Sensory Discrimination Tests for Low- and High-Strength Alcohol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Materials
2.3. Protocol
2.3.1. Experiments 1 and 2
2.3.2. Experiment 3
2.4. Statistical Analysis
2.4.1. Experiments 1 and 2
2.4.2. Experiment 3
2.5. Ethics
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sample ABVs (%) | Correct Guesses (n) | Estimated Proportion of Correct Assessments (%) | Power (under Current Sample Size) | Sample Size Required to Achieve a Power of 0.8 | Sample Size Required to Achieve a Power of 0.9 |
---|---|---|---|---|---|
31/35 | 11 | 64.7 | 0.75 | 20 | 26 |
33/37 | 9 | 52.9 | 0.38 | 50 | 67 |
35/39 | 6 | 35.3 | 0.05 | 4601 | 6159 |
37/41 | 10 | 58.8 | 0.57 | 30 | 40 |
39/43 | 9 | 52.9 | 0.38 | 50 | 67 |
41/45 | 7 | 41.2 | 0.10 | 298 | 399 |
References
- World Health Organization. Global Status Report on Alcohol and Health; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Chisholm, D.; Moro, D.; Bertram, M.; Pretorius, C.; Gmel, G.; Shield, K.; Rehm, J. Are the “best buys” for alcohol control still valid? An update on the comparative cost-effectiveness of alcohol control strategies at the global level. J. Stud. Alcohol Drugs 2018, 79, 514–522. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Tackling NCDs: “Best Buys” and Other Recommended Interventions for the Prevention and Control of Noncommunicable Diseases; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Anderson, P.; Baumberg, B. Stakeholders’ views of alcohol policy. Nord. Stud. Alcohol Drugs 2006, 23, 393–414. [Google Scholar] [CrossRef]
- Tangcharoensathien, V.; Chandrasiri, O.; Kunpeuk, W.; Markchang, K.; Pangkariya, N. Addressing NCDs: Challenges from industry market promotion and interferences. Int. J. Health Policy Manag. 2019, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Casswell, S.; Rehm, J. Reduction in global alcohol-attributable harm unlikely after setback at WHO Executive Board. Lancet 2020, 395, 1020–1021. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Przybylski, M.C.; Rehm, J. Comparative risk assessment of carcinogens in alcoholic beverages using the margin of exposure approach. Int. J. Cancer 2012, 131, E995–E1003. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Rehm, J. Comparative risk assessment of alcohol, tobacco, cannabis and other illicit drugs using the margin of exposure approach. Sci. Rep. 2015, 5, 8126. [Google Scholar] [CrossRef]
- Rehm, J.; Lachenmeier, D.W.; Llopis, E.J.; Imtiaz, S.; Anderson, P. Evidence of reducing ethanol content in beverages to reduce harmful use of alcohol. Lancet Gastroenterol. Hepatol. 2016, 1, 78–83. [Google Scholar] [CrossRef]
- Jackson, A.; Stephens, D.; Duka, T. A low dose alcohol drug discrimination in social drinkers: Relationship with subjective effects. Psychopharmacology 2001, 157, 411–420. [Google Scholar] [CrossRef]
- Kelly, T.H.; Emurian, C.S.; Baseheart, B.J.; Martin, C.A. Discriminative stimulus effects of alcohol in humans. Drug Alcohol Depend. 1997, 48, 199–207. [Google Scholar] [CrossRef]
- Cox, W.M.; Klinger, E. Discriminability of regular, light, and alcoholic and nonalcoholic near beer. J. Stud. Alcohol 1983, 44, 494–498. [Google Scholar] [CrossRef]
- Martin, C.S.; Earleywine, M.; Finn, P.R.; Young, R.D. Some boundary conditions for effective use of alcohol placebos. J. Stud. Alcohol 1990, 51, 500–505. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K. An investigation of the ability of young male and female social drinkers to discriminate between regular, calorie reduced and low alcohol beer. Br. J. Addict. 1988, 83, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Milner, G. Light alcohol and standard beers: Controlled taste discrimination study. Med. J. Aust. 1979, 2, 383. [Google Scholar] [CrossRef] [PubMed]
- Segal, D.S.; Stockwell, T. Low alcohol alternatives: A promising strategy for reducing alcohol related harm. Int. J. Drug Policy 2009, 20, 183–187. [Google Scholar] [CrossRef]
- King, E.S.; Heymann, H. The effect of reduced alcohol on the sensory profiles and consumer preferences of white wine. J. Sens. Stud. 2014, 29, 33–42. [Google Scholar] [CrossRef]
- Standing, L.G.; McKelvie, S.J.; Décarie, M.J.; Bazar, J.L.; Clarke, K.A. Taste Enhancement of Alcohol under ’Masking’ Conditions, and Some Limits to Stevens’ Power Law. N. Am. J. Psychol. 2008, 10, 109–126. [Google Scholar]
- Higgs, S.; McKelvie, S.; Standing, L. Predicting Magnitude Estimates of Drink Strength. N. Am. J. Psychol. 2002, 4, 165–170. [Google Scholar]
- Standing, L.; Blackburn, A. Can we judge the strength of a drink? Percept. Mot. Ski. 1995, 81, 365–366. [Google Scholar] [CrossRef]
- Duka, T.; Stephens, D.; Russell, C.; Tasker, R. Discriminative stimulus properties of low doses of ethanol in humans. Psychopharmacology 1998, 136, 379–389. [Google Scholar] [CrossRef]
- Carter, B.L.; Tiffany, S.T. Meta-analysis of cue-reactivity in addiction research. Addiction 1999, 94, 327–340. [Google Scholar] [CrossRef]
- ISO 13301:2018; Sensory Analysis—Methodology—General Guidance for Measuring Odour, Flavour and Taste Detection Thresholds by a Three-Alternative Forced-Choice (3-AFC) Procedure. International Organization for Standardization: Geneva, Switzerland, 2021.
- Rogers, L. Discrimination Testing in Sensory Science: A Practical Handbook; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- ISO 4120:2004; Sensory Analysis—Methodology—Triangle Test. International Organization for Standardization: Geneva, Switzerland, 2004.
- Lachenmeier, D.W.; Kanteres, F.; Rehm, J. Alcoholic beverage strength discrimination by taste may have an upper threshold. Alcohol. Clin. Exp. Res. 2014, 38, 2460–2467. [Google Scholar] [CrossRef] [PubMed]
- ISO 11056:2021; Sensory Analysis—Methodology—Magnitude Estimation Method. International Organization for Standardization: Geneva, Switzerland, 2021.
- De Boeck, P.; Bakker, M.; Zwitser, R.; Nivard, M.; Hofman, A.; Tuerlinckx, F.; Partchev, I. The estimation of item response models with the lmer function from the lme4 package in R. J. Stat. Softw. 2011, 39, 1–28. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Blumenthal, P.; Steger, M.C.; Quintanilla Bellucci, A.; Segatz, V.; Rieke-Zapp, J.; Sommerfeld, K.; Schwarz, S.; Einfalt, D.; Lachenmeier, D.W. Production of coffee cherry spirits from coffea arabica varieties. Foods 2022, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Food Science Text Series; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Nolden, A.A.; Hayes, J.E. Perceptual qualities of ethanol depend on concentration, and variation in these percepts associates with drinking frequency. Chemosens. Percept. 2015, 8, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B. Variation in oral sensation: Implications for diet and health. Curr. Opin. Gastroenterol. 2007, 23, 171–177. [Google Scholar] [CrossRef]
- Bartoshuk, L.M. The biological basis of food perception and acceptance. Food Qual. Prefer. 1993, 4, 21–32. [Google Scholar] [CrossRef]
- Vennemann, M.M.; Hummel, T.; Berger, K. The association between smoking and smell and taste impairment in the general population. J. Neurol. 2008, 255, 1121–1126. [Google Scholar] [CrossRef]
- Ickes, C.M.; Cadwallader, K.R. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens. Percept. 2017, 10, 119–134. [Google Scholar] [CrossRef]
- Kumar, Y.; Ricci, A.; Parpinello, G.P.; Versari, A. Dealcoholized Wine: A Scoping Review of Volatile and Non-Volatile Profiles, Consumer Perception, and Health Benefits. Food Bioprocess Technol. 2024; in press. [Google Scholar] [CrossRef]
- Nakagawa, S.; Cuthill, I.C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 2007, 82, 591–605. [Google Scholar] [CrossRef]
- Anheuser-Busch InBev. Our Global Smart Drinking Goals; Georgetown University: Washington, DC, USA, 2021. [Google Scholar]
- Geller, E.S.; Kalsher, M.J.; Clarke, S.W. Beer versus mixed-drink consumption at fraternity parties: A time and place for low-alcohol alternatives. J. Stud. Alcohol 1991, 52, 197–204. [Google Scholar] [CrossRef]
- Gruenewald, P.J.; Stockwell, T.; Beel, A.; Dyskin, E.V. Beverage sales and drinking and driving: The role of on-premise drinking places. J. Stud. Alcohol 1999, 60, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Chikritzhs, T.; Stockwell, T.; Pascal, R. The impact of the Northern Territory’s Living With Alcohol Program, 1992–2002: Revisiting the evaluation. Addiction 2005, 100, 1625–1636. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Davidson, A.C.; Kidd, J.R.; Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Reed, D.R.; Snyder, D.J.; Bartoshuk, L.M. Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake. Alcohol Clin. Exp. Res. 2004, 28, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
Experiment | Sample ABV (%) | Assessment of Sample ABV (%) | Correct Assessments (n) | Proportion of Correct Assessments (%) | Sample Specific p-Value | Proportion of the Sample Who Can Accurately Discriminate * | Experiment p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Point Estimate | 95% Confidence Interval | Point Estimate | 95% Confidence Interval | |||||
Experiment 1, vodka (n = 16) | 0 | 3.1 | 12.5 | 15 | 93.8 | 69.8–99.8 | <0.001 | 92.7 | 64.7–99.8 | <0.001 |
10 | 12.5 | 12.9 | 14 | 87.5 | 61.7–98.4 | <0.001 | 85.4 | 55.3–98.2 | ||
20 | 25.0 | 11.0 | 12 | 75.0 | 47.6–92.7 | <0.001 | 70.8 | 38.9–91.5 | ||
30 | 30.0 | 9.7 | 8 | 50.0 | 24.7–75.3 | <0.001 | 41.7 | 12.1–71.2 | ||
40 | 42.5 | 5.8 | 10 | 62.5 | 35.4–84.8 | <0.001 | 56.3 | 24.7–82.3 | ||
50 | 40.6 | 14.4 | 6 | 37.5 | 15.2–64.6 | 0.019 | 27.1 | 1.1–58.7 | ||
60 | 53.8 | 15.4 | 12 | 75.0 | 47.6–92.7 | <0.001 | 70.8 | 38.9–91.5 | ||
Experiment 2, white rum (n = 13) | 25 | 30.5 | 7.2 | 5 | 38.5 | 13.9–68.4 | 0.154 | 23.1 | 0.0–60.5 | <0.001 |
30 | 31.6 | 7.8 | 3 | 23.1 | 5.0–53.8 | 0.732 | 3.8 | 0.0–42.3 | ||
35 | 34.2 | 5.5 | 2 | 15.4 | 1.9–45.4 | 1.000 | 0.0 | 0.0–31.8 | ||
40 | 33.8 | 8.2 | 3 | 23.1 | 5.0–53.8 | 0.732 | 3.8 | 0.0–42.3 | ||
45 | 41.3 | 5.5 | 8 | 61.5 | 31.6–86.1 | 0.001 | 51.9 | 14.5–82.7 |
Sample ABVs (%) | Correct Guesses (n) | Proportion of Correct Assessments (%) | Proportion of the Sample Who Can Accurately Identify the ABV of the Sample Accounting for Chance * | |||
---|---|---|---|---|---|---|
Point Estimate | 95% Confidence Interval | p-Value | Point Estimate | 95% Confidence Interval | ||
31/35 | 11 | 64.7 | 38.3–85.8 | 0.009 | 47.1 | 7.5–78.7 |
33/37 | 9 | 52.9 | 27.8–77.0 | 0.120 | 29.4 | 0.0–65.5 |
35/39 | 6 | 35.3 | 14.2–61.7 | 1.000 | 3.0 | 0.0–42.5 |
37/41 | 10 | 58.8 | 32.9–81.6 | 0.037 | 38.2 | 0.0–72.3 |
39/43 | 9 | 52.9 | 27.8–77.0 | 0.120 | 29.4 | 0.0–65.5 |
41/45 | 7 | 41.2 | 18.4–67.1 | 0.607 | 11.8 | 0.0–50.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franklin, A.; Shield, K.D.; Rehm, J.; Lachenmeier, D.W. Sensory Discrimination Tests for Low- and High-Strength Alcohol. Beverages 2024, 10, 95. https://doi.org/10.3390/beverages10040095
Franklin A, Shield KD, Rehm J, Lachenmeier DW. Sensory Discrimination Tests for Low- and High-Strength Alcohol. Beverages. 2024; 10(4):95. https://doi.org/10.3390/beverages10040095
Chicago/Turabian StyleFranklin, Ari, Kevin D. Shield, Jürgen Rehm, and Dirk W. Lachenmeier. 2024. "Sensory Discrimination Tests for Low- and High-Strength Alcohol" Beverages 10, no. 4: 95. https://doi.org/10.3390/beverages10040095
APA StyleFranklin, A., Shield, K. D., Rehm, J., & Lachenmeier, D. W. (2024). Sensory Discrimination Tests for Low- and High-Strength Alcohol. Beverages, 10(4), 95. https://doi.org/10.3390/beverages10040095