Impact of Nitrogen Supplementation and Reduced Particle Size on Alcoholic Fermentation and Aroma in Nitrogen-Poor Apple and Pear Mashes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Mash Preparation
2.3. Fermentation Analysis
2.4. YAN Analysis
2.5. Biomass Accumulation Analysis
2.6. Aroma-Active Volatiles Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Parameters
3.2. YAN Concentration
3.3. Biomass Accumulation
3.4. Aroma-Active Volatiles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zehnder, M. Duengung von Streuobstwiesen.pdf. Jahresheft 2010. 2010, pp. 32–37. Available online: https://www.gartenakademie.rlp.de/Internet/global/Themen.nsf/(Web_P_GA_XP_Boden_Pflanze)/B3700CB65AEDE2F1C12578340057EFFD/$FILE/Duengung%20von%20Streuobstwiesen.pdf (accessed on 12 June 2024).
- Vilanova, M.; Pretorius, I.S.; Henschke, P.A. Influence of Diammonium Phosphate Addition to Fermentation on Wine Biologicals; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Varela, C.; Pizarro, F.; Agosin, E. Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts. Appl. Environ. Microbiol. 2004, 70, 3392–3400. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Moreno, R.; Morales, P.; Gonzalez, R.; Mas, A.; Beltran, G. Biomass Production and Alcoholic Fermentation Performance of Saccharomyces Cerevisiae as a Function of Nitrogen Source. FEMS Yeast Res. 2012, 12, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Ferreira, A.; Mendes-Faia, A.; Leão, C. Growth and Fermentation Patterns of Saccharomyces Cerevisiae under Different Ammonium Concentrations and Its Implications in Winemaking Industry. J. Appl. Microbiol. 2004, 97, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Beltran, G.; Esteve-Zarzoso, B.; Rozès, N.; Mas, A.; Guillamón, J.M. Influence of the Timing of Nitrogen Additions during Synthetic Grape Must Fermentations on Fermentation Kinetics and Nitrogen Consumption. J. Agric. Food Chem. 2005, 53, 996–1002. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Mead Production: Effect of Nitrogen Supplementation on Growth, Fermentation Profile and Aroma Formation by Yeasts in Mead Fermentation. J. Inst. Brew. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- Arrizon, J.; Gschaedler, A. Increasing Fermentation Efficiency at High Sugar Concentrations by Supplementing an Additional Source of Nitrogen during the Exponential Phase of the Tequila Fermentation Process. Can. J. Microbiol. 2002, 48, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Arrizon, J.; Gschaedler, A. Effects of the Addition of Different Nitrogen Sources in the Tequila Fermentation Process at High Sugar Concentration. J. Appl. Microbiol. 2007, 102, 1123–1131. [Google Scholar] [CrossRef]
- Magasanik, B.; Kaiser, C.A. Nitrogen Regulation in Saccharomyces Cerevisiae. Gene 2002, 290, 1–18. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Rozès, N.; Mas, A.; Guillamón, J.M. Nitrogen Catabolite Repression in Saccharomyces Cerevisiae during Wine Fermentations. FEMS Yeast Res. 2004, 4, 625–632. [Google Scholar] [CrossRef]
- Crépin, L.; Nidelet, T.; Sanchez, I.; Dequin, S.; Camarasa, C. Sequential Use of Nitrogen Compounds by Saccharomyces Cerevisiae during Wine Fermentation: A Model Based on Kinetic and Regulation Characteristics of Nitrogen Permeases. Appl. Environ. Microbiol. 2012, 78, 8102–8111. [Google Scholar] [CrossRef]
- Henschke, P.A.; Jiranek, V. Yeasts-Metabolism of Nitrogen Compounds in Wine Microbiology and Biotechnology; Harwood Academic Publisher: Reading, UK, 1993; pp. 77–164. [Google Scholar]
- Fairbairn, S.; McKinnon, A.; Musarurwa, H.T.; Ferreira, A.C.; Bauer, F.F. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces Cerevisiae Strains. Front. Microbiol. 2017, 8, 2554. [Google Scholar] [CrossRef] [PubMed]
- Gobert, A.; Tourdot-Maréchal, R.; Sparrow, C.; Morge, C.; Alexandre, H. Influence of Nitrogen Status in Wine Alcoholic Fermentation. Food Microbiol. 2019, 83, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Orte, P.; Ibarz, M.J.; Cacho, J.; Ferreira, V. Addition of Amino Acids to Grape Juice of the Merlot Variety: Effect on Amino Acid Uptake and Aroma Generation during Alcoholic Fermentation. Food Chem. 2006, 98, 300–310. [Google Scholar] [CrossRef]
- Carrau, F.M.; Medina, K.; Farina, L.; Boido, E.; Henschke, P.A.; Dellacassa, E. Production of Fermentation Aroma Compounds by Saccharomyces Cerevisiae Wine Yeasts: Effects of Yeast Assimilable Nitrogen on Two Model Strains. FEMS Yeast Res. 2008, 8, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Rollero, S.; Mouret, J.R.; Bloem, A.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.M.; Dequin, S.; Camarasa, C. Quantitative 13C-Isotope Labelling-Based Analysis to Elucidate the Influence of Environmental Parameters on the Production of Fermentative Aromas during Wine Fermentation. Microb. Biotechnol. 2017, 10, 1649–1662. [Google Scholar] [CrossRef]
- Godillot, J.; Sanchez, I.; Perez, M.; Picou, C.; Galeote, V.; Sablayrolles, J.M.; Farines, V.; Mouret, J.R. The Timing of Nitrogen Addition Impacts Yeast Genes Expression and the Production of Aroma Compounds During Wine Fermentation. Front. Microbiol. 2022, 13, 829786. [Google Scholar] [CrossRef]
- Coda, R.; Kärki, I.; Nordlund, E.; Heiniö, R.L.; Poutanen, K.; Katina, K. Influence of Particle Size on Bioprocess Induced Changes on Technological Functionality of Wheat Bran. Food Microbiol. 2014, 37, 69–77. [Google Scholar] [CrossRef]
- Parada, J.; Aguilera, J.M. Food Microstructure Affects the Bioavailability of Several Nutrients. J. Food Sci. 2007, 72, 21–32. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commision Regulation (EC) No 152/2009. 2009, pp. 1–169. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009R0152-20170524 (accessed on 10 July 2024).
- Salari, S.; Ferreira, J.; Lima, A.; Sousa, I. Effects of Particle Size on Physicochemical and Nutritional Properties and Antioxidant Activity of Apple and Carrot Pomaces. Foods 2024, 13, 710. [Google Scholar] [CrossRef]
- Xu, J.; Guo, L.; Wang, T.; Ma, M.; Wang, B.; Wei, X.; Fan, M. Effect of Inorganic and Organic Nitrogen Supplementation on Volatile Components and Aroma Profile of Cider. Food Res. Int. 2022, 161, 111765. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Heras, J.M.; Gamero, A.; Querol, A.; Guillamón, J.M. Impact of Nitrogen Addition on Wine Fermentation by S. Cerevisiae Strains with Different Nitrogen Requirements. J. Agric. Food Chem. 2021, 69, 6022–6031. [Google Scholar] [CrossRef] [PubMed]
- Jiranek, V.; Langridge, P.; Henschke, P.A. Amino Acid and Ammonium Utilization by Saccharomyces Cerevisiae Wine Yeasts From a Chemically Defined Medium. Am. J. Enol. Vitic. 1995, 46, 75–83. [Google Scholar] [CrossRef]
- Karl, A.D.; Brown, M.G.; Ma, S.; Sandbrook, A.; Stewart, A.C.; Cheng, L.; Mansfield, A.K.; Peck, G.M. Soil Nitrogen Fertilization Increases Yeast Assimilable Nitrogen Concentrations in “Golden Russet” and “Medaille d’Or” Apples Used for Cider Production. HortScience 2020, 55, 1345–1355. [Google Scholar] [CrossRef]
- Boudreau, T.F.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Free Amino Nitrogen Concentration Correlates to Total Yeast Assimilable Nitrogen Concentration in Apple Juice. Food Sci. Nutr. 2018, 6, 119–123. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P.; Tarko, T. Oenological Characteristics of Fermented Apple Musts and Volatile Profile of Brandies Obtained from Different Apple Cultivars. Biomolecules 2020, 10, 853. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Tkacz, K.; Turkiewicz, I.P.; Santos, M.I.; Belas, A.; Lima, A.; Wojdyło, A.; Sousa, I. Influence of Particle Size and Extraction Methods on Phenolic Content and Biological Activities of Pear Pomace. Foods 2023, 12, 4325. [Google Scholar] [CrossRef]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L. Effect of Spray Drying of Four Fruit Juices on Physicochemical, Phytochemical and Antioxidant Properties. J. Food Process. Preserv. 2015, 39, 1656–1664. [Google Scholar] [CrossRef]
- Mendes, A.; Barbosa, C.; Lage, P.; Mendes-Faia, A. The Impact of Nitrogen on Yeast Fermentation and Wine Quality. Cienc. Tec. Vitivinic. 2011, 26, 17–32. [Google Scholar]
- Arias-Gil, M.; Garde-Cerdán, T.; Ancín-Azpilicueta, C. Influence of Addition of Ammonium and Different Amino Acid Concentrations on Nitrogen Metabolism in Spontaneous Must Fermentation. Food Chem. 2007, 103, 1312–1318. [Google Scholar] [CrossRef]
- Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.M.; Dequin, S.; Mouret, J.R. Combined Effects of Nutrients and Temperature on the Production of Fermentative Aromas by Saccharomyces Cerevisiae during Wine Fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Schneiderbanger, H.; Hutzler, M. Optimisation of Yeast Vitality Measurement to Better Predict Fermentation Performance. J. Inst. Brew. 2020, 126, 161–167. [Google Scholar] [CrossRef]
- Van Hoek, P.; De Hulster, E.; Van Dijken, J.P.; Pronk, J.T. Fermentative Capacity in High-Cell-Density Fed-Batch Cultures of Baker’s Yeast. Biotechnol. Bioeng. 2000, 68, 517–523. [Google Scholar] [CrossRef]
- Bisson, L.F. Stuck and Sluggish Fermentations. Am. J. Enol. Vitic. 1999, 50, 107–119. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, D.; Lin, Y.; Wang, X.; Kong, H.; Tanaka, S. Substrate and Product Inhibition on Yeast Performance in Ethanol Fermentation. Energy Fuels 2015, 29, 1019–1027. [Google Scholar] [CrossRef]
- Bisson, L.F.; Butzke, C.E. Diagnoses and Rectification of Stuck and Sluggish Fermentations. Am. J. Enol. Vitic. 2000, 51, 168–177. [Google Scholar] [CrossRef]
- Tešević, V.; Nikićević, N.; Milosavljević, S.; Bajić, D.; Vajs, V.; Vučković, I.; Vujisić, L.; Dordević, I.; Stanković, M.; Veličković, M. Characterization of Volatile Compounds of “Drenja”, an Alcoholic Beverage Obtained from the Fruits of Cornelian Cherry. J. Serbian Chem. Soc. 2009, 74, 117–128. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.H.; De Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The Molecular Biology of Fruity and Floral Aromas in Beer and Other Alcoholic Beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The Soul of Beer’s Aroma—A Review of Flavour-Active Esters and Higher Alcohols Produced by the Brewing Yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef]
- Ismail, H.M.M.; Williams, A.A.; Tucknott, O.G. The Flavour Components of Plum—An Examination of the Aroma Components Present in a Distillate Obtained from Fermented Plum Juice. Z. Fuer Leb. Unters. Forsch. 1980, 171, 24–27. [Google Scholar] [CrossRef]
- Zlatić, E.; Zadnik, V.; Fellman, J.; Demšar, L.; Hribar, J.; Čejić, Ž.; Vidrih, R. Comparative Analysis of Aroma Compounds in “Bartlett” Pear in Relation to Harvest Date, Storage Conditions, and Shelf-Life. Postharvest Biol. Technol. 2016, 117, 71–80. [Google Scholar] [CrossRef]
- Cotea, V.V.; Focea, M.C.; Luchian, C.E.; Colibaba, L.C.; Scutarașu, E.C.; Marius, N.; Zamfir, C.I.; Popîrdă, A. Influence of Different Commercial Yeasts on Volatile Fraction of Sparkling Wines. Foods 2021, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Orte, P.; Ibarz, M.J.; Cacho, J.; Ferreira, V. Effect of the Addition of Ammonium and Amino Acids to Musts of Airen Variety on Aromatic Composition and Sensory Properties of the Obtained Wine. Food Chem. 2005, 89, 163–174. [Google Scholar] [CrossRef]
- Torrea, D.; Varela, C.; Ugliano, M.; Ancin-Azpilicueta, C.; Leigh Francis, I.; Henschke, P.A. Comparison of Inorganic and Organic Nitrogen Supplementation of Grape Juice-Effect on Volatile Composition and Aroma Profile of a Chardonnay Wine Fermented with Saccharomyces Cerevisiae Yeast. Food Chem. 2011, 127, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef] [PubMed]
- Rapp, A.; Versini, G. Influence of Nitrogen Compounds in Grapes on Aroma Compounds of Wines. Dev. Food Sci. 1995, 37, 1659–1694. [Google Scholar]
- Etievant, P.X. Volatile Compounds in Food and Beverages. In Wine; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Fejzullahu, F.; Kiss, Z.; Kun-Farkas, G.; Kun, S. Influence of Non-Saccharomyces Strains on Chemical Characteristics and Sensory Quality of Fruit Spirit. Foods 2021, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Jasna, M.; Trontel, A.; Rubeša Vili, V.; Petrović, R.; Stanzer, D.; Sahor, R.; Hanousek Čiča, K.; Vahčić, N.; Nikićević, N.; Spaho, N.; et al. Chemical and Sensorial Characteristics of Traditional Fruit Spirits from Southeast Europe. Glas. Zaštite Bilja 2021, 44, 80–89. [Google Scholar]
- Spaho, N. Distillation Techniques in the Fruit Spirits Production. In Distillation-Innovative Applications and Modeling; Intech Open: Rijeka, Croatia, 2017; pp. 129–152. [Google Scholar]
- Cordente, A.G.; Nandorfy, D.E.; Solomon, M.; Schulkin, A.; Kolouchova, R.; Francis, I.L.; Schmidt, S.A. Aromatic Higher Alcohols in Wine: Implication on Aroma and Palate Attributes during Chardonnay Aging. Molecules 2021, 26, 4979. [Google Scholar] [CrossRef] [PubMed]
Residual Sugar [g/L] | Sugar Consumed [%] | Ethanol [% v/v] | ||
---|---|---|---|---|
Gewürzluiken | control | 5.41 ± 0.05 a | 96.08 ± 0.06 a | 7.19 ± 0.07 a,b |
DAP | 6.20 ± 0.06 b | 95.51 ± 0.07 b | 7.61 ± 0.12 a | |
AS | 4.65 ± 0.01 c | 96.62 ± 0.10 c | 7.08 ± 0.01 b | |
particles | 5.43 ± 0.06 a | 96.24 ± 0.07 a,c | 7.52 ± 0.06 a | |
Berlepsch | control | 7.96 ± 0.01 a,b | 93.50 ± 0.01 a | 6.96 ± 0.01 a |
DAP | 7.62 ± 0.04 a,c | 93.78 ± 0.03 a | 6.51 ± 0.02 b | |
AS | 7.29 ± 0.04 c | 94.06 ± 0.02 a | 6.41 ± 0.05 b | |
particles | 8.35 ± 0.16 b | 93.78 ± 0.23 a | 6.64 ± 0.11 a,b | |
Prevorster | control | 30.66 ± 0.05 a | 79.51 ± 0.86 a | 6.61 ± 0.01 a |
DAP | 9.58 ± 0.03 b | 93.59 ± 0.30 b,c | 7.89 ± 0.03 b | |
AS | 7.85 ± 0.37 c | 94.77 ± 0.02 c | 8.07 ± 0.50 b | |
particles | 12.24 ± 0.36 d | 91.64 ± 0.29 b | 7.45 ± 0.20 a,b | |
Ch. Bratbirne | control | 4.63 ± 0.16 a | 96.26 ± 0.14 a | 6.47 ± 0.19 |
DAP | 5.19 ± 0.03 a,b | 95.81 ± 0.02 a,b | 6.50 ± 0.04 | |
AS | 5.88 ± 0.01 b | 95.26 ± 0.00 b | 6.61 ± 0.01 | |
particles | 5.75 ± 0.35 b | 95.38 ± 0.28 a,b | 6.84 ± 0.43 |
Ammonia Nitrogen [mg/L] | Amino Nitrogen [mg/L] | YAN [mg/L] | ||
---|---|---|---|---|
Gewürzluiken | control | 1.87 ± 0.02 a | 4.43 ± 0.31 a | 6.31 ± 0.29 a |
DAP | 124.89 ± 0.16 b | 4.43 ± 0.31 a | 129.32 ± 0.18 b | |
AS | 1.87 ± 0.02 a | 88.00 ± 6.87 b | 89.88 ± 6.86 c | |
particles | 1.13 ± 0.01 a | 6.58 ± 0.54 a | 7.71 ± 0.53 a | |
Berlepsch | control | 1.81 ± 0.01 a | 8.01 ± 0.81 a | 9.82 ± 0.81 a |
DAP | 113.52 ± 0.77 b | 8.01 ± 0.81 a | 121.54 ± 1.08 b | |
AS | 1.81 ± 0.01 a | 101.70 ± 5.33 b | 103.51 ± 5.34 c | |
particles | 2.53 ± 0.03 a | 10.10 ± 0.91 a | 12.63 ± 0.89 a | |
Prevorster | control | 1.14 ± 0.02 a | 11.34 ± 1.09 a | 12.48 ± 1.09 a |
DAP | 64.86 ± 0.42 b | 11.34 ± 1.09 a | 76.21 ± 1.11 b | |
AS | 1.14 ± 0.02 a | 78.84 ± 0.86 b | 79.98 ± 0.88 b | |
particles | 0.89 ± 0.01 a | 9.89 ± 2.33 a | 10.78 ± 2.34 a | |
Ch. Bratbirne | control | 1.40 ± 0.15 a | 15.06 ± 1.70 a | 16.47 ± 1.81 a |
DAP | 95.61 ± 0.22 b | 15.06 ± 1.70 a | 110.67 ± 1.42 b | |
AS | 1.40 ± 0.15 a | 109.91 ± 6.71 b | 111.31 ± 6.56 b | |
particles | 1.25 ± 0.04 a | 11.07 ± 2.46 a | 12.32 ± 2.48 a |
Control | DAP | AS | Particles | |
---|---|---|---|---|
Gewürzluiken | ||||
aldehydes | ||||
acetaldehyde (mg/L) | 18.07 ± 0.21 a,b | 11.70 ± 2.18 a | 8.94 ± 1.10 a | 27.79 ± 4.66 b |
hexanal (mg/L) | 1.06 ± 0.01 a | 0.98 ± 0.00 b | 1.06 ± 0.01 a | 1.09 ± 0.01 a |
alcohols | ||||
propyl alcohol (mg/L) | 20.48 ± 0.65 a | 36.30 ± 1.45 b | 43.56 ± 0.94 c | 26.88 ± 0.54 d |
2-methylpropanol (mg/L) | 31.91 ± 0.55 a | 47.79 ± 1.26 b | 41.45 ± 0.58 c | 28.04 ± 0.05 a |
n-butyl alcohol (mg/L) | 11.71 ± 0.30 | 12.08 ± 0.45 | 11.89 ± 0.41 | 11.31 ± 0.16 |
isoamyl alcohol (mg/L) | 94.68 ± 1.96 a | 115.00 ± 3.34 b | 144.18 ± 2.30 c | 98.54 ± 0.89 a |
2-methylbutanol (mg/L) | 41.49 ± 0.76 a | 47.98 ± 1.20 b | 47.39 ± 0.78 b | 40.93 ± 0.19 a |
hexyl alcohol (mg/L) | 6.31 ± 0.14 a,b | 6.11 ± 0.14 a,b | 5.70 ± 0.03 a | 6.34 ± 0.08 b |
phenethyl alcohol (mg/L) | 17.68 ± 0.05 a | 16.40 ± 0.15 b | 19.46 ± 0.01 c | 14.92 ± 0.39 d |
esters | ||||
ethyl acetate (mg/L) | 113.99 ± 1.05 a | 44.07 ± 1.34 b,c | 37.73 ± 0.58 b | 50.53 ± 1.85 c |
ethyl 2-methylbutyrate (mg/L) | 0.84 ± 0.01 a,b | 0.86 ± 0.02 a,b | 0.88 ± 0.01 a | 0.80 ± 0.01 b |
ethyl butyrate (mg/L) | 0.66 ± 0.01 a | 0.72 ± 0.03 a | 0.67 ± 0.02 a | 0.48 ± 0.01 b |
Berlepsch | ||||
aldehydes | ||||
acetaldehyde (mg/L) | 31.96 ± 2.57 a | 22.82 ± 0.27 a,b | 16.29 ± 0.50 b | 28.60 ± 1.86 a |
hexanal | 1.01 ± 0.01 | 1.02 ± 0.03 | 1.05 ± 0.01 | 1.06 ± 0.01 |
alcohols | ||||
propyl alcohol (mg/L) | 21.67 ± 0.12 a | 39.23 ± 0.24 b | 40.24 ± 0.39 b | 25.70 ± 0.53 c |
2-methylpropanol (mg/L) | 36.35 ± 0.11 a | 50.12 ± 0.37 b | 50.66 ± 0.26 b | 34.99 ± 0.61 a |
n-butyl alcohol (mg/L) | 16.29 ± 0.09 | 16.30 ± 0.14 | 16.86 ± 0.09 | 16.35 ± 0.31 |
isoamyl alcohol (mg/L) | 102.22 ± 0.50 a | 115.21 ± 0.79 b | 148.52 ± 0.43 c | 109.37 ± 1.99 b |
2-methylbutanol (mg/L) | 42.83 ± 0.19 a | 46.01 ± 0.47 b | 49.81 ± 0.08 c | 43.97 ± 0.71 a,b |
hexyl alcohol (mg/L) | 9.14 ± 0.07 a | 9.40 ± 0.17 a,b | 9.97 ± 0.06 b,c | 10.41 ± 0.21 c |
phenethyl alcohol (mg/L) | 15.48 ± 0.15 a | 17.65 ± 0.35 a | 24.13 ± 0.89 b | 15.55 ± 0.18 a |
esters | ||||
ethyl acetate (mg/L) | 116.84 ± 0.13 a | 59.61 ± 3.61 b | 93.71 ± 0.28 c | 110.05 ± 4.13 a |
ethyl 2-methylbutyrate (mg/L) | 0.77 ± 0.01 | 0.77 ± 0.01 | 0.82 ± 0.02 | 0.75 ± 0.02 |
ethyl butyrate (mg/L) | 0.82 ± 0.03 a | 0.62 ± 0.06 a,b | 0.84 ± 0.04 a | 0.59 ± 0.02 b |
Control | DAP | AS | Particles | |
---|---|---|---|---|
Prevorster | ||||
aldehydes | ||||
acetaldehyde (mg/L) | 46.15 ± 2.30 a | 36.79 ± 1.49 a,b | 25.16 ± 1.92 b | 29.56 ± 4.46 b |
alcohols | ||||
propyl alcohol (mg/L) | 18.20 ± 1.01 a | 20.14 ± 0.62 a,b | 21.22 ± 0.59 a,b | 22.69 ± 0.77 b |
2-methylpropanol (mg/L) | 19.58 ± 0.79 a | 37.84 ± 0.78 b | 40.03 ± 0.73 b | 23.85 ± 0.71 a |
n-butyl alcohol (mg/L) | 1.94 ± 0.07 a | 1.30 ± 0.01 b | 1.61 ± 0.05 c | 1.47 ± 0.04 b,c |
isoamyl alcohol (mg/L) | 63.94 ± 3.11 a | 97.60 ± 1.77 b | 113.21 ± 2.32 c | 87.11 ± 2.77 b |
2-methylbutanol (mg/L) | 27.64 ± 1.22 a,b | 26.92 ± 0.43 a | 31.74 ± 0.56 a,b | 32.42 ± 0.92 b |
hexyl alcohol (mg/L) | 4.20 ± 0.19 a | 3.14 ± 0.03 b | 3.27 ± 0.06 b,c | 3.82 ± 0.07 a,c |
phenethyl alcohol (mg/L) | 9.38 ± 0.23 a | 11.58 ± 0.47 a,b | 13.78 ± 0.40 b | 9.28 ± 0.61 a |
esters | ||||
ethyl acetate (mg/L) | 424.73 ± 13.49 a | 191.55 ± 1.74 b | 355.27 ± 0.11 c | 199.28 ± 9.28 b |
hexyl acetate (mg/L) | 0.53 ± 0.00 a | 0.45 ± 0.01 b | 0.48 ± 0.01 b | 0.46 ± 0.00 b |
ethyl 2-methylbutyrate (mg/L) | 1.15 ± 0.02 a | 0.85 ± 0.01 b | 0.96 ± 0.00 c | 0.85 ± 0.01 b |
acids | ||||
2-methylbutric acid (mg/L) | 1.19 ± 0.05 a | 0.97 ± 0.01 b | 1.07 ± 0.03 a,b | 1.02 ± 0.00 b |
Ch. Bratbirne | ||||
aldehydes | ||||
acetaldehyde (mg/L) | 13.70 ± 1.45 | 20.39 ± 3.77 | 13.44 ± 0.58 | 13.87 ± 0.31 |
alcohols | ||||
propyl alcohol (mg/L) | 26.44 ± 1.22 a | 48.88 ± 0.62 b | 56.35 ± 0.25 c | 29.63 ± 0.13 a |
2-methylpropanol (mg/L) | 31.30 ± 1.17 a | 35.39 ± 0.35 b | 34.24 ± 0.49 a,b | 34.13 ± 0.07 a,b |
n-butyl alcohol (mg/L) | 7.71 ± 0.31 a | 7.60 ± 0.15 a | 6.89 ± 0.09 a,b | 6.45 ± 0.04 b |
isoamyl alcohol (mg/L) | 56.89 ± 2.38 a | 52.82 ± 0.42 a,b | 49.52 ± 0.81 b | 52.43 ± 0.14 a,b |
2-methylbutanol (mg/L) | 25.87 ± 0.96 a | 20.72 ± 0.11 b | 18.79 ± 0.32 b | 24.48 ± 0.05 a |
hexyl alcohol (mg/L) | 4.58 ± 0.16 a | 4.15 ± 0.02 a,b | 4.03 ± 0.06 b | 4.10 ± 0.11 a,b |
phenethyl alcohol (mg/L) | 11.94 ± 0.64 a | 7.69 ± 0.49 b,c | 7.16 ± 0.84 c | 11.21 ± 0.37 a,b |
esters | ||||
ethyl acetate (mg/L) | 524.54 ± 1.82 a | 300.20 ± 24.55 b | 286.87 ± 4.02 b | 493.58 ± 11.15 a |
hexyl acetate (mg/L) | 0.56 ± 0.01 | 0.53 ± 0.05 | 0.57 ± 0.00 | 0.53 ± 0.00 |
ethyl 2-methylbutyrate (mg/L) | 1.11 ± 0.01 a | 1.01 ± 0.01 b | 0.90 ± 0.01 c | 0.61 ± 0.00 d |
acids | ||||
2-methylbutric acid (mg/L) | 0.96 ± 0.00 | 0.94 ± 0.03 | 0.93 ± 0.01 | 0.94 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schön, A.; Switulla, J.; Luksch, L.; Pesl, J.; Kölling, R.; Einfalt, D. Impact of Nitrogen Supplementation and Reduced Particle Size on Alcoholic Fermentation and Aroma in Nitrogen-Poor Apple and Pear Mashes. Beverages 2024, 10, 93. https://doi.org/10.3390/beverages10040093
Schön A, Switulla J, Luksch L, Pesl J, Kölling R, Einfalt D. Impact of Nitrogen Supplementation and Reduced Particle Size on Alcoholic Fermentation and Aroma in Nitrogen-Poor Apple and Pear Mashes. Beverages. 2024; 10(4):93. https://doi.org/10.3390/beverages10040093
Chicago/Turabian StyleSchön, Ana, Julia Switulla, Larissa Luksch, Julia Pesl, Ralf Kölling, and Daniel Einfalt. 2024. "Impact of Nitrogen Supplementation and Reduced Particle Size on Alcoholic Fermentation and Aroma in Nitrogen-Poor Apple and Pear Mashes" Beverages 10, no. 4: 93. https://doi.org/10.3390/beverages10040093
APA StyleSchön, A., Switulla, J., Luksch, L., Pesl, J., Kölling, R., & Einfalt, D. (2024). Impact of Nitrogen Supplementation and Reduced Particle Size on Alcoholic Fermentation and Aroma in Nitrogen-Poor Apple and Pear Mashes. Beverages, 10(4), 93. https://doi.org/10.3390/beverages10040093