Impact of French Oak Chip Maturation on the Volatile Composition and Sensory Profile of Agiorgitiko Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wines
2.2. Oak Chips
2.3. Samples’ Creation—Experimental Design
2.4. Chemicals and Reagents
2.5. Physicochemical Analyses
2.6. Determination of Volatile Aroma Compounds
2.7. Sensory Analysis
2.8. Data Analysis
3. Results
3.1. Physicochemical Analyses
3.2. Volatile Compounds of Wine Aroma Analysis
3.3. Odor Active Values (OAV)
3.4. Sensory Analysis
3.5. Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
a/a | Name | CAS | Molecular Formula | Mr | Purity | Company |
---|---|---|---|---|---|---|
1 | 2-Methoxy-4-methylphenol | 93-51-6 | C8H10O2 | 138.16 | 99.6% | Sigma Aldrich (St. Louis, MO, USA) |
2 | 2-Methoxy-4-vinylphenol | 7786-61-0 | C9H10O2 | 150.17 | 99.7% | Sigma Aldrich (St. Louis, MO, USA) |
3 | 2-Phenethyl acetate | 103-45-7 | C10H12O2 | 164.2 | 99.5% | Honeywell Fluka (Charlotte, NC, USA) |
4 | 2-Phenylethanol | 60-12-8 | C8H12O | 122.16 | 99.3% | Sigma Aldrich (St. Louis, MO, USA) |
5 | 3-(Methylthio)propionaldehyde | 3268-49-3 | C4H8SO | 104.17 | 97.2% | Sigma Aldrich (St. Louis, MO, USA) |
6 | 4-Ethylguaiacol | 2785-89-9 | C9H12O2 | 152.19 | 98.0% | Sigma Aldrich (St. Louis, MO, USA) |
7 | 4-Ethylphenol | 123-07-9 | C8H10O | 122.17 | 99.2% | Acros Organics (Geel, Belgium) |
8 | 4-Vinylphenol solution 10 wt.% | 2628-17-3 | C8H8O | 120.15 | 96.0% | Sigma Aldrich (St. Louis, MO, USA) |
9 | Acetovanillone | 498-02-2 | C9H10O3 | 166.17 | 98.0% | Sigma Aldrich (St. Louis, MO, USA) |
10 | ß-lonone | 79-77-6 | C13H20O | 192.3 | 97.1% | Honeywell Fluka (Charlotte, NC, USA) |
11 | Benzyl acetate | 140-11-4 | C9H10O2 | 150.17 | 99.9% | Sigma Aldrich (St. Louis, MO, USA) |
12 | Citral | 5392-40-5 | C10H16O | 152.23 | 96.0% | Sigma Aldrich (St. Louis, MO, USA) |
13 | Citronelol | 106-22-9 | C10H20O | 156.27 | 95.0% | Acros Organics (Geel, Belgium) |
14 | Damascenone natural | 23696-85-7 | C13H18O | 190.28 | 1.1–1.4 wt.% | Sigma Aldrich (St. Louis, MO, USA) |
15 | Decyl aldehyde | 112-31-2 | C10H20O | 156.27 | 98.5% | Acros Organics (Geel, Belgium) |
16 | Ethyl 2-methylbutyrate | 7452-79-1 | C7H14O2 | 130.19 | 99.3% | Acros Organics (Geel, Belgium) |
17 | Ethyl 3-hydroxybutyrate | 5405-41-4 | C6H12O3 | 132.16 | 99.6% | Sigma Aldrich (St. Louis, MO, USA) |
18 | Ethyl butyrate | 105-54-4 | C6H12O2 | 116.16 | ≥98.0% | Honeywell Fluka (Charlotte, NC, USA) |
19 | Ethyl caproate | 123-66-0 | C8H16O2 | 144.21 | 99.7% | Acros Organics (Geel, Belgium) |
20 | Ethyl caprylate | 106-32-1 | C10H20O2 | 172.26 | 99.2% | Sigma Aldrich (St. Louis, MO, USA) |
21 | Ethyl cinnamate trans | 103-36-6 | CllH12O2 | 176.21 | 99.7% | Acros Organics (Geel, Belgium) |
22 | Ethyl decanoate | 110-38-3 | C12H24O2 | 200.32 | 99.7% | Sigma Aldrich (St. Louis, MO, USA) |
23 | Ethyl dodecanoate | 106-33-2 | C14H28O2 | 228.37 | 99.7% | Sigma Aldrich (St. Louis, MO, USA) |
24 | Ethyl isobutyrate | 97-62-1 | C6H12O2 | 116.16 | 99.3% | Honeywell Fluka (Charlotte, NC, USA) |
25 | Ethyl isovalerate | 108-64-5 | C7H14O2 | 130.18 | 99.7% | Honeywell Fluka (Charlotte, NC, USA) |
26 | Ethyl vanillin | 121-32-4 | C9H10O3 | 166.17 | 97.0% | Acros Organics (Geel, Belgium) |
27 | Eugenol | 97-53-0 | C10H12O2 | 164.2 | 99.9% | Acros Organics (Geel, Belgium) |
28 | Geraniol | 106-24-1 | C10H18O | 154.25 | 99.0% | Acros Organics (Geel, Belgium) |
29 | Guaiacol | 90-05-1 | C7H8O2 | 124.14 | 99.5% | Sigma Aldrich (St. Louis, MO, USA) |
30 | Hexanal | 66-25-1 | C6H12O | 100.16 | ≥97.5% | Sigma Aldrich (St. Louis, MO, USA) |
31 | Hexyl acetate | 142-92-7 | C8H16O2 | 144.21 | ≥98.5% | Honeywell Fluka (Charlotte, NC, USA) |
32 | Isoamyl acetate | 123-92-2 | C7H14O2 | 130.19 | ≥99.0% | Acros Organics (Geel, Belgium) |
33 | Isobutyl acetate | 110-19-0 | C6H12O2 | 116.16 | ≥98.5% | Honeywell Fluka (Charlotte, NC, USA) |
34 | Isoeugenol | 97-54-1 | C10H12O2 | 164.2 | 99.3% | Sigma Aldrich (St. Louis, MO, USA) |
35 | Linalool | 78-70-6 | C10H18O | 154.25 | 98.5% | Acros Organics (Geel, Belgium) |
36 | Rose Oxide | 16409-43-1 | C10H18O | 154.25 | 99.9% | Honeywell Fluka (Charlotte, NC, USA) |
37 | Thymol | 89-83-8 | C10H14O | 150.22 | 99.9% | Sigma Aldrich (St. Louis, MO, USA) |
38 | Vanillin | 121-33-5 | C8H8O3 | 152.15 | 99.5% | Acros Organics (Geel, Belgium) |
39 | Whiskey lactone | 39212-23-2 | C9H16O2 | 156.22 | 99.4% | Sigma Aldrich (St. Louis, MO, USA) |
References
- Garde-Cerdán, T.; Lorenzo, C.; Carot, J.M.; Esteve, M.D.; Climent, M.D.; Salinas, M.R. Effects of composition, storage time, geographic origin and oak type on the accumulation of some volatile oak compounds and ethylphenols in wines. Food Chem. 2010, 122, 1076–1082. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of oak barrel type on the volatile composition of wine: Storage time optimization. LWT 2006, 39, 199–205. [Google Scholar] [CrossRef]
- Pérez-Prieto, L.J.; López-Roca, J.M.; Martínez-Cutillas, A.; Pardo Mínguez, F.; Gómez-Plaza, E. Maturing Wines in Oak Barrels. Effects of Origin, Volume, and Age of the Barrel on the Wine Volatile Composition. J. Agric. Food Chem. 2002, 50, 3272–3276. [Google Scholar] [CrossRef] [PubMed]
- Fernández De Simón, B.; Cadahía, E.; Jalocha, J. Volatile Compounds in a Spanish Red Wine Aged in Barrels Made of Spanish, French, and American Oak Wood. J. Agric. Food Chem. 2003, 51, 7671–7678. [Google Scholar] [CrossRef]
- Pérez-Prieto, L.J.; López-Roca, J.M.; Martínez-Cutillas, A.N.; Pardo-Mínguez, F.; Gómez-Plaza, E. Extraction and Formation Dynamic of Oak-Related Volatile Compounds from Different Volume Barrels to Wine and Their Behavior during Bottle Storage. J. Agric. Food Chem. 2003, 51, 5444–5449. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Spillman, P.J.; Iland, P.G.; Sefton, M.A. Accumulation of volatile oak compounds in a model wine stored in American and Limousin oak barrels. Aust. J. Grape Wine Res. 1998, 4, 67–73. [Google Scholar] [CrossRef]
- Garde Cerdán, T.; Torrea Goñi, D.; Ancín Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. Aust. J. Grape Wine Res. 2002, 8, 140–145. [Google Scholar] [CrossRef]
- Spillman, P.J.; Pollnitz, A.P.; Liacopoulos, D.; Skouroumounis, G.K.; Sefton, M.A. Accumulation of Vanillin during Barrel-Aging of White, Red, and Model Wines. J. Agric. Food Chem. 1997, 45, 2584–2589. [Google Scholar] [CrossRef]
- Jarauta, I.; Cacho, J.; Ferreira, V. Concurrent Phenomena Contributing to the Formation of the Aroma of Wine during Aging in Oak Wood: An Analytical Study. J. Agric. Food Chem. 2005, 53, 4166–4177. [Google Scholar] [CrossRef]
- Ferreira, V.; Jarauta, I.; Cacho, J. Physicochemical Model To Interpret the Kinetics of Aroma Extraction during Wine Aging in Wood. Model Limitations Suggest the Necessary Existence of Biochemical Processes. J. Agric. Food Chem. 2006, 54, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- International Organisation of Vine and Wine. International Code of Oenological Practices. Available online: https://www.oiv.int/public/medias/8630/code-2022-en.pdf (accessed on 31 January 2024).
- European Union. Council Regulation (EC) No 2165/2005. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2165 (accessed on 20 December 2005).
- European Union. Commission Delegated Regulation (EU) 2019/934. Available online: https://eur-lex.europa.eu/eli/reg_del/2019/934/oj (accessed on 12 March 2019).
- Laqui-Estaña, J.; López-Solís, R.; Peña-Neira, A.; Medel-Marabolí, M.; Obreque-Slier, E. Wines in contact with oak wood: The impact of the variety (Carménère and Cabernet Sauvignon), format (barrels, chips and staves) and aging time on the phenolic composition. J. Sci. Food Agric. 2019, 99, 436–448. [Google Scholar] [CrossRef]
- Stegăruș, D.I.; Călugăr, A.; Tanase, C.; Muscă, A.; Botoran, O.R.; Manolache, M.; Babeș, A.C.; Bunea, C.; Gál, E.; Bunea, A.; et al. Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania. Appl. Sci. 2021, 11, 3691. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Lencina, A.G.; Cano-López, M.; Pardo-Mínguez, F.; López-Roca, J.M.; Gómez-Plaza, E. The use of oak chips during the ageing of a red wine in stainless steel tanks or used barrels: Effect of the contact time and size of the oak chips on aroma compounds. Aust. J. Grape Wine Res. 2008, 14, 63–70. [Google Scholar] [CrossRef]
- Călugăr, A.; Coldea, T.E.; Pop, C.R.; Pop, T.I.; Babeș, A.C.; Bunea, C.I.; Manolache, M.; Gal, E. Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine. Processes 2020, 8, 1000. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Cadahía, E.; del Álamo, M.; Nevares, I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal. Chim. Acta 2010, 660, 211–220. [Google Scholar] [CrossRef]
- Delgado de la Torre, P.; Priego-Capote, F.; Luque de Castro, D. Comparative profiling analysis of woody flavouring from vine-shoots and oak chips. J. Sci. Food Agric. 2014, 94, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Fanzone, M.; Catania, A.; Assof, M.; Jofré, V.; Prieto, J.; Gil Quiroga, D.; Lacognata Sottano, J.; Sari, S. Application of Vine-Shoot Chips during Winemaking and Aging of Malbec and Bonarda Wines. Beverages 2021, 7, 51. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Micro-oxygenation and oak chip treatments of red wines: Effects on colour-related phenolics, volatile composition and sensory characteristics. Part II: Merlot wines. Food Chem. 2011, 124, 738–748. [Google Scholar] [CrossRef]
- Tao, Y.; García, J.F.; Sun, D.W. Advances in Wine Ageing Technologies for Enhancing Wine Quality and Accelerating Wine Ageing Process. Crit. Rev. Food Sci. Nutr. 2013, 54, 817–835. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; del Alamo-Sanza, M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y.; Nevares, I. Volatile composition and sensory characteristics of Carménère wines macerating with Colombian (Quercus humboldtii) oak chips compared to wines macerated with American (Q. alba) and European (Q. petraea) oak chips. Food Chem. 2018, 266, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Tavares, M.; Jordão, A.M.; Ricardo-da-Silva, J.M. Impact of cherry, acacia and oak chips on red wine phenolic parameters and sensory profile. OENO One 2017, 51, 329. [Google Scholar] [CrossRef]
- Baiano, A.; De Gianni, A. Timing of the treatment with oak chips: The case of Nero di Troia wine. Eur. Food Res. Technol. 2016, 242, 1343–1353. [Google Scholar] [CrossRef]
- Rubio-Bretón, P.; Garde-Cerdán, T.; Martínez, J. Use of Oak Fragments during the Aging of Red Wines. Effect on the Phenolic, Aromatic, and Sensory Composition of Wines as a Function of the Contact Time with the Wood. Beverages 2018, 4, 102. [Google Scholar] [CrossRef]
- Gordillo, B.; Baca-Bocanegra, B.; Rodriguez-Pulído, F.J.; González-Miret, M.L.; Estévez, I.G.; Quijada-Morín, N.; Heredia, F.J.; Escribano-Bailón, M.T. Optimisation of an oak chips-grape mix maceration process. Influence of chip dose and maceration time. Food Chem. 2016, 206, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Carapia, M.Á.; Verde-Calvo, J.R.; Escalona-Buendía, H.B.; Peña-Álvarez, A. Effect of Maturation with American Oak Chips on the Volatile and Sensory Profile of a Cabernet Sauvignon Rosé Wine and Its Comparison with Commercial Wines. Beverages 2023, 9, 72. [Google Scholar] [CrossRef]
- Baiano, A.; De Gianni, A.; Mentana, A.; Quinto, M.; Centonze, D.; Del Nobile, M.A. Effects of the treatment with oak chips on color-related phenolics, volatile composition, and sensory profile of red wines: The case of Aglianico and Montepulciano. Eur. Food Res. Technol. 2016, 242, 745–767. [Google Scholar] [CrossRef]
- Koussissi, E.; Dourtoglou, V.G.; Ageloussis, G.; Paraskevopoulos, Y.; Dourtoglou, T.; Paterson, A.; Chatzilazarou, A. Influence of toasting of oak chips on red wine maturation from sensory and gas chromatographic headspace analysis. Food Chem. 2009, 114, 1503–1509. [Google Scholar] [CrossRef]
- Kyraleou, M.; Kallithraka, S.; Chira, K.; Tzanakouli, E.; Ligas, I.; Kotseridis, Y. Differentiation of Wines Treated with Wood Chips Based on Their Phenolic Content, Volatile Composition, and Sensory Parameters. J. Food Sci. 2015, 80, C2701–C2710. [Google Scholar] [CrossRef]
- Ligas, I.; Goulioti, E.; Tarantilis, P.; Kotseridis, Y. A New Simple Method for the Determination of Complex Wine Aroma Compounds Using GC-MS/MS—The Case of the Greek Variety “Agiorgitiko”. AppliedChem 2024, 4, 122–139. [Google Scholar] [CrossRef]
- Ligas, I.; Kotseridis, Y. Introducing a Standardized Sensory Analysis Method for Wine: A Methodology for the Recruitment, Selection, Training, and Monitoring of Assessors—Implementation on the Greek Variety “Agiorgitiko”. Beverages 2024, 10, 63. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Compendium Of International Methods of Wine And Must Analysis. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 31 January 2024).
- Hellenic Accreditation System (ESYD). Scope of Accreditation of the Testing Laboratory CADMION. Available online: https://esyd.gr/cadmion-i-%ce%bb%ce%af%ce%b3%ce%ba%ce%b1%cf%82-%cf%83%ce%b9%ce%b1-%ce%bf%ce%b5/ (accessed on 18 December 2023).
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- López, R.; Ortín, N.; Pérez-Trujillo, J.P.; Cacho, J.; Ferreira, V. Impact odorants of different young white wines from the Canary Islands. J. Sci. Food Agric. 2003, 51, 3419–3425. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Ferreira, V.; Escudero, A.; Marqués, J.C.; Cacho, J. Quantitative gas chromatography-olfactometry and chemical quantitative study of the aroma of four Madeira wines. Anal. Chim. Acta 2006, 563, 180–187. [Google Scholar] [CrossRef]
- European Accreditation. Accreditation for Sensory Testing Laboratories. EA-4/09; European Accreditation: Paris, France, 2003. [Google Scholar]
- Antia, G.; Pereira, M.; Fraga, P.; Garcia-Oliveira, M.; Carpena, C.; Jimenez-Lopez, C.; Lourenço-Lopes, L.; Barros, L.; Isabel, C.F.R.; Ferreira, M.A.; et al. Management of Wine Aroma Compounds: Principal Basis and Future Perspectives. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Quantitative determination and characterization of the main odourants of Mencía monovarietal red wines. Food Chem. 2009, 117, 473–484. [Google Scholar] [CrossRef]
- Vázquez-Pateiro, I.; Arias-González, U.; Mirás-Avalos, J.M.; Falqué, E. Evolution of the Aroma of Treixadura Wines during Bottle Aging. Foods 2020, 9, 1419. [Google Scholar] [CrossRef]
- De-La-Fuente-Blanco, A.; Sáenz-Navajas, M.P.; Valentin, D.; Ferreira, V. Fourteen ethyl esters of wine can be replaced by simpler ester vectors without compromising quality but at the expense of increasing aroma concentration. Food Chem. 2020, 307, 125553. [Google Scholar] [CrossRef]
- Renault, P.; Coulon, J.; de Revel, G.; Barbe, J.C.; Bely, M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int. J. Food Microbiol. 2015, 207, 40–48. [Google Scholar] [CrossRef]
- Rocha, S.M.; Rodrigues, F.; Coutinho, P.; Delgadillo, I.; Coimbra, M.A. Volatile composition of Baga red wine: Assessment of the identification of the would-be impact odourants. Anal. Chim. Acta 2004, 513, 257–262. [Google Scholar] [CrossRef]
- Rodrigues Pinto, P.C.; Borges da Silva, E.A.; Rodrigues, A.E. Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde. In Biomass Conversion; Baskar, C., Baskar, S., Dhillon, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 381–420. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Alcoholic strength by volume | 13.73 | %v/v |
Density at 20 °C | 0.9907 | g/mL |
pH | 3.48 | |
Total acidity | 6.15 | g tartaric acid/L |
Volatile acidity | 0.15 | g acetic acid/L |
Reducing substances | 1.9 | g/L |
Total dry extract | 26.7 | g/L |
Color intensity | 7.78 | A |
Hue | 0.58 | |
Phenolic’s index | 51 | A |
Total sulfur dioxide | 56 | mg/L |
Free sulfur dioxide | 16 | mg/L |
Acetovanillone (μg/L) | Ethyl-guaiacol (μg/L) | Guaiacol (μg/L) | Vanillin (μg/L) | trans-Whiskey Lactone (μg/L) | cis-Whiskey Lactone (μg/L) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | |
Control | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
LT_1g | ND | 27 ± 10 | 86 ± 27 | ND | ND | ND | ND | ND | ND | 11 ± 1 | 27 ± 10 | 82 ± 29 | ND | ND | ND | 19 ± 2 | 24 ± 3 | 27 ± 6 |
LT_2g | 12 ± 2 | 45 ± 2 | 146 ± 69 | ND | ND | ND | ND | ND | ND | 13 ± 1 | 44 ± 3 | 142 ± 76 | ND | 20 ± 12 | 19 ± 7 | 38 ± 8 | 62 ± 6 | 57 ± 16 |
LT_4g | 21 ± 10 | 73 ± 28 | 246 ± 96 | ND | ND | ND | ND | ND | ND | 23 ± 7 | 70 ± 24 | 242 ± 117 | 21 ± 13 | 42 ± 23 | 41 ± 12 | 80 ± 4 | 117 ± 29 | 122 ± 11 |
MT_1g | 13 ± 3 | 28 ± 8 | 148 ± 5 | ND | ND | ND | ND | ND | ND | 15 ± 4 | 25 ± 8 | 139 ± 13 | ND | ND | 22 ± 1 | 13 ± 4 | 19 ± 7 | 22 ± 4 |
MT_2g | 22 ± 1 | 132 ± 28 | 296 ± 8 | ND | ND | ND | ND | 10 ± 0 | 10 ± 2 | 25 ± 1 | 126 ± 35 | 278 ± 26 | ND | 22 ± 3 | 33 ± 1 | 29 ± 4 | 46 ± 10 | 44 ± 10 |
MT_4g | 86 ± 20 | 289 ± 71 | 600 ± 34 | ND | ND | ND | 14 ± 2 | 17 ± 1 | 20 ± 5 | 86 ± 14 | 278 ± 96 | 550 ± 23 | 24 ± 7 | 40 ± 9 | 52 ± 20 | 57 ± 8 | 72 ± 15 | 85 ± 7 |
HT_1g | ND | 33 ± 5 | 108 ± 23 | ND | ND | 5 ± 1 | 10 ± 0 | 15 ± 3 | 15 ± 1 | 9 ± 2 | 31 ± 2 | 100 ± 30 | ND | ND | ND | ND | ND | ND |
HT_2g | ND | 50 ± 17 | 217 ± 50 | ND | 7 ± 2 | 11 ± 1 | 21 ± 2 | 27 ± 4 | 29 ± 2 | 14 ± 2 | 49 ± 19 | 211 ± 68 | ND | ND | ND | 7 ± 0.4 | 6 ± 2 | 11 ± 0.1 |
HT_4g | 21 ± 2 | 154 ± 43 | 325 ± 21 | ND | 15 ± 4 | 20 ± 3 | 32 ± 3 | 48 ± 8 | 52 ± 2 | 23 ± 1 | 143 ± 53 | 310 ± 52 | ND | ND | ND | 6 ± 2 | 15 ± 4 | 20 ± 3 |
2-Phenylethanol (μg/L) | 2-Phenylethyl-acetate (μg/L) | Isoamyl-acetate (μg/L) | Isobutyl-acetate (μg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | |
Control | 40,995 ± 701 | 43,589 ± 4841 | 35,453 ± 733 | 63 ± 3 | 68 ± 3 | 66 ± 6 | 1188 ± 172 | 1014 ± 100 | 948 ± 108 | 69 ± 13 | 62 ± 10 | 66 ± 16 |
LT_1g | 40,161 ± 1390 | 42,612 ± 4912 | 39,249 ± 1558 | 65 ± 5 | 69 ± 4 | 72 ± 9 | 1156 ± 108 | 1019 ± 93 | 980 ± 88 | 86 ± 5 | 75 ± 4 | 57 ± 7 |
LT_2g | 38,844 ± 1055 | 40,146 ± 625 | 40,190 ± 3076 | 59 ± 2 | 73 ± 3 | 69 ± 5 | 1367 ± 100 | 1139 ± 69 | 1028 ± 110 | 80 ± 8 | 70 ± 6 | 49 ± 18 |
LT_4g | 39,979 ± 1283 | 42,804 ± 3676 | 38,847 ± 2570 | 62 ± 8 | 72 ± 2 | 67 ± 1 | 1269 ± 76 | 1130 ± 119 | 1035 ± 29 | 78 ± 5 | 72 ± 5 | 58 ± 5 |
MT_1g | 37,357 ± 1526 | 39,779 ± 8604 | 39,405 ± 1815 | 70 ± 4 | 73 ± 2 | 68 ± 3 | 1256 ± 49 | 1091 ± 47 | 1041 ± 75 | 80 ± 5 | 73 ± 2 | 62 ± 8 |
MT_2g | 38,968 ± 1525 | 41,140 ± 2616 | 38,432 ± 1305 | 68 ± 3 | 69 ± 2 | 65 ± 6 | 1365 ± 31 | 1147 ± 52 | 1009 ± 96 | 78 ± 8 | 70 ± 6 | 60 ± 4 |
MT_4g | 38,129 ± 1641 | 36,062 ± 5340 | 38,573 ± 527 | 70 ± 6 | 67 ± 2 | 67 ± 3 | 1254 ± 56 | 1001 ± 42 | 960 ± 9 | 85 ± 9 | 69 ± 7 | 60 ± 6 |
HT_1g | 37,698 ± 1387 | 42,281 ± 5985 | 36,877 ± 1913 | 71 ± 4 | 69 ± 8 | 65 ± 4 | 1303 ± 73 | 1110 ± 59 | 1006 ± 130 | 78 ± 7 | 69 ± 6 | 65 ± 10 |
HT_2g | 39,471 ± 5611 | 40,409 ± 5212 | 38,650 ± 1349 | 68 ± 2 | 67 ± 6 | 67 ± 5 | 1189 ± 57 | 1037 ± 40 | 1009 ± 44 | 84 ± 7 | 72 ± 5 | 65 ± 3 |
HT_4g | 32,599 ± 1558 | 35,313 ± 3267 | 34,954 ± 913 | 66 ± 1 | 61 ± 3 | 57 ± 8 | 1278 ± 116 | 1056 ± 106 | 944 ± 46 | 83 ± 8 | 72 ± 7 | 63 ± 4 |
Ethyl-3-hydroxybutyrate (μg/L) | Ethyl-butyrate (μg/L) | Ethyl-caproate (μg/L) | Ethyl-caprylate (μg/L) | Ethyl-isobutyrate (μg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | |
Control | 972 ± 73 | 813 ± 57 | 783 ± 59 | 255 ± 10 | 261 ± 19 | 249 ± 21 | 68 ± 8 | 56 ± 3 | 52 ± 3 | 67 ± 3 | 71 ± 6 | 64 ± 6 | 64 ± 4 | 61 ± 4 | 62 ± 5 |
LT_1g | 967 ± 30 | 801 ± 81 | 810 ± 32 | 260 ± 19 | 248 ± 14 | 230 ± 8 | 66 ± 8 | 58 ± 4 | 57 ± 2 | 71 ± 11 | 68 ± 7 | 67 ± 6 | 70 ± 6 | 65 ± 3 | 65 ± 5 |
LT_2g | 947 ± 32 | 787 ± 20 | 844 ± 85 | 266 ± 3 | 247 ± 23 | 225 ± 16 | 69 ± 11 | 60 ± 4 | 59 ± 4 | 77 ± 10 | 76 ± 3 | 73 ± 7 | 64 ± 5 | 61 ± 4 | 64 ± 4 |
LT_4g | 983 ± 48 | 1041 ± 351 | 827 ± 18 | 262 ± 15 | 267 ± 17 | 232 ± 5 | 75 ± 16 | 69 ± 7 | 61 ± 2 | 82 ± 14 | 74 ± 6 | 67 ± 3 | 71 ± 8 | 68 ± 7 | 68 ± 4 |
MT_1g | 919 ± 48 | 1707 ± 1516 | 884 ± 45 | 257 ± 22 | 252 ± 19 | 260 ± 46 | 81 ± 9 | 70 ± 1 | 62 ± 3 | 83 ± 6 | 77 ± 8 | 72 ± 3 | 71 ± 8 | 70 ± 3 | 73 ± 4 |
MT_2g | 959 ± 37 | 817 ± 38 | 854 ± 34 | 236 ± 6 | 260 ± 9 | 235 ± 7 | 81 ± 8 | 66 ± 4 | 56 ± 3 | 81 ± 8 | 80 ± 4 | 69 ± 3 | 61 ± 4 | 60 ± 5 | 68 ± 5 |
MT_4g | 906 ± 26 | 802 ± 82 | 839 ± 42 | 263 ± 20 | 253 ± 3 | 234 ± 14 | 71 ± 13 | 63 ± 8 | 57 ± 2 | 78 ± 9 | 73 ± 5 | 70 ± 6 | 70 ± 7 | 66 ± 3 | 66 ± 5 |
HT_1g | 936 ± 26 | 795 ± 38 | 831 ± 75 | 260 ± 17 | 256 ± 13 | 230 ± 16 | 75 ± 10 | 62 ± 2 | 55 ± 7 | 82 ± 9 | 78 ± 4 | 71 ± 4 | 75 ± 9 | 68 ± 6 | 70 ± 5 |
HT_2g | 964 ± 105 | 731 ± 44 | 848 ± 24 | 257 ± 10 | 255 ± 10 | 242 ± 9 | 68 ± 4 | 55 ± 5 | 54 ± 2 | 63 ± 6 | 68 ± 5 | 63 ± 3 | 70 ± 5 | 65 ± 1 | 68 ± 6 |
HT_4g | 843 ± 41 | 684 ± 21 | 763 ± 43 | 265 ± 15 | 244 ± 8 | 219 ± 10 | 63 ± 4 | 57 ± 2 | 52 ± 3 | 68 ± 4 | 67 ± 4 | 63 ± 2 | 69 ± 5 | 65 ± 4 | 64 ± 2 |
OAV Fruity | OAV Oak Compounds | %OAV Oak Compounds | |||||||
---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | |
Control | 75.2 ± 5 | 69.5 ± 2.4 | 65.1 ± 3 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0.0% | 0.0% | 0.0% |
LT_1g | 75.3 ± 4.4 | 68.8 ± 4.1 | 66.4 ± 3.2 | 0.1 ± 0.01 | 0.2 ± 0.06 | 0.5 ± 0.17 | 0.1% | 0.3% | 0.8% |
LT_2g | 83.9 ± 5.6 | 74.3 ± 2.5 | 69 ± 3.7 | 0.1 ± 0.01 | 0.6 ± 0.17 | 1.2 ± 0.54 | 0.2% | 0.8% | 1.7% |
LT_4g | 82.3 ± 6.7 | 75.7 ± 6.2 | 68.7 ± 1.4 | 0.6 ± 0.24 | 1.2 ± 0.5 | 2.2 ± 0.84 | 0.7% | 1.6% | 3.1% |
MT_1g | 82.2 ± 4.2 | 74.5 ± 2.9 | 71.7 ± 3.1 | 0.1 ± 0.02 | 0.2 ± 0.05 | 1 ± 0.11 | 0.1% | 0.2% | 1.4% |
MT_2g | 83.8 ± 3.2 | 76.3 ± 2.2 | 68 ± 3.3 | 0.2 ± 0.01 | 2 ± 0.39 | 3 ± 0.33 | 0.2% | 2.5% | 4.2% |
MT_4g | 80.7 ± 4 | 70 ± 1.8 | 66.5 ± 1.2 | 2.4 ± 0.45 | 4.2 ± 0.81 | 6.3 ± 0.76 | 2.9% | 5.7% | 8.7% |
HT_1g | 83.6 ± 4.3 | 74.8 ± 2.4 | 68.1 ± 6.4 | 1.1 ± 0.05 | 1.7 ± 0.32 | 2.3 ± 0.07 | 1.3% | 2.3% | 3.3% |
HT_2g | 74.9 ± 1.6 | 69.6 ± 2.6 | 67 ± 1.5 | 2.3 ± 0.18 | 3.4 ± 0.37 | 4.7 ± 0.45 | 2.9% | 4.6% | 6.5% |
HT_4g | 78.8 ± 3.2 | 69.4 ± 3.2 | 63.3 ± 1.4 | 3.5 ± 0.29 | 6.4 ± 0.63 | 7.9 ± 0.11 | 4.3% | 8.5% | 11.2% |
Barrel Aroma | Smoky Aroma | Aroma Complexity | Fruity Aroma | Flavor Intensity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | |
Control | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 1.3 ± 0.1 | 1.5 ± 0.1 | 2.6 ± 0.2 | 5.8 ± 0.3 | 6.4 ± 0.1 | 6.5 ± 0.0 | 4.4 ± 0.1 | 4.5 ± 0.1 | 4.4 ± 0.1 |
LT_1g | 0.8 ± 0.1 | 1 ± 0.1 | 1.3 ± 0.1 | 0.2 ± 0 | 0.4 ± 0.1 | 0.7 ± 0.1 | 2.3 ± 0.1 | 2.6 ± 0.1 | 3.4 ± 0.1 | 6 ± 0.1 | 6.2 ± 0.1 | 6.3 ± 0.1 | 4.5 ± 0.2 | 4.5 ± 0.1 | 4.4 ± 0.2 |
LT_2g | 1 ± 0.1 | 1.3 ± 0.1 | 1.9 ± 0.1 | 0.5 ± 0 | 0.6 ± 0.1 | 0.9 ± 0.2 | 2.3 ± 0.1 | 2.8 ± 0.2 | 4.3 ± 0.1 | 5.7 ± 0.3 | 6 ± 0.2 | 6.1 ± 0.2 | 4.5 ± 0.3 | 4.5 ± 0.2 | 4.6 ± 0.1 |
LT_4g | 1.5 ± 0.2 | 1.9 ± 0.2 | 2.8 ± 0.4 | 0.6 ± 0.1 | 0.8 ± 0.1 | 1.4 ± 0.4 | 2.7 ± 0.1 | 3.3 ± 0.4 | 4.7 ± 0.3 | 6.1 ± 0.2 | 6.1 ± 0.1 | 6.2 ± 0.2 | 4.3 ± 0.3 | 4.5 ± 0 | 4.6 ± 0.1 |
MT_1g | 1 ± 0.1 | 1.1 ± 0.1 | 2.9 ± 0.1 | 0.5 ± 0.1 | 0.7 ± 0.1 | 1.4 ± 0.1 | 2.4 ± 0.1 | 3.2 ± 0.1 | 4.5 ± 0.3 | 6.2 ± 0.1 | 6.2 ± 0.2 | 6.4 ± 0.2 | 4.4 ± 0.2 | 4.7 ± 0.2 | 4.8 ± 0.2 |
MT_2g | 1.2 ± 0.2 | 1.5 ± 0.1 | 3.6 ± 0.2 | 0.5 ± 0.1 | 0.9 ± 0.1 | 2.6 ± 0.2 | 2.7 ± 0.1 | 3.3 ± 0.1 | 4.9 ± 0.2 | 5.9 ± 0.5 | 6.1 ± 0.2 | 6.1 ± 0.1 | 4.3 ± 0.1 | 4.8 ± 0.2 | 4.7 ± 0.1 |
MT_4g | 1.9 ± 0.3 | 2.1 ± 0.2 | 4.3 ± 0.1 | 0.9 ± 0.1 | 1.3 ± 0.2 | 2.6 ± 0.3 | 2.9 ± 0.1 | 3.6 ± 0.1 | 5.2 ± 0.2 | 5.8 ± 0.3 | 6.1 ± 0.1 | 6.1 ± 0.3 | 4.3 ± 0.2 | 4.8 ± 0.1 | 4.5 ± 0.1 |
HT_1g | 0.9 ± 0.1 | 1.1 ± 0.1 | 2.5 ± 0.2 | 0.8 ± 0.1 | 1 ± 0.1 | 2.1 ± 0.4 | 2.4 ± 0.1 | 3.6 ± 0.2 | 4.8 ± 0.4 | 5.8 ± 0.3 | 6.2 ± 0.2 | 6.1 ± 0.2 | 4.1 ± 0.1 | 4.6 ± 0.1 | 4.3 ± 0.2 |
HT_2g | 1.5 ± 0.1 | 1.7 ± 0.2 | 3.1 ± 0.5 | 1 ± 0.1 | 1.4 ± 0.1 | 2.7 ± 0.1 | 2.7 ± 0.2 | 3.8 ± 0.5 | 5.4 ± 0.2 | 5.7 ± 0.3 | 6.3 ± 0.2 | 6.2 ± 0.3 | 4.3 ± 0.2 | 4.4 ± 0.1 | 4.8 ± 0.1 |
HT_4g | 1.5 ± 0.1 | 1.7 ± 0.3 | 3.7 ± 0.7 | 1.3 ± 0.1 | 1.8 ± 0.1 | 2.7 ± 0.1 | 3.3 ± 0.3 | 4.3 ± 0.3 | 6.1 ± 0 | 5.8 ± 0.3 | 6.3 ± 0.1 | 6.2 ± 0.2 | 4.4 ± 0.2 | 4.5 ± 0.1 | 5.1 ± 0.1 |
Sour | Sweet | Bitter | Astringent | Aftertaste | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | |
Control | 4.4 ± 0.1 | 4.9 ± 0.1 | 4.6 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0 | 2.9 ± 0.8 | 2.3 ± 0.2 | 3 ± 0.26 | 4.3 ± 0.2 | 4.1 ± 0.3 | 4.4 ± 0.1 |
LT_1g | 4.4 ± 0 | 4.6 ± 0.1 | 4.7 ± 0.1 | 0.8 ± 0.2 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.2 | 0.5 ± 0 | 0.6 ± 0.1 | 2.8 ± 0.1 | 2.6 ± 0.1 | 2.9 ± 0.2 | 4.2 ± 0.1 | 4.5 ± 0.2 | 4.3 ± 0.1 |
LT_2g | 4.4 ± 0.1 | 4.6 ± 0.2 | 4.7 ± 0.1 | 0.8 ± 0.1 | 1 ± 0.1 | 1 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 2.9 ± 0.2 | 2.9 ± 0.2 | 3.4 ± 0.2 | 4.1 ± 0.2 | 4.3 ± 0.1 | 4.5 ± 0.2 |
LT_4g | 4.3 ± 0.1 | 4.3 ± 0.1 | 4.6 ± 0.1 | 1.2 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0 | 0.5 ± 0 | 3 ± 0.1 | 2.7 ± 0.1 | 3.4 ± 0.1 | 4.2 ± 0.2 | 4.5 ± 0.1 | 4.7 ± 0.2 |
MT_1g | 4.3 ± 0.1 | 4.5 ± 0.1 | 4.5 ± 0.1 | 1 ± 0.1 | 0.7 ± 0.1 | 1 ± 0.1 | 0.4 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0.1 | 2.8 ± 0.2 | 3 ± 0.2 | 3.3 ± 0.1 | 4.2 ± 0.1 | 4.5 ± 0.1 | 4.6 ± 0.1 |
MT_2g | 4.3 ± 0.1 | 4.8 ± 0.1 | 4.6 ± 0.1 | 0.9 ± 0 | 0.9 ± 0.1 | 0.8 ± 0 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0 | 2.7 ± 0.2 | 3 ± 0.1 | 3.2 ± 0.2 | 4 ± 0.1 | 4.4 ± 0.1 | 4.5 ± 0.1 |
MT_4g | 4.2 ± 0.2 | 4.7 ± 0.2 | 4.6 ± 0.1 | 1.1 ± 0.1 | 1 ± 0.1 | 1 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 | 2.8 ± 0.3 | 3.2 ± 0.1 | 3.7 ± 0.4 | 4.1 ± 0.2 | 4.3 ± 0.1 | 4.5 ± 0.1 |
HT_1g | 4.2 ± 0.1 | 4.4 ± 0.1 | 4.6 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.1 | 0.8 ± 0 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 2.9 ± 0.3 | 3.2 ± 0.1 | 3.7 ± 0.2 | 4.1 ± 0.1 | 4.5 ± 0.1 | 4.5 ± 0.1 |
HT_2g | 4.3 ± 0.1 | 4.4 ± 0.1 | 4.6 ± 0.1 | 1 ± 0.1 | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.7 ± 0.1 | 2.8 ± 0.1 | 3.3 ± 0.1 | 3.5 ± 0.1 | 4.2 ± 0.1 | 4.5 ± 0.1 | 4.8 ± 0.05 |
HT_4g | 4.3 ± 0.1 | 4.5 ± 0.2 | 4.8 ± 0.1 | 1.1 ± 0.2 | 0.9 ± 0 | 0.9 ± 0 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 | 2.8 ± 0.1 | 3.1 ± 0.1 | 3.5 ± 0.1 | 4.2 ± 0.1 | 4.6 ± 0.1 | 4.9 ± 0.1 |
Prin1 | Prin2 | |
---|---|---|
OAV Esters | −0.21661 | 0.04312 |
OAV “Oak” Compounds | 0.36676 | −0.16566 |
Fruity Aroma | 0.07324 | 0.09631 |
Barrel Aroma | 0.344 | 0.12663 |
Smoky Aroma | 0.35498 | −0.09741 |
Aroma Complexity | 0.36122 | −0.01598 |
Flavor Intensity | 0.1674 | 0.14881 |
Acetovanillone | 0.33064 | 0.11128 |
4-Ethylguaiacol | 0.2499 | −0.40741 |
Guaiacol | 0.27982 | −0.39231 |
Vanillin | 0.34739 | 0.19066 |
trans-Whiskey lactone | 0.16482 | 0.50871 |
cis-Whiskey lactone | 0.1115 | 0.53487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligas, I.; Kotseridis, Y. Impact of French Oak Chip Maturation on the Volatile Composition and Sensory Profile of Agiorgitiko Wine. Beverages 2024, 10, 121. https://doi.org/10.3390/beverages10040121
Ligas I, Kotseridis Y. Impact of French Oak Chip Maturation on the Volatile Composition and Sensory Profile of Agiorgitiko Wine. Beverages. 2024; 10(4):121. https://doi.org/10.3390/beverages10040121
Chicago/Turabian StyleLigas, Ioannis, and Yorgos Kotseridis. 2024. "Impact of French Oak Chip Maturation on the Volatile Composition and Sensory Profile of Agiorgitiko Wine" Beverages 10, no. 4: 121. https://doi.org/10.3390/beverages10040121
APA StyleLigas, I., & Kotseridis, Y. (2024). Impact of French Oak Chip Maturation on the Volatile Composition and Sensory Profile of Agiorgitiko Wine. Beverages, 10(4), 121. https://doi.org/10.3390/beverages10040121