Pruning and In-Season Canopy Manipulation Affects MidSouth Juice and Wine Phenolic Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Vine Management and Harvest
2.3. Postharvest
2.4. Winemaking
2.5. Phenolic Composition
2.6. Statistical Analysis
3. Results
3.1. Study 1
3.2. Study 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cosme, F.; Pinto, T.; Vilela, A. Phenolic compounds and antioxidant activity in grape juices: A chemical and sensory view. Beverages 2018, 4, 22. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, S.K.C.; Stringer, S.; Zhang, Y. Characterization of titratable acids, phenolic compounds, and antioxidant activities of wines made from eight Mississippi-grown muscadine varieties during fermentation. Lebensm. -Wiss. Technol.-Food Sci. Technol. 2017, 86, 302–311. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Stafne, E.T. A History of Bunch Grape Research in Mississippi. J. Am. Pomol. Soc. 2016, 70, 158–164. [Google Scholar]
- Wine-Searcher. Mississippi Delta–Mississippi Wine. Available online: https://www.winesearcher.com/regions-mississippi+delta+-+mississippi/ (accessed on 10 October 2021).
- Wine-Searcher. Mississippi Wine. Available online: https://www.wine-searcher.com/regions-mississippi (accessed on 10 October 2021).
- Williams, H.N.; Stafne, E.T. Reintroducing a multiuse bunch grape for the Deep South: “MidSouth”. J. Am. Pomol. Soc. 2022, 76, 20–26. [Google Scholar]
- Lamikanra, O. Anthocyanins of Vitis rotundifolia hybrid grapes. Food Chem. 1989, 33, 225–237. [Google Scholar] [CrossRef]
- Leblanc, M.R.; Johnson, C.E.; Wilson, P.W. Stilbene levels in the tissue and juice of muscadine grapes (Vitis rotundifolia Michx.). Int. J. Fruit Sci. 2007, 6, 87–100. [Google Scholar] [CrossRef]
- Mortensen, J.A. Grape Cultivar Choices for Wine, Juice, Jelly, or Fresh Fruit. In Proceedings of the Second Viniculture Short Course, Mississippi State, MS, USA, 19–20 February 1987. [Google Scholar]
- Stafne, E.T.; American Society of Horticultural Science Community Blogs. A Southern Revival? Bunch Grapes in Mississippi. Available online: http://www.ashs.org/blogpost/1288786/223074/A-Southern-Revival-Bunch-Grapes-in-Mississippi/ (accessed on 14 July 2021).
- Stafne, E.T. Mississippi State University Extension Fruit and Nut Review: Bunch Grapes. Available online: http://extension.msstate.edu/publications/information-sheets/fruit-and-nut-review-bunch-grapes/ (accessed on 15 November 2021).
- Williams, H.N.; Stafne, E.T.; Zhang, Y.; Chang, S.K. Evaluating the effects of early pruning, leaf removal, and shoot thinning on “MidSouth” grapes over two consecutive vintages in south Mississippi. Agronomy 2023, 13, 368. [Google Scholar] [CrossRef]
- Sun, Q.; Sacks, G.L.; Lerch, S.D.; Vanden Heuvel, J.E. Impact of shoot thinning and harvest date on yield components, fruit composition, and wine quality of Marechal Foch. Am. J. Enol. Vitic. 2011, 62, 32–41. [Google Scholar] [CrossRef]
- VanderWeide, J.; Gottschalk, C.; Schultze, S.R.; Nasrollahiazar, E.; Poni, S.; Sabbatini, P. Impacts of pre-bloom leaf removal on wine grape production and quality parameters: A systematic review and meta-analysis. Frontiers Plant Sci. 2021, 11, 621585. [Google Scholar] [CrossRef] [PubMed]
- Mijowska, K.; Ochmian, I.; Oszmiański, J. Impact of cluster zone leaf removal on grapes cv. Regent polyphenol content by the UPLC-PDA/MS method. Molecules 2016, 21, 1688. [Google Scholar] [CrossRef] [PubMed]
- Zenoni, S.; Dal Santo, S.; Tornielli, G.B.; D’Incà, E.; Filippetti, I.; Pastore, C.; Allegro, G.; Silvestroni, O.; Lanari, V.; Pisciotta, A.; et al. Transcriptional responses to pre-flowering leaf defoliation in grapevine berry from different growing sites, years, and genotypes. Frontiers Plant Sci. 2017, 8, 630. [Google Scholar] [CrossRef]
- Creasy, G.L.; Creasy, L.L. Grapes, 2nd ed.; CABI: Boston, MA, USA, 2018. [Google Scholar]
- Hickey, C.C.; Wolf, T.K. Leaf removal effects on Cabernet Franc and Petit Verdot: I. Crop yield components and primary fruit composition. Am. J. Enol. Vitic. 2018, 69, 221–230. [Google Scholar] [CrossRef]
- Hickey, C.C.; Kwasniewski, M.T.; Wolf, T.K. Leaf removal effects on Cabernet Franc and Petit Verdot: II. Grape carotenoids, phenolics, and wine sensory analysis. Am. J. Enol. Vitic. 2018, 69, 231–246. [Google Scholar] [CrossRef]
- Feng, H.; Yuan, F.; Skinkis, P.A.; Qian, M.C. Influence of cluster zone leaf removal on pinot noir grape chemical and volatile composition. Food Chem. 2015, 173, 414–423. [Google Scholar] [CrossRef]
- Riesterer-Loper, J.; Workmaster, B.A.; Atucha, A. Impact of fruit zone sunlight exposure on ripening profiles of cold climate interspecific hybrid winegrapes. Am. J. Enol. Vitic. 2019, 70, 286–296. [Google Scholar] [CrossRef]
- Vogel, A.R.; White, R.S.; MacAllister, C.; Hickey, C.C. Fruit zone leaf removal timing and extent alters bunch rot, primary fruit composition, and crop yield in Georgia-grown “Chardonnay” (Vitis vinifera L.). HortScience 2020, 55, 1654–1661. [Google Scholar] [CrossRef]
- Sun, Q.; Sacks, G.L.; Lerch, S.D.; Vanden Heuvel, J.E. Impact of shoot and cluster thinning on yield, fruit composition, and wine quality of Corot Noir. Am. J. Enol. Vitic. 2012, 63, 49–56. [Google Scholar] [CrossRef]
- Dharmadhikari, M.R.; Wilker, K. Micro Vinification. A Practical Guide to Small-Scale Wine Production; Missouri State Fruit Experiment Station: Mountain Grove, MO, USA, 2001. [Google Scholar]
- Threlfall, R. (University of Arkansas, Fayetteville, AR, USA). Personal Communication. 2020. [Google Scholar]
- Ramos, M.C.; Pérez-Álvarez, E.P.; Peregrina, F.; de Toda, F.M. Relationships between grape composition of Tempranillo variety and available soil water and water stress under different weather conditions. Sci. Hortic. 2020, 262, 109063. [Google Scholar] [CrossRef]
- Guan, L.; Wu, B.; Hilbert, G.; Li, S.; Gomès, E.; Delrot, S.; Dai, Z. Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype-and tissue-dependent manner. Food Res. Int. 2017, 98, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Basha, S.M.; Mbuya, O.; Leong, S. Developmental changes in the amino acid content of muscadine grape genotypes. In Proceedings of the Florida State Horticultural Society Annual Meeting, Center for Viticulture and Small Fruits, Tallahassee, FL, USA, 2–4 June 2002. [Google Scholar]
- Guerrini, L.; Corti, F.; Angeloni, G.; Masella, P.; Spadi, A.; Calamai, L.; Parenti, A. The effects of destemming/crushing and pressing conditions in rose wine production. Aust. J. Grape Wine Res. 2022, 2022, 9853264. [Google Scholar] [CrossRef]
- Custodio-Mendoza, J.A.; Pokorski, P.; Aktaş, H.; Carro, A.M.; Kurek, M.A. Simultaneous determination of six catechins and caffeine in tea and wine using salting-out assisted liquid–liquid extraction and high-performance liquid chromatography with ultraviolet detection. J. Separation Sci. 2024, 47, 2400142. [Google Scholar] [CrossRef] [PubMed]
- Tarko, T.; Duda-Chodak, A.; Sroka, P.; Siuta, M. The impact of oxygen at various stages of vinification on the chemical composition and the antioxidant and sensory properties of white and red wines. Int. J. Food Sci. 2020, 2020, 7902974. [Google Scholar] [CrossRef]
- Pajović-Šćepanović, R.; Savković, S.; Raičević, D.; Popović, T. Characteristics of the Montenegrin rose wine. Agric. For. 2017, 63, 131–139. [Google Scholar]
- Puckette, M.; Wine Folly. What Rosé Should I Drink? A Guide to Styles of Rosé Wine. Available online: https://winefolly.com/tips/guide-styles-of-rose-wine/ (accessed on 6 August 2024).
- Vernhet, A.; Carrillo, S.; Rattier, A.; Verbaere, A.; Cheynier, V.; Nguela, J.M. Fate of anthocyanins and proanthocyanidins during the alcoholic fermentation of thermovinified red musts by different Saccharomyces cerevisiae strains. J. Agric. Food Chem. 2020, 68, 3615–3625. [Google Scholar] [CrossRef]
- Atanacković, M.; Petrović, A.; Jović, S.; Gojković-Bukarica, L.; Bursać, M.; Cvejić, J. Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem. 2012, 131, 513–518. [Google Scholar] [CrossRef]
Juice | Wine | |||
---|---|---|---|---|
Monomeric Anthocyanin Pigment (mg/L) 1 | Total Phenolic Content (mg of GAE/L) 2 | Monomeric Anthocyanin Pigment (mg/L) | Total Phenolic Content (mg of GAE/L) | |
Treatment 3 | ||||
1.1 | 62.6 | 493.3 b 4 | 31.7 b | 108.2 b |
1.2 | 71.0 | 510.2 b | 37.2 b | 115.5 b |
1.3 | 66.8 | 562.3 ab | 105.6 a | 204.0 a |
1.4 | 100.2 | 656.3 a | 125.3 a | 212.1 a |
Treatment Significance | ns 5 | * | *** | *** |
Juice | Wine | |||
---|---|---|---|---|
Monomeric Anthocyanin Pigment (mg/L) 1 | Total Phenolic Content (mg of GAE/L) 2 | Monomeric Anthocyanin Pigment (mg/L) | Total Phenolic Content (mg of GAE/L) | |
Treatment 3 | ||||
1.1 | 78.9 | 922.8 a 4 | 179.5 | 1177.7 b |
1.2 | 133.6 | 896.3 a | 196.2 | 1344.5 a |
1.3 | 100.2 | 731.8 b | 208.8 | 1297.5 a |
1.4 | 91.8 | 672.5 b | 187.9 | 1164.0 b |
Treatment Significance | ns 5 | *** | ns | *** |
Juice | Wine | |||
---|---|---|---|---|
Monomeric Anthocyanin Pigment (mg/L) 1 | Total Phenolic Content (mg of GAE/L) 2 | Monomeric Anthocyanin Pigment (mg/L) | Total Phenolic Content (mg of GAE/L) | |
Treatment 3 | ||||
2.1 | 112.7 | 504.4 | 105.6 | 190.7 b 4 |
2.2 | 121.1 | 504.4 | 127.7 | 227.1 a |
2.3 | 91.8 | 488.4 | 112.1 | 199.1 ab |
Treatment Significance | ns 5 | ns | ns | * |
Juice | Wine | |||
---|---|---|---|---|
Monomeric Anthocyanin Pigment (mg/L) 1 | Total Phenolic Content (mg of GAE/L) 2 | Monomeric Anthocyanin Pigment (mg/L) | Total Phenolic Content (mg of GAE/L) | |
Treatment 3 | ||||
2.1 | 154.5 a 4 | 646.9 a | 225.5 ab | 1301.9 ab |
2.2 | 129.4 ab | 617.9 a | 271.4 a | 1395.0 a |
2.3 | 79.3 b | 551.1 b | 204.6 b | 1213.0 b |
Treatment Significance | * 5 | *** | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, H.; Stafne, E.; Zhang, Y.; Chang, S. Pruning and In-Season Canopy Manipulation Affects MidSouth Juice and Wine Phenolic Content. Beverages 2024, 10, 98. https://doi.org/10.3390/beverages10040098
Williams H, Stafne E, Zhang Y, Chang S. Pruning and In-Season Canopy Manipulation Affects MidSouth Juice and Wine Phenolic Content. Beverages. 2024; 10(4):98. https://doi.org/10.3390/beverages10040098
Chicago/Turabian StyleWilliams, Haley, Eric Stafne, Yan Zhang, and Sam Chang. 2024. "Pruning and In-Season Canopy Manipulation Affects MidSouth Juice and Wine Phenolic Content" Beverages 10, no. 4: 98. https://doi.org/10.3390/beverages10040098
APA StyleWilliams, H., Stafne, E., Zhang, Y., & Chang, S. (2024). Pruning and In-Season Canopy Manipulation Affects MidSouth Juice and Wine Phenolic Content. Beverages, 10(4), 98. https://doi.org/10.3390/beverages10040098