Effect of Mitophagy-Related Gene Regulation on Antioxidant Activity of Lager Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Medium
2.2. Construction of Recombinant Strains
2.2.1. Overexpression Experiments
2.2.2. Knockdown Experiments
2.3. Quantitative Real-Time PCR
2.4. Measurements
2.4.1. Growth Analysis
2.4.2. Intracellular ROS Assessment
2.4.3. Mitochondrial Membrane Potential Analysis
2.4.4. Intracellular ATP Determination
2.4.5. Confocal Microscopy and Image Analysis of Mitochondria
2.4.6. Intracellular Antioxidant Capacity Assay
2.5. Serial Beer Fermentation Test
2.6. Statistical Analysis
3. Results
3.1. Modifications to Mitophagy-Related Genes Affect the Resistance of Yeast Cells to H2O2
3.2. Modulation of Mitochondrial Homeostasis upon Oxidative Stress
3.2.1. Oxidative Stress Affected Mitophagy-Related Genes Expression
3.2.2. Regulation of Mitophagy-Related Genes Decreases ROS Content and Maintains Mitochondrial and Cell Vitality in Yeast Exposed to Oxidative Stress
3.2.3. Modifications of Mitophagy-Related Genes Regulate the Amount of Mitochondria
3.2.4. Modifications of Mitophagy-Related Genes Affect the Overall Antioxidant Capacity of Yeast Cells
3.3. Regulation of Mitophagy-Related Genes Affects the Antioxidant Abilities During Serial Beer Fermentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatia-Kissova, I.; Camougrand, N. Mitophagy in yeast: Decades of research. Cells 2021, 10, 3541. [Google Scholar] [CrossRef] [PubMed]
- Cabiscol, E.; Piulats, E.; Echave, P.; Herrero, E.; Ros, J. Oxidative stress promotes specific protein damage in saccharomyces cerevisiae. J. Biol. Chem. 2000, 275, 27393–27398. [Google Scholar] [CrossRef] [PubMed]
- Iuchi, S.; Weiner, L. Cellular and molecular physiology of escherichia coli in the adaptation to aerobic environments. J. Biochem. 1996, 120, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Abeliovich, H.; Zarei, M.; Rigbolt, K.T.G.; Youle, R.J.; Dengjel, J. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat. Commun. 2013, 4, 2789. [Google Scholar] [CrossRef] [PubMed]
- Garza-Lombó, C.; Pappa, A.; Panayiotidis, M.I.; Franco, R. Redox homeostasis, oxidative stress and mitophagy. Mitochondrion 2020, 51, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Nartiss, Y.; Steipe, B.; McQuibban, G.A.; Kim, P.K. Ros-induced mitochondrial depolarization initiates park2/parkin-dependent mitochondrial degradation by autophagy. Autophagy 2012, 8, 1462–1476. [Google Scholar] [CrossRef]
- Okamoto, K.; Kondo-Okamoto, N.; Ohsumi, Y. Mitochondria-anchored receptor atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 2009, 17, 87–97. [Google Scholar] [CrossRef]
- Kanki, T.; Furukawa, K.; Yamashita, S. Mitophagy in yeast: Molecular mechanisms and physiological role. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853, 2756–2765. [Google Scholar] [CrossRef]
- Shiroma, S.; Jayakody, L.N.; Horie, K.; Okamoto, K.; Kitagaki, H. Enhancement of ethanol fermentation in saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl. Environ. Microbiol. 2014, 80, 1002–1012. [Google Scholar] [CrossRef]
- Mao, K.; Wang, K.; Liu, X.; Klionsky, D.J. The scaffold protein atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 2013, 26, 9–18. [Google Scholar] [CrossRef]
- Koirala, S.; Guo, Q.; Kalia, R.; Bui, H.T.; Eckert, D.M.; Frost, A.; Shaw, J.M. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc. Natl. Acad. Sci. USA 2013, 110, E1342–E1351. [Google Scholar] [CrossRef] [PubMed]
- Kitagaki, H.; Araki, Y.; Funato, K.; Shimoi, H. Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett. 2007, 581, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- García-Chávez, D.; Domínguez-Martín, E.; Kawasaki, L.; Ongay-Larios, L.; Ruelas-Ramírez, H.; Mendoza-Martinez, A.E.; Pardo, J.P.; Funes, S.; Coria, R. Prohibitins, phb1 and phb2, function as atg8 receptors to support yeast mitophagy and also play a negative regulatory role in atg32 processing. Autophagy 2024, 20, 2478–2489. [Google Scholar] [CrossRef] [PubMed]
- Bockler, S.; Westermann, B. Mitochondrial er contacts are crucial for mitophagy in yeast. Dev. Cell 2014, 28, 450–458. [Google Scholar] [CrossRef]
- Gibson, B.R.; Lawrence, S.J.; Boulton, C.A.; Box, W.G.; Graham, N.S.; Linforth, R.S.T.; Smart, K.A. The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res. 2008, 8, 574–585. [Google Scholar] [CrossRef]
- Powell, C.D.; Quain, D.E.; Smart, K.A. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res. 2003, 3, 149–157. [Google Scholar] [CrossRef]
- Wang, J.; Ding, H.; Zheng, F.; Li, Y.; Liu, C.; Niu, C.; Li, Q. Physiological changes of beer brewer’s yeast during serial beer fermentation. J. Am. Soc. Brew. Chem. 2019, 77, 10–20. [Google Scholar] [CrossRef]
- Wang, J.; Fu, X.; Li, M.; Zheng, F.; Niu, C.; Liu, C.; Li, Q. Metabolic energy variation of yeast affects its antioxidant properties in beer brewing. Syst. Microbiol. Biomanuf. 2021, 1, 311–322. [Google Scholar] [CrossRef]
- Krogerus, K.; Arvas, M.; De Chiara, M.; Magalhaes, F.; Mattinen, L.; Oja, M.; Vidgren, V.; Yue, J.X.; Liti, G.; Gibson, B. Ploidy influences the functional attributes of de novo lager yeast hybrids. Appl. Microbiol. Biotechnol. 2016, 100, 7203–7222. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Bao, M.; Niu, C.; Liu, C.; Zheng, F.; Li, Y.; Li, Q. Reverse metabolic engineering in lager yeast: Impact of the NADH/NAD+ ratio on acetaldehyde production during the brewing process. Appl. Microbiol. Biotechnol. 2018, 103, 869–880. [Google Scholar] [CrossRef]
- Zhou, X.; Suo, J.; Liu, C.; Niu, C.; Zheng, F.; Li, Q.; Wang, J. Genome comparison of three lager yeasts reveals key genes affecting yeast flocculation during beer fermentation. FEMS Yeast Res. 2021, 21, foab031. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, C.F.; Niu, C.T.; Wang, J.J.; Zheng, F.Y.; Li, Y.X.; Li, Q. Rationally designed perturbation factor drives evolution in saccharomyces cerevisiae for industrial application. J. Ind. Microbiol. Biotechnol. 2018, 45, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Niu, C.T.; Liu, C.F.; Li, Q. Unraveling the mechanisms for low-level acetaldehyde production during alcoholic fermentation in saccharomyces pastorianus lager yeast. J. Agric. Food Chem. 2019, 67, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, S.; Catalani, S.; De Stefani, S.; Primiterra, M.; Fraternale, A.; Palma, F.; Palini, S. A microplate-based dcfh-da assay for the evaluation of oxidative stress in whole semen. Heliyon 2022, 8, e10642. [Google Scholar] [CrossRef]
- Zhang, M.F.; Wang, J.J.; Niu, C.T.; Zheng, F.Y.; Liu, C.F.; Li, Q. Screening of thermosensitive autolytic mutant brewer’s yeast and transcriptomic analysis of heat stress response. Can. J. Microbiol. 2020, 66, 631–640. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Iuliano, L.; Piccheri, C.; Coppola, I.; Praticò, D.; Micheletta, F.; Violi, F. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: A versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2000, 1474, 177–182. [Google Scholar] [CrossRef]
- Jing, H.J.; Liu, H.H.; Lu, Z.; Tan, X.R. Mitophagy improves ethanol tolerance in yeast: Regulation by mitochondrial reactive oxygen species in saccharomyces cerevisiae. J. Microbiol. Biotechnol. 2020, 30, 1876–1884. [Google Scholar] [CrossRef]
- Verbelen, P.J.; Dekoninck, T.M.L.; Van Mulders, S.E.; Saerens, S.M.G.; Delvaux, F.; Delvaux, F.R. Stability of high cell density brewery fermentations during serial repitching. Biotechnol. Lett. 2009, 31, 1729–1737. [Google Scholar] [CrossRef]
- Reddy, P.H.; Reddy, T.P.; Manczak, M.; Calkins, M.J.; Shirendeb, U.; Mao, P.Z. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Rev. 2011, 67, 103–118. [Google Scholar] [CrossRef]
- Rogov, A.G.; Ovchenkova, A.P.; Goleva, T.N.; Kireev, I.I.; Zvyagilskaya, R.A. New yeast models for studying mitochondrial morphology as affected by oxidative stress and other factors. Anal. Biochem. 2018, 552, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Klionsky, D.J. Mitochondrial fission facilitates mitophagy in saccharomyces cerevisiae. Autophagy 2013, 9, 1900–1901. [Google Scholar] [CrossRef]
- Xiao, B.; Kuruvilla, J.; Tan, E.K. Mitophagy and reactive oxygen species interplay in parkinson’s disease. NPJ Park. Dis. 2022, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Schofield, J.H.; Schafer, Z.T. Mitochondrial reactive oxygen species and mitophagy: A complex and nuanced relationship. Antioxid. Redox Signal. 2021, 34, 517–530. [Google Scholar] [CrossRef]
- Kondo-Okamoto, N.; Noda, N.N.; Suzuki, S.W.; Nakatogawa, H.; Takahashi, I.; Matsunami, M.; Hashimoto, A.; Inagaki, F.; Ohsumi, Y.; Okamoto, K. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 2012, 287, 10631–10638. [Google Scholar] [CrossRef]
- Kissova, I.; Salin, B.; Schaeffer, J.; Bhatia, S.; Manon, S.; Camougrand, N. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 2007, 3, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Camougrand, N.; Vigie, P.; Gonzalez, C.; Manon, S.; Bhatia-Kissova, I. The yeast mitophagy receptor atg32 is ubiquitinated and degraded by the proteasome. PLoS ONE 2020, 15, e0241576. [Google Scholar] [CrossRef]
- Xie, Z.P.; Nair, U.; Klionsky, D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 2008, 19, 3290–3298. [Google Scholar] [CrossRef] [PubMed]
- Deffieu, M.; Bhatia-Kissova, I.; Salin, B.; Galinier, A.; Manon, S.; Camougrand, N. Glutathione participates in the regulation of mitophagy in yeast. J. Biol. Chem. 2009, 284, 14828–14837. [Google Scholar] [CrossRef]
- Kissova, I.; Deffieu, M.; Manon, S.; Camougrand, N. Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 2004, 279, 39068–39074. [Google Scholar] [CrossRef]
- Liu, Z.T.; Yang, L.L.; Huang, J.Y.; Xu, P.; Zhang, Z.Y.; Yin, D.; Liu, J.C.; He, H.; He, M. Luteoloside attenuates anoxia/reoxygenation-induced cardiomyocytes injury via mitochondrial pathway mediated by 14-3-3 protein. Phytother. Res. 2018, 32, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Goldsmith, J.; Tankka, A.; Bustamante Eguiguren, S.; Gimenez, A.A.; Vick, L.; Debnath, J.; Vlahakis, A. Atg32-dependent mitophagy sustains spermidine and nitric oxide required for heat-stress tolerance in saccharomycescerevisiae. J. Cell. Sci. 2021, 134, jcs253781. [Google Scholar] [CrossRef] [PubMed]
- Kanki, T.; Kurihara, Y.; Jin, X.L.; Goda, T.; Ono, Y.; Aihara, M.; Hirota, Y.; Saigusa, T.; Aoki, Y.; Uchiumi, T.; et al. Casein kinase 2 is essential for mitophagy. EMBO Rep. 2013, 14, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, K.; Fukuda, T.; Yamashita, S.; Saigusa, T.; Kurihara, Y.; Yoshida, Y.; Kirisako, H.; Nakatogawa, H.; Kanki, T. The pp2a-like protein phosphatase ppg1 and the far complex cooperatively counteract ck2-mediated phosphorylation of atg32 to inhibit mitophagy. Cell Rep. 2018, 23, 3579–3590. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, Y.; Kanki, T.; Aoki, Y.; Hirota, Y.; Saigusa, T.; Uchiumi, T.; Kang, D.C. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J. Biol. Chem. 2012, 287, 3265–3272. [Google Scholar] [CrossRef]
- Jing, H.J.; Liu, H.H.; Zhang, L.; Gao, J.; Song, H.R.; Tan, X.R. Ethanol induces autophagy regulated by mitochondrial ros in saccharomyces cerevisiae. J. Microbiol. Biotechnol. 2018, 28, 1982–1991. [Google Scholar] [CrossRef]
- Li, F.Q.; Vierstra, R.D. Arabidopsis atg11, a scaffold that links the atg1-atg13 kinase complex to general autophagy and selective mitophagy. Autophagy 2014, 10, 1466–1467. [Google Scholar] [CrossRef]
- Hobbs, A.E.A.; Srinivasan, M.; McCaffery, J.M.; Jensen, R.E. Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtdna) nucleoids and required for mtdna stability. J. Cell Biol. 2001, 152, 401–410. [Google Scholar] [CrossRef]
- Burgess, S.M.; Delannoy, M.; Jensen, R.E. Mmm1 encodes a mitochondrial outer-membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J. Cell Biol. 1994, 126, 1375–1391. [Google Scholar] [CrossRef]
- Kumar, R.; Reichert, A.S. Common principles and specific mechanisms of mitophagy from yeast to humans. Int. J. Mol. Sci. 2021, 22, 4363. [Google Scholar] [CrossRef]
- Sogo, L.F.; Yaffe, M.P. Regulation of mitochondrial morphology and inheritance by mdm10p, a protein of the mitochondrial outer-membrane. J. Cell Biol. 1994, 126, 1361–1373. [Google Scholar] [CrossRef]
- Otsuga, D.; Keegan, B.R.; Brisch, E.; Thatcher, J.W.; Hermann, G.J.; Bleazard, W.; Shaw, J.M. The dynamin-related gtpase, dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol. 1998, 143, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.M.; Hu, Y.Z.; Wu, L.; Zhang, P.; Shang, J.J. Dnm1 deletion blocks mitochondrial fragmentation in delta fzo1 cells. Yeast 2021, 38, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Tal, R.; Winter, G.; Ecker, N.; Klionsky, D.J.; Abeliovich, H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 2007, 282, 5617–5624. [Google Scholar] [CrossRef] [PubMed]
- Mozdy, A.D.; McCaffery, J.M.; Shaw, J.M. Dnm1p gtpase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component fis1p. J. Cell Biol. 2000, 151, 367–379. [Google Scholar] [CrossRef]
- Journo, D.; Mor, A.; Abeliovich, H. Aup1-mediated regulation of rtg3 during mitophagy. J. Biol. Chem. 2009, 284, 35885–35895. [Google Scholar] [CrossRef]
- Chen, G.; Kroemer, G.; Kepp, O. Mitophagy: An emerging role in aging and age-associated diseases. Front. Cell Dev. Biol. 2020, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, E.Y.; Zorov, D.B. Pros and cons of use of mitochondria-targeted antioxidants. Antioxidants 2019, 8, 316. [Google Scholar] [CrossRef] [PubMed]
- Otsu, K.; Murakawa, T.; Yamaguchi, O. Bcl2l13 is a mammalian homolog of the yeast mitophagy receptor atg32. Autophagy 2015, 11, 1932–1933. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Padman, B.S.; Usher, J.; Oorschot, V.; Ramm, G.; Lazarou, M. Atg8 family lc3/gabarap proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during pink1/parkin mitophagy and starvation. J. Cell Biol. 2016, 215, 857–874. [Google Scholar] [CrossRef]
- Chen, M.; Sandoval, H.; Wang, J. Selective mitochondrial autophagy during erythroid maturation. Autophagy 2008, 4, 926–928. [Google Scholar] [CrossRef] [PubMed]
Plasmids | Description | Resource |
---|---|---|
YEp352 | A multicopy episomal plasmid | Stored in author’s lab [20] |
pUG6 | Cloning vector | Stored in author’s lab [21] |
YEp352-DNM1 | Native DNM1 with PGK1p and ADH1t expressed in pYEP352 | This study |
YEp352-ATG8 | Native ATG8 with PGK1p and ADH1t expressed in pYEP352 | This study |
YEp352-ATG11 | Native ATG11 with PGK1p and ADH1t expressed in pYEP352 | This study |
YEp352-ATG32 | Native ATG32 with PGK1p and ADH1t expressed in pYEP352 | This study |
YEp352-MMM1 | Native MMM1 with PGK1p and ADH1t expressed in pYEP352 | This study |
Strains | ||
Pilsner | Lager yeast | Chinese brewery [17] |
P-O-DNM1 | Pilsner transformed with pYEP352-DNM1 | This study |
P-O-ATG8 | Pilsner transformed with pYEP352-ATG8 | This study |
P-O-ATG11 | Pilsner transformed with pYEP352-ATG11 | This study |
P-O-ATG32 | Pilsner transformed with pYEP352-ATG32 | This study |
P-O-MMM1 | Pilsner transformed with pYEP352-MMM1 | This study |
Pil-dnm1Δ | Pilsner with DNM1 disrupted | This study |
Pil-atg8Δ | Pilsner with ATG8 disrupted | This study |
Pil-atg11Δ | Pilsner with ATG11 disrupted | This study |
Pil-atg32Δ | Pilsner with ATG32 disrupted | This study |
Pil-mmm1Δ | Pilsner with MMM1 disrupted | This study |
Strain | Mitochondria Number | Mitochondria Area |
---|---|---|
Pil-dnm1Δ | 1.06 ± 0.06 | 1.13 ± 0.23 |
P-O-DNM1 | 1.11 ± 0.08 | 1.01 ± 0.13 |
Pil-atg8Δ | 1.06 ± 0.04 | 1.00 ± 0.27 |
P-O-ATG8 | 1.09 ± 0.07 | 1.00 ± 0.28 |
Pil-atg11Δ | 1.09 ± 0.09 | 1.12 ± 0.27 |
P-O-ATG11 | 1.00 ± 0.12 | 1.06 ± 0.26 |
Pil-atg32Δ | 1.42 ± 0.18 * | 1.41 ± 0.14 * |
P-O-ATG32 | 1.09 ± 0.08 | 1.21 ± 0.17 |
Pil-mmm1Δ | 1.13 ± 0.04 * | 1.31 ± 0.04 * |
P-O-MMM1 | 1.13 ± 0.05 | 1.04 ± 0.21 |
Strain | Generation | Fermentation Time (Day) | Alcohol Content %V/V | Real Attenuation %W/W |
---|---|---|---|---|
Pilsner | G1 | 9 | 4.11 ± 0.13 | 56.96 ± 0.26 |
G2 | 9 | 3.97 ± 0.09 | 57.23 ± 0.14 | |
G3 | 7 | 4.16 ± 0.04 | 57.76 ± 0.24 | |
G4 | 6 | 3.91 ± 0.11 | 57.13 ± 0.23 | |
G5 | 7 | 4.02 ± 0.20 | 55.06 ± 0.51 | |
Pil-dnm1Δ | G1 | 9 | 3.97 ± 0.10 | 57.38 ± 0.12 ** |
G2 | 9 | 3.86 ± 0.07 | 56.94 ± 0.18 | |
G3 | 7 | 4.36 ± 0.11 * | 57.92 ± 0.21 | |
G4 | 7 | 3.93 ± 0.06 | 56.93 ± 0.19 | |
G5 | 7 | 3.96 ± 0.17 | 55.02 ± 0.15 | |
P-O-DNM1 | G1 | 9 | 4.19 ± 0.06 | 57.1 ± 0.14 |
G2 | 9 | 3.91 ± 0.13 | 57.12 ± 0.31 | |
G3 | 7 | 4.14 ± 0.09 | 57.81 ± 0.19 | |
G4 | 7 | 4.01 ± 0.12 | 57.25 ± 0.13 | |
G5 | 7 | 4.07 ± 0.18 | 55.12 ± 0.09 | |
Pil-atg8Δ | G1 | 9 | 4.09 ± 0.05 | 57.06 ± 0.12 |
G2 | 9 | 3.98 ± 0.04 | 56.85 ± 0.23 * | |
G3 | 7 | 4.26 ± 0.06 | 58.03 ± 0.31 | |
G4 | 7 | 4.09 ± 0.04 * | 57.31 ± 0.05 | |
G5 | 7 | 3.94 ± 0.21 | 55.12 ± 0.16 | |
P-O-ATG8 | G1 | 9 | 4.17 ± 0.14 | 57.45 ± 0.21 ** |
G2 | 9 | 4.04 ± 0.07 | 56.87 ± 0.31 * | |
G3 | 7 | 4.33 ± 0.14 * | 57.9 ± 0.27 | |
G4 | 6 | 3.95 ± 0.09 | 57.14 ± 0.14 | |
G5 | 7 | 3.77 ± 0.22 | 54.89 ± 0.17 | |
Pil-atg11Δ | G1 | 9 | 4.05 ± 0.09 | 57.02 ± 0.23 |
G2 | 9 | 4.03 ± 0.12 | 57.00 ± 0.15 | |
G3 | 7 | 4.05 ± 0.13 | 57.4 ± 0.15 | |
G4 | 7 | 4.09 ± 0.04 | 57.07 ± 0.17 | |
G5 | 7 | 4.00 ± 0.21 | 55.24 ± 0.36 | |
P-O-ATG11 | G1 | 9 | 4.17 ± 0.12 | 57.3 ± 0.08 * |
G2 | 8 | 4.07 ± 0.13 | 56.96 ± 0.13 | |
G3 | 7 | 4.28 ± 0.02 | 58.06 ± 0.17 | |
G4 | 7 | 3.93 ± 0.15 | 57.01 ± 0.09 | |
G5 | 7 | 4.32 ± 0.16 * | 55.25 ± 0.33 | |
Pil-atg32Δ | G1 | 10 | 4.24 ± 0.06 | 56.88 ± 0.22 |
G2 | 11 | 4.00 ± 0.04 | 57.12 ± 0.22 | |
G3 | 10 | 4.22 ± 0.07 | 57.42 ± 0.14 | |
G4 | 9 | 3.91 ± 0.06 | 57.46 ± 0.32 | |
G5 | 8 | 3.82 ± 0.06 | 54.87 ± 0.41 | |
P-O-ATG32 | G1 | 9 | 4.09 ± 0.03 | 56.97 ± 0.17 |
G2 | 9 | 4.02 ± 0.11 | 56.93 ± 0.09 | |
G3 | 7 | 4.11 ± 0.05 | 57.96 ± 0.23 | |
G4 | 7 | 4.03 ± 0.17 | 57.2 ± 0.36 | |
G5 | 7 | 4.21 ± 0.07 | 54.93 ± 0.29 | |
Pil-mmm1Δ | G1 | 9 | 3.58 ± 0.13 *** | 56.14 ± 0.22 *** |
G2 | 11 | 3.94 ± 0.04 | 56.82 ± 0.08 * | |
G3 | 8 | 4.12 ± 0.07 | 57.79 ± 0.11 | |
G4 | 9 | 3.97 ± 0.14 | 57.69 ± 0.19 * | |
G5 | 9 | 4.29 ± 0.19 | 55.18 ± 0.07 | |
P-O-MMM1 | G1 | 8 | 4.20 ± 0.08 | 57.26 ± 0.12 |
G2 | 9 | 4.21 ± 0.01 | 57.29 ± 0.14 * | |
G3 | 7 | 4.16 ± 0.12 | 57.08 ± 0.31 | |
G4 | 7 | 4.01 ± 0.03 | 56.8 ± 0.37 | |
G5 | 7 | 4.29 ± 0.13 | 55.06 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cheng, W.; Liu, C.; Niu, C.; Zheng, F.; Li, Q.; Svadbová, V.; Kubáňová, M.; Zelenka, J.; Ruml, T. Effect of Mitophagy-Related Gene Regulation on Antioxidant Activity of Lager Yeast. Beverages 2024, 10, 112. https://doi.org/10.3390/beverages10040112
Wang J, Cheng W, Liu C, Niu C, Zheng F, Li Q, Svadbová V, Kubáňová M, Zelenka J, Ruml T. Effect of Mitophagy-Related Gene Regulation on Antioxidant Activity of Lager Yeast. Beverages. 2024; 10(4):112. https://doi.org/10.3390/beverages10040112
Chicago/Turabian StyleWang, Jinjing, Wanqi Cheng, Chunfeng Liu, Chengtuo Niu, Feiyun Zheng, Qi Li, Viktorie Svadbová, Michaela Kubáňová, Jaroslav Zelenka, and Tomáš Ruml. 2024. "Effect of Mitophagy-Related Gene Regulation on Antioxidant Activity of Lager Yeast" Beverages 10, no. 4: 112. https://doi.org/10.3390/beverages10040112
APA StyleWang, J., Cheng, W., Liu, C., Niu, C., Zheng, F., Li, Q., Svadbová, V., Kubáňová, M., Zelenka, J., & Ruml, T. (2024). Effect of Mitophagy-Related Gene Regulation on Antioxidant Activity of Lager Yeast. Beverages, 10(4), 112. https://doi.org/10.3390/beverages10040112