | 920 | 924 | 4076 | 7055 | 2462 | 1397 | 4025 | 3380 | 0 | 3630 | 3975 | 2148 |
Isopropyl pentanoate | 18362-97-5 | 957 | * | 2171 | 4833 | 7043 | 6145 | 5798 | 5562 | 6000 | 5459 | 5364 | 5906 |
Ethyl hexanoate | 123-66-0 | 1017 | 1024 | 121,759 | 302,117 | 60,166 | 79,233 | 90,102 | 159,323 | 22,728 | 114,735 | 196,110 | 64,722 |
Hexyl acetate | 142-92-7 | 1034 | * | 0 | 24,781 | 24,106 | 0 | 0 | 0 | 35,690 | 0 | 0 | 0 |
Ethyl heptanoate | 106-30-9 | 1115 | * | 2851 | 9359 | 0 | 0 | 0 | 2935 | 0 | 1921 | 11,153 | 0 |
Ethyl octanoate | 106-32-1 | 1216 | 1222 | 11,834 | 28,235 | 1463 | 5590 | 2409 | 13,317 | 0 | 5475 | 61,218 | 3130 |
Ethyl benzoate | 93-89-0 | 1225 | 1232 | 520 | 1270 | 3160 | 0 | 0 | 0 | 0 | 0 | 2254 | 0 |
Octyl acetate | 112-14-1 | 1215 | * | 0 | 0 | 0 | 0 | 0 | 9045 | 0 | 0 | 0 | 4501 |
B-Phenylethyl acetate | 103-45-7 | 1313 | 1322 | 14,485 | 33,770 | 21,010 | 16,997 | 6091 | 24,876 | 91,152 | 15,647 | 19,622 | 17,318 |
Ethyl nonanoate | 123-29-5 | 1314 | * | 0 | 4403 | 2340 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ethyl decanoate | 110-38-3 | 1414 | 1422 | 0 | 7139 | 0 | 0 | 0 | 0 | 0 | 0 | 5250 | 0 |
Ethyl benzeneacetate | 101-97-3 | 1298 | * | 13,088 | 6780 | 0 | 0 | 0 | 0 | 0 | 0 | 8167 | 0 |
Ether | |||||||||||||
Difurfuryl ether | 4437-22-3 | 926 | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3294 | 0 |
Furan | |||||||||||||
Furfuryl acetate | 623-17-6 | 1030 | * | 0 | 0 | 1317 | 0 | 0 | 0 | 2157 | 0 | 0 | 0 |
Ketone | |||||||||||||
2-Heptanone | 110-43-0 | 930 | 936 | 0 | 21,446 | 35,054 | 9131 | 12,311 | 7900 | 22,187 | 8363 | 78,087 | 8480 |
3-Octanone | 106-68-3 | 1022 | * | 0 | 0 | 0 | 10,084 | 8369 | 0 | 0 | 0 | 0 | 0 |
4-Nonanone, 2,6,8-trimethyl- | 123-18-2 | 1247 | * | 4114 | 4229 | 4253 | 5490 | 4449 | 4719 | 4049 | 5298 | 5124 | 5212 |
Lactone | |||||||||||||
γ-Nonalactone | 104-61-0 | 1484 | * | 80,355 | 94,137 | 22,099 | 32,877 | 23,637 | 34,166 | 16,892 | 65,773 | 64,032 | 30,489 |
Phenol | |||||||||||||
2,4-Di-tert-butylphenol | 96-76-4 | 1592 | 1644 | 23,969 | 19,170 | 28,656 | 39,295 | 28,938 | 25,377 | 34,329 | 40,321 | 38,226 | 29,813 |
References
- Morris, S.; Byrne, J.; Murphy, B.; Whelan, S.; Carroll, J.; Ryan, D. Optimization of Mashing Parameters Used during the Conversion of Irish Wheat Grain to Spirit Alcohol. J. Am. Soc. Brew. Chem. 2022, 81, 383–395. [Google Scholar] [CrossRef]
- Morris, S.; Byrne, J.L.; Murphy, B.; Whelan, S.J.; Carroll, J.P.; Ryan, D. The optimisation of cooking parameters for spirt whiskey production from native Irish wheat: A response surface method approach. Foods 2022, 11, 1199. [Google Scholar] [CrossRef] [PubMed]
- Woodhill, J.; Kishore, A.; Njuki, J.; Jones, K.; Hasnain, S. Food systems and rural wellbeing: Challenges and opportunities. Food Secur. 2022, 14, 1099–1121. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.; Keaney, R. The Rise of Whiskey Tourism in Ireland: Developing a Terroir Engagement Template. J. Gastron. Tour. 2018, 3, 107–121. [Google Scholar] [CrossRef]
- Van Leeuwen, C. Terroir: The effect of the physical environment on vine growth, grape ripening, and wine sensory attributes. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2022; pp. 341–393. [Google Scholar] [CrossRef]
- Johnston-Monje, D.; Vergara, L.I.; Lopez-Mejia, J.; White, J.F. Plant microbiomes as contributors to agricultural terroir. Front. Agron. 2023, 5, 1216520. [Google Scholar] [CrossRef]
- Herb, D.; Filichkin, T.; Fisk, S.; Helgerson, L.; Hayes, P.; Meints, B.; Jennings, R.; Monsour, R.; Tynan, S.; Vinkemeier, K.; et al. Effects of Barley (Hordeum vulgare L.) Variety and Growing Environment on Beer Flavor. J. Am. Soc. Brew. Chem. 2017, 75, 345–353. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Kyraleou, M.; Herb, D.; O’reilly, G.; Conway, N.; Bryan, T.; Kilcawley, K.N. The impact of terroir on the flavour of single malt whisk(e)y new make spirit. Foods 2021, 10, 443. [Google Scholar] [CrossRef]
- Arnold, R.J.; Ochoa, A.; Kerth, C.R.; Miller, R.K.; Murray, S.C. Assessing the impact of corn variety and Texas terroir on flavor and alcohol yield in new-make bourbon whiskey. PLoS ONE 2019, 14, e0220787. [Google Scholar] [CrossRef]
- Wanikawa, A. Flavors in malt whisky: A review. J. Am. Soc. Brew. Chem. 2020, 78, 260–278. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Feussner, I.; Wasternack, C. The lipoxygenase pathway. Annu Rev Plant Biol. 2002, 53, 275–297. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, G.; James, K.J.; MacNamara, K.; Stack, M.A. Characterisation of whiskeys using solid-phase microextraction with gas chromatography–mass spectrometry. J. Chromatogr. A 2000, 896, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Gerretzen, J.; Buydens, L.M.; Beukel, A.O.T.v.D.; Koussissi, E.; Brouwer, E.R.; Jansen, J.J.; Szymańska, E. A novel approach for analyzing gas chromatography-mass spectrometry/olfactometry data. Chemom. Intell. Lab. Syst. 2015, 146, 290–296. [Google Scholar] [CrossRef]
- European Brewery Convention. Analytica EBC: Cereal Adjuncts, Sugars, Syrups and Caramel, 6.2.2-Moisture Content of Maize. Available online: https://brewup.eu/ebc-analytica/cereal-adjuncts-sugars-syrups-and-caramel/moisture-content-of-maize/6.2.2 (accessed on 12 June 2024).
- European Brewery Convention. Analytica EBC. 9.2.1-Alcohol in Beer by Distillation. 2018. Available online: https://brewup.eu/ebc-analytica/beer/alcohol-in-beer-by-distillation/9.2.1 (accessed on 28 February 2024).
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- AMDIS Is (No Date) AMDIS Is a New (Easy to Use) Sophisticated Software for GC-MS Data Interpretation from NIST, Amdis.net. Available online: http://www.amdis.net/About/AMDIS-net--by-Tobias-Kind.pdf (accessed on 6 March 2024).
- Wehrens, R.; Weingart, G.; Mattivi, F. metaMS: An open-source pipeline for GC–MS-based untargeted metabolomics. J. Chromatogr. B 2014, 966, 109–116. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio, PBC; RStudio Team: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 5 June 2024).
- Haiying, T. Distribution of protein components of wheat from different regions. Afr. J. Biotechnol. 2012, 11, 10568–10574. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, J.-Y. Understanding wheat starch metabolism in properties, environmental stress condition, and molecular approaches for value-added utilization. Plants 2021, 10, 2282. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, X.; Liu, X.; Zhong, W.; Wang, X.; Ju, Z.; Yin, Y.; Xin, Q.; Liu, N.; Liu, X.; et al. Structural and physicochemical effects on the starch quality of the high-quality wheat genotype caused by delayed sowing. Front. Nutr. 2024, 11, 1389745. [Google Scholar] [CrossRef]
- Bujake, J.E. Beverage spirits, distilled. In Kirk-Othmer Encyclopedia of Chemical Technology, 1st ed.; Kirk-Othmer, Ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Stewart, G.G. The production of secondary metabolites with flavour potential during brewing and distilling wort fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef]
- Lee, K.-Y.M.; Paterson, A.; Piggott, J.R.; Richardson, G.D. Perception of whisky flavour reference compounds by Scottish distillers†. J. Inst. Brew. 2000, 106, 203–208. [Google Scholar] [CrossRef]
- Biernacka, P.; Wardencki, W. Volatile composition of raw spirits of different botanical origin: Volatile composition of raw spirits. J. Inst. Brew. 2012, 118, 393–400. [Google Scholar] [CrossRef]
Response Variable | Source | Df | Sum Sq | Mean Sq | F value | Pr (>F) |
---|---|---|---|---|---|---|
Variety | 4 | 0.05 | 0.01 | 15.10 | 1.78 × 10−7 *** | |
Location | 1 | 0.0 | 1 × 10−5 | 0.01 | 0.91 | |
Year | 4 | 0.05 | 0.12 | 153.55 | <2 × 10−16 *** | |
Protein | Variety: Location | 3 | 0.02 | 0.01 | 6.76 | 0.00091 *** |
Variety: Year | 3 | 0.01 | 0.01 | 3.91 | 0.01 * | |
Location: Year | 1 | 0.01 | 0.01 | 21.81 | 3.70 × 10−5 *** | |
Variety: Location: Year | 3 | 0.01 | 0.00 | 2.31 | 0.09 | |
Residuals | 38 | 0.03 | 0.00 | |||
Variety | 4 | 0.56 | 0.14 | 5.7 | 0.001076 ** | |
Location | 1 | 2.85 | 2.85 | 114.74 | 4.88 × 10−13 *** | |
Year | 4 | 0.76 | 0.19 | 7.72 | 0.000118 *** | |
Beta Glucan | Variety: Location | 3 | 0.33 | 0.11 | 4.47 | 0.008769 ** |
Variety: Year | 3 | 0.77 | 0.25 | 10.36 | 4.04 × 10−5 *** | |
Location: Year | 1 | 0.32 | 0.32 | 12.96 | 0.000905 *** | |
Variety: Location: Year | 3 | 0.36 | 0.12 | 4.95 | 0.005355 ** | |
Residuals | 38 | 0.94 | 0.02 | |||
Variety | 4 | 1288.9 | 322.2 | 8.77 | 4.06 × 10−5 *** | |
Location | 1 | 2213.0 | 2213.0 | 60.23 | 2.36 × 10−9 *** | |
Year | 4 | 727.9 | 182.0 | 4.95 | 0.00259 ** | |
Starch | Variety: Location | 3 | 372.2 | 124.1 | 3.38 | 0.02806 * |
Variety: Year | 3 | 161.1 | 53.7 | 1.46 | 0.24 | |
Location: Year | 1 | 0.4 | 0.4 | 0.01 | 0.91 | |
Variety: Location: Year | 3 | 296.3 | 98.8 | 2.69 | 0.06 | |
Residuals | 38 | 1396.2 | 36.7 | |||
Variety | 4 | 363.0 | 90.74 | 17.48 | 3.24 × 10−8 *** | |
Location | 1 | 31.3 | 31.26 | 6.02 | 0.01883 * | |
Year | 4 | 123.2 | 30.81 | 5.93 | 0.000821 *** | |
Arabinoxylans | Variety: Location | 3 | 128.9 | 42.97 | 8.28 | 0.000231 *** |
Variety: Year | 3 | 51.9 | 17.31 | 3.335 | 0.029365 * | |
Location: Year | 1 | 199.9 | 199.9 | 38.509 | 2.97 × 10−7 *** | |
Variety: Location: Year | 3 | 215.5 | 71.83 | 13.839 | 2.99 × 10−6 *** | |
Residuals | 38 | 197.3 | 5.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vashishtha, A.; Kilcawley, K.N.; Skibinska, I.; Whelan, S.; Byrne, J.L.; Garcia-Cabellos, G.; Morris, S. Influence of Terroir on the Grain Composition, and Volatile Profile of Irish Grain (Wheat) New Make Spirit. Beverages 2024, 10, 106. https://doi.org/10.3390/beverages10040106
Vashishtha A, Kilcawley KN, Skibinska I, Whelan S, Byrne JL, Garcia-Cabellos G, Morris S. Influence of Terroir on the Grain Composition, and Volatile Profile of Irish Grain (Wheat) New Make Spirit. Beverages. 2024; 10(4):106. https://doi.org/10.3390/beverages10040106
Chicago/Turabian StyleVashishtha, Anukriti, Kieran N. Kilcawley, Iwona Skibinska, Stephen Whelan, John L. Byrne, Guiomar Garcia-Cabellos, and Sinead Morris. 2024. "Influence of Terroir on the Grain Composition, and Volatile Profile of Irish Grain (Wheat) New Make Spirit" Beverages 10, no. 4: 106. https://doi.org/10.3390/beverages10040106
APA StyleVashishtha, A., Kilcawley, K. N., Skibinska, I., Whelan, S., Byrne, J. L., Garcia-Cabellos, G., & Morris, S. (2024). Influence of Terroir on the Grain Composition, and Volatile Profile of Irish Grain (Wheat) New Make Spirit. Beverages, 10(4), 106. https://doi.org/10.3390/beverages10040106