Elaboration and Characterization of Apple Nectars Supplemented with Araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Nectar Formulation
2.3. Centesimal Composition and Physicochemical Characterization
2.4. Sensory Analysis
2.4.1. Difference-from-Control Test
2.4.2. Acceptance Test
2.5. Determination of Phenolic Compounds and Flavonoids
2.6. Antioxidant Capacity
2.6.1. DPPH• Scavenging Assay
2.6.2. Trolox Equivalent Antioxidant Capacity (TEAC)
2.6.3. Oxygen Radical Absorbance Capacity (ORAC) Assay
3. Results
3.1. Centesimal Composition of Araçá-boi
3.2. Sensory Analysis
3.3. Physicochemical Characterization
3.4. Phenolic Compounds and Antioxidant Capacity
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AAPH | 2,20-azobis(2-methylamidinopropane)-dihydrochloride |
ABTS | 2,2′azino-bis-3-ethylbenzthiazoline-3-sulphonic acid |
CE | catechin equivalent |
DPPH | 2,2-difenil-1-picrilhidrazila |
FD | freeze-dried araçá-boi |
GAE | gallic acid equivalent |
N0FD | non-supplemented (pure) apple nectar |
N1FD | apple nectar supplemented with 1 g/L of freeze-dried araçá-boi |
N5FD | apple nectar supplemented with 5 g/L of freeze-dried araçá-boi |
N10FD | apple nectar supplemented with 10 g/L of freeze-dried araçá-boi |
N15FD | apple nectar supplemented with 15 g/L of freeze-dried araçá-boi |
N20FD | apple nectar supplemented with 20 g/L of freeze-dried araçá-boi |
N30FD | apple nectar supplemented with 30 g/L of freeze-dried araçá-boi |
TE | Trolox equivalent |
TEAC | Trolox equivalent antioxidant capacity |
Trolox | 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid. |
References
- Nayak, B.; Liu, R.H.; Tang, J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains—A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.M.R.; De Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; De Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Kabir, F.; Tow, W.W.; Hamauzu, Y.; Katayama, S.; Tanaka, S.; Nakamura, S. Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chem. 2015, 167, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Neves, L.C.; Tosin, J.M.; Benedette, R.M.; Cisneros-Zevallos, L. Post-harvest nutraceutical behaviour during ripening and senescence of 8 highly perishable fruit species from the Northern Brazilian Amazon region. Food Chem. 2015, 174, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Func. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Araújo, J.R.; Martins, M.R. Fruteiras nativas: Ocorrência e potencial de utilização na agricultura familiar do Maranhão. In Agroambientes de Transição Entre o Trópico Úmido e Semi-Árido Maranhense, 1st ed.; Moura, E.G., Ed.; UEMA: São Luís, Brasil, 2004; pp. 257–312. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Omena, C.M.B.; Valentim, I.B.; Guedes, G.S.; Rabelo, L.A.; Mano, C.M.; Bechara, E.J.H.; Goulart, M.O.F. Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits. Antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Res. Int. 2012, 49, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Neri-Numa, I.A.; Carvalho-Silva, L.B.; Morales, J.P.; Malta, L.G.; Muramoto, M.T.; Ferreira, J.E.M.; Pastore, G.M. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc Vaugh—Myrtaceae) of the Brazilian Amazon Forest. Food Res. Int. 2013, 50, 70–76. [Google Scholar] [CrossRef]
- Pereira, M.C.; Steffens, R.S.; Jablonski, A.; Hertz, P.F.; Rios, A.O.; Vizzotto, M.; Flores, S.H. Characterization, bioactive compounds and antioxidant potential of three Brazilian fruits. J. Food Compos. Anal. 2013, 29, 19–24. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Pandey, S. Juice Blends—A Way of Utilization of Under-Utilized Fruits, Vegetables, and Spices: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Boghani, A.H. Development and storage studies of blended papaya-aloe vera ready to serve (RTS) beverage. J. Food Proc. Technol. 2012, 3. [Google Scholar] [CrossRef]
- De Souza Filho, M.S.M.; Lima, J.R.; Nassu, R.T.; Moura, C.F.H.; Borges, M.D.F. Formulações de néctares de frutas nativas das regiões norte e nordeste do Brasil. Bol. CEPPA 2000, 18, 275–283. [Google Scholar] [CrossRef]
- Viana, E.S.; Jesus, J.L.; Reis, R.C.; Andrade, M.V.S.; Sacramento, C.K. Physicochemical and Sensory Characterization of Banana and Araçá-Boi Jam. Food Nutr. Sci. 2014, 5, 733–741. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Debut, A.; Cumbal, L. Extracellular green synthesis of silver nanoparticles using Amazonian fruit Araza (Eugenia stipitata McVaugh). Trans. Nonferrous Met. Soc. China 2016, 26, 2363–2371. [Google Scholar] [CrossRef]
- Franco, M.R.B.; Shibamoto, T. Volatile composition of some brazilian fruits: Umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), araca-boi (Eugenia stipitata), and cupuacu (Theobroma grandiflorum). J. Agric. Food Chem. 2000, 48, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Rogez, H.; Buxant, R.; Mignolet, E.; Souza, J.N.S.; Silva, E.M.; Larondelle, Y. Chemical composition of the pulp of three typical Amazonian fruits: Araça-boi (Eugenia stipitata), bacuri (Platonia insignis) and cupuaçu (Theobroma grandiflorum). Eur. Food Res. Technol. 2004, 218, 380–384. [Google Scholar] [CrossRef]
- Reynertson, K.A.; Basile, M.J.; Kennelly, E.J. Antioxidant Potential of Seven Myrtaceous Fruits. Ethnobot. Res. Appl. 2005, 3, 25–35. [Google Scholar] [CrossRef]
- Garzón, G.A.; Narváez-Cuenca, C.E.; Kopec, R.E.; Barry, A.M.; Riedl, K.M.; Schwartz, S.J. Determination of carotenoids, total phenolic content, and antioxidant activity of Arazá (Eugenia stipitata McVaugh), an Amazonian fruit. J. Agric. Food Chem. 2012, 60, 4709–4717. [Google Scholar] [CrossRef] [PubMed]
- De Souza Schmidt Gonçalves, A.E.; Lajolo, F.M.; Genovese, M.I. Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. J. Agric. Food Chem. 2010, 58, 4666–4674. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International. In Association of Official Analysis Chemists International, 19th ed.; AOAC International: Gaithersburg, ML, USA, 2012. [Google Scholar]
- Anvisa. RESOLUÇÃO RDC N° 360, DE 23 DE DEZEMBRO DE 2003. 2003. Available online: http://portal.anvisa.gov.br/documents/33880/2568070/res0360_23_12_2003.pdf/5d4fc713-9c66-4512-b3c1-afee57e7d9bc (accessed on 10 August 2015).
- Instituto Adolf Lutz. Métodos Físicos-Quimicos Para Análise de Alimentos, 4th ed.; SES-CCD—IAL: São Paulo, Brasil, 2008; pp. 589–625. [Google Scholar]
- Meilgaard, M.; Civille, G.; Carr, T. Sensory Evaluation Techniques, 3rd ed.; CRC Press: New York, NY, USA, 2004. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Dutcosky, S. Análise Sensorial de Alimentos, 3rd ed.; Champagnat: Curitiba, Brasil, 2011. [Google Scholar]
- Stone, H.; Bleibaum, R.; Thomas, H.A. Sensory Evaluation Practices, 4th ed.; Elsevier Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Academic Press: Cambridge, CA, USA, 2004. [Google Scholar]
- Roesler, R. Estudo de Frutas do Cerrado Brasileiro para Avaliação de Propriedade Funcional com Foco na Atividade Antioxidante. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2007. [Google Scholar]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Leite, A.V.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Pastore, G.M.; Maróstica Júnior, M.R. Antioxidant potential of rat plasma by administration of freeze-dried jaboticaba peel (Myrciaria jaboticaba Vell Berg). J. Agric. Food Chem. 2011, 59, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Canuto, G.A.B.; Xavier, A.A.O.; Neves, L.C.; Benassi, M.D.T. Caracterização físico-química de polpas de frutos da Amazônia e sua correlação com a atividade anti-radical livre. Rev. Bras. Frutic. 2010, 32, 1196–1205. [Google Scholar] [CrossRef] [Green Version]
- Sacramento, C.K.; Barretto, W.S.; Faria, J.C. Araçá-boi: Uma alternativa para agroindústria. Bahia Agrícola 2008, 8, 22–24. [Google Scholar]
- Lizcano, L.J.; Bakkali, F.; Begoña Ruiz-Larrea, M.; Ignacio Ruiz-Sanz, J. Antioxidant activity and polyphenol content of aqueous extracts from Colombian Amazonian plants with medicinal use. Food Chem. 2010, 119, 1566–1570. [Google Scholar] [CrossRef]
- Nascimento, V.E. Caracterização de Plantas de Mamey. Master’s Thesis, Universidade Estadual Paulista, Jaboticabal, Brazil, 2008. [Google Scholar]
- Morzelle, M.C.; Souza, E.C.; Assumpção, C.F.; Flores, J.C.J.; Oliveira, K.A.M. Agregação de valor a frutos de ata através do desenvolvimento de néctar misto de maracujá (Passiflora edulis Sims) e ata (Annona squamosa L.). Aliment. Nutr. Araraquara 2009, 20, 389–393. [Google Scholar]
- Martínez-Sánchez, A.; Alacid, F.; Rubio-Arias, J.A.; Fernández-Lobato, B.; Ramos-Campo, D.J.; Aguayo, E. Consumption of Watermelon Juice Enriched in l -Citrulline and Pomegranate Ellagitannins Enhanced Metabolism during Physical Exercise. J. Agric. Food Chem. 2017, 65, 4395–4404. [Google Scholar] [CrossRef] [PubMed]
- Jorge, Z.L.C.; Treptow, R.O.; Antunes, P.L. Avaliação físico-química e sensorial de suco de maçãs cultivares Fuji, Granny Smith e seus “blends”. Rev. Bras. Agrociênc. 1998, 4, 15–19. [Google Scholar] [CrossRef]
Parameter | FD 1 | Composition (ww) 2 | Composition (dw) 3 |
---|---|---|---|
Moisture | 8.21 ± 0.21 | 87.93 ± 0.46 | 0 |
Ash | 1.72 ± 0.02 | 0.23 ± 0.01 | 1.87 ± 0.01 |
Lipids | 1.21 ± 0.05 | 0.16 ± 0.01 | 1.32 ± 0.05 |
Proteins | 5.31 ± 0.08 | 0.70 ± 0.03 | 5.79 ± 0.07 |
Digestible carbohydrates | 46.96 ± 2.73 | 6.17 ± 0.84 | 51.16 ±1.53 |
Total fibers | 36.59 ± 1.37 | 4.81 ± 0.33 | 39.86 ± 1.40 |
Soluble fibers | 9.84 ± 1.96 | 1.29 ± 0.52 | 10.72 ± 1.51 |
Insoluble fibers | 26.75 ± 0.59 | 3.52 ± 0.19 | 29.14 ± 0.57 |
Comparison of Samples | Difference between Means |
---|---|
N20FD–N0FD | 5.85 ± 2.59 * |
N10FD–N0FD | 4.19 ± 3.16 * |
N5FD–N0FD | 2.31 ± 3.57 * |
Sample | General Appearance | Color | Flavor | Texture | Global Impression |
---|---|---|---|---|---|
N0FD | 5.7 ± 1.8 ab | 5.5 ±1.9 b | 5.1± 2.3 bc | 5.9 ± 2.1 ab | 5.4 ± 1.97 bc |
N1FD | 6.1 a ± 1.6 | 6.0 ± 1.6 a | 6.1 ± 1.8 a | 6.4 ± 1.7 a | 6.3 ± 1.50 a |
N5FD | 5.9 ± 1.8 ab | 5.8 ±1.8 ab | 5.4 ± 2.2 b | 5.9 ± 1.8 ab | 5.7 ± 1.81 b |
N10FD | 5.6 ± 1.8 ab | 5.5 ±1.8 ab | 4.5 ± 2.3 cd | 5.4 ± 2.2 bc | 5.0 ± 2.0 cd |
N15FD | 5.4 ± 2.0 b | 5.4 ± 2.0 b | 3.9 ± 2.4 d | 5.0 ± 2.2 c | 4.5 ± 2.1 d |
N30FD | 4.3 ± 2.4 c | 4.4 ± 2.3 c | 2.5 ± 2.3 e | 3.6 ± 2.4 d | 3.0 ± 2.2 e |
Sample | pH | Acidity 1 | TSS 2 | TSS/Acidity | Ascorbic Acid 3 |
---|---|---|---|---|---|
N0FD | 3.15 ± 0.03 a | 0.24 ± 0.02 d | 9.85 ± 0.60 c | 41.04 ± 5.95 | 24.11 ± 0.09 |
N1FD | 3.07 ± 0.02 b | 0.27 ± 0.01 d | 10.36 ± 0.23 bc | 38.37 ± 2.28 | 24.14 ± 0.10 4 |
N5FD | 2.98 ± 0.02 c | 0.36 ± 0.01 cd | 10.56 ± 0.05 b | 29.33 ± 0.95 | 24.25 ± 0.11 4 |
N10FD | 2.92 ± 0.03 d | 0.48 ± 0.01 cb | 10.88 ± 0.25 b | 22.67 ± 1.00 | 24.39 ± 0.13 4 |
N15FD | 2.88 ± 0.02 d | 0.58 ± 0.05 b | 10.87 ± 0.37 b | 18.74 ± 2.27 | 24.53 ± 0.15 4 |
N30FD | 2.80 ± 0.04 e | 0.94 ± 0.19 a | 11.54 ± 0.07 a | 12.28 ± 2.67 | 24.95 ± 0.21 4 |
Reconstituted FD 5 | 2.55 ± 0.02 | 3.86 ± 0.13 | 7.64 ± 0.55 | 1.98 ± 0.20 | 3.73 ± 0.37 |
Sample | Total Phenols 1 | Flavonoids 3 | DPPH 5 | TEAC 5 | ORAC 5 |
---|---|---|---|---|---|
N0FD | 0.374 ± 0.012 e | 1.126± 0.033 c | 0.142 ± 0.021 bc | 0.244 ± 0.003 d | 0.826 ± 0.075 bc |
N1FD | 0.389 ± 0.008 de | 1.433 ± 0.054 ab | 0.126 ± 0.003 c | 0.296 ± 0.003 c | 0.718 ± 0.024 c |
N5FD | 0.405 ± 0.008 cd | 1.522 ± 0.067 a | 0.139 ± 0.008 c | 0.286 ± 0.003 c | 0.969 ± 0.082 abc |
N10FD | 0.419 ± 0.007 bc | 1.328 ± 0.070 b | 0.180 ± 0.003 b | 0.343 ± 0.009 b | 0.973 ± 0.004 ab |
N15FD | 0.430 ± 0.008 b | 1.448 ± 0.034 ab | 0.188 ± 0.013 b | 0.339 ± 0.003 b | 1.163 ± 0.056 a |
N30FD | 0.554 ± 0.011 a | 1.537 ± 0.091 a | 0.232 ± 0.006 a | 0.433 ± 0.013 a | 1.214 ± 0.087 a |
FD | 82.32 ± 6.31 2 | 90.78 ± 0.14 4 | 30.60 ± 0.43 6 | 48.73 ± 0.31 6 | 135.31 ± 2.40 6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldini, T.F.; Neri-Numa, I.A.; Do Sacramento, C.K.; Schmiele, M.; Bolini, H.M.A.; Pastore, G.M.; Bicas, J.L. Elaboration and Characterization of Apple Nectars Supplemented with Araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae). Beverages 2017, 3, 59. https://doi.org/10.3390/beverages3040059
Baldini TF, Neri-Numa IA, Do Sacramento CK, Schmiele M, Bolini HMA, Pastore GM, Bicas JL. Elaboration and Characterization of Apple Nectars Supplemented with Araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae). Beverages. 2017; 3(4):59. https://doi.org/10.3390/beverages3040059
Chicago/Turabian StyleBaldini, Tatiana Ferrari, Iramaia Angélica Neri-Numa, Celio Kersul Do Sacramento, Marcio Schmiele, Helena Maria Andre Bolini, Glaucia Maria Pastore, and Juliano Lemos Bicas. 2017. "Elaboration and Characterization of Apple Nectars Supplemented with Araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae)" Beverages 3, no. 4: 59. https://doi.org/10.3390/beverages3040059
APA StyleBaldini, T. F., Neri-Numa, I. A., Do Sacramento, C. K., Schmiele, M., Bolini, H. M. A., Pastore, G. M., & Bicas, J. L. (2017). Elaboration and Characterization of Apple Nectars Supplemented with Araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae). Beverages, 3(4), 59. https://doi.org/10.3390/beverages3040059