Antioxidant Capacity and Physicochemical Characteristics of Carbonated Erica Arborea Tea Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Herbal Tea Beverage
2.3. Physicochemical Analysis
2.4. Determination of Minerals
2.5. Determination of Phenolic Contents and Antioxidant Capacity
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
5. Patent
Author Contributions
Funding
Conflicts of Interest
References
- Arvanitoyannis, I.S.; Houwelingen-Koukaliaroglou, M.V. Functional Foods: A Survey of Health Claims, Pros and Cons, and Current Legislation. Crit. Rev. Food Sci. Nutr. 2005, 45, 385–404. [Google Scholar] [CrossRef] [PubMed]
- Demirkıranç, Ö.; Topçu, G.; Bahadori, F.; Ay, M.; Nazemiyeh, H.; Choudhary, I. Two New Phenylpropanoid Glycosides from the Leaves and Flowers of Erica arborea. Helv. Chim. Acta 2010, 93, 77–83. [Google Scholar] [CrossRef]
- Davis, P.H. Flora of Turkey and the Aegean Islands, 1st ed.; University Press: Edinburgh, UK, 1978; ISBN 0-85224-208-5. [Google Scholar]
- Baytop, T. Therapy with Medicinal Plants in Turkey, Past and Present, 2nd ed.; Nobel Tıp Kitapevi: Istanbul, Turkey, 1999. [Google Scholar]
- Ay, M.; Bahadori, F.; Öztürk, M.; Kolak, U.; Topcu, G. Antioxidant activity of Erica arborea. Fitoterapia 2007, 78, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Ait Youssef, M. Plantes Médicinales de Kabylie, 1st ed.; Edition Ibis Press: Paris, France, 2006; ISBN 2-910728-57-9. [Google Scholar]
- Ozcan Sinir, G.; Suna, S.; Tamer, C.E.; Incedayi, B.; Çopur, Ö.U. Antioxidant Activity, Total Phenolic Content And Physicochemical Properties of Carbonated Erica Arborea Herbal Tea Beverage. In Proceedings of the II International Conference on Food Chemistry and Technology, Las Vegas, NV, USA, 14–16 November 2016; p. 40. [Google Scholar]
- Suna, S.; Tamer, C.E.; Incedayi, B.; Özcan-Sinir, G.; Çopur, Ö.U. Determination of Physicochemical Properties of Mineral Enriched Erica arborea Herbal Tea Beverage. J. Agric. Fac. Uludag Univ. 2016, 30, 499–504. [Google Scholar]
- National Forage Testing Association (NFTA). Method 2.1.4; NFTA: Omaha, NE, USA, 2006. [Google Scholar]
- Association of Analytical Communities (AOAC). Method 932.12; AOAC: Rockville, MD, USA, 1980. [Google Scholar]
- Association of Analytical Communities (AOAC). Method 942.15; AOAC: Rockville, MD, USA, 2000. [Google Scholar]
- International Organization for Standardization (ISO). Method 6557-2; ISO: Geneva, Switzerland, 1984. [Google Scholar]
- Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, color, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 2012, 132, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Tajchakavit, S.; Boye, J.I.; Couture, R. Effect of processing on post bottling haze formation in apple juice. Food Res. Int. 2001, 34, 415–424. [Google Scholar] [CrossRef]
- NMKL, Nordic Committee on Food Analysis, 2007, Method 186. Soborg, Denmark. Available online: http://www.nmkl.org/dokumenter/sk/186sk-eng.pdf (accessed on 12 August 2016).
- Ayyıldız, M. Irrigation Water Analysis and Salinity Problems, 1st ed.; Ankara Üniversitesi Ziraat Fakültesi Yayınları: Ankara, Turkey, 1983. [Google Scholar]
- Vitali, D.; Vedrina Dragojevic, I.; Sebecic, B. Effects of incorporation of integral raw materials and dietary fiate on the selected nutritional and functional properties of biscuits. Food Chem. 2009, 114, 1462–1469. [Google Scholar] [CrossRef]
- Suna, S. Investigating The Physicochemical Properties and In Vitro Bioaccessibility of Phenolics and Antioxidant Capacity of Rooibos Herbal Tea Beverage. Gida 2017, 42, 682–692. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik Esin, S. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- TSI, Turkish Standards Institution. 2017. Available online: https://www.tse.org.tr (accessed on 1 February 2017).
- Akış, T. Piyasada Çay Olarak Tüketilen Bazı Bitkilerin Antioksidan Aktivitelerinin Belirlenmesi ve Fenolik Yapılarının Incelenmesi. MSc Thesis Yüksek Lisans Tezi, Ege University, İzmir, Turkey, 2010. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp (accessed on 16 October 2016).
- Phelan, J.; Rees, J. The erosive potential of some herbal teas. J. Dent. 2003, 31, 241–246. [Google Scholar] [CrossRef]
- Nojavan, S.; Khalilian, F.; Kiaie, F.M.; Rahimic, A.; Arabanian, A.; Chalavia, S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compos. Anal. 2008, 21, 300–305. [Google Scholar] [CrossRef]
- Somanchi, M.; Phillips, K.; Haile, E.; Pehrsson, P. Vitamin C content in dried and brewed green tea from the US retail market. FASEB J. 2017, 30 (Suppl. 1). [Google Scholar] [CrossRef]
- Costa, A.S.G.; Nunes, M.A.; Almeida, I.M.C.; Carvalho, M.R.; Barroso, M.F.; Alves, R.C.; Oliveira, M.B.P.P. Teas, dietary supplements and fruit juices: A comparative study regarding antioxidant activity and bioactive compounds. LWT-Food Sci. Technol. 2012, 49, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Cerreti, M.; Liburdi, K.; Benucci, I.; Esti, M. The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT-Food Sci. Technol. 2016, 73, 326–333. [Google Scholar] [CrossRef]
- Hsieh, C.W.; Ko, W.C. Effect of high-voltage electrostatic field on quality of carrot juice during refrigeration. LWT-Food Sci. Technol. 2008, 41, 1752–1757. [Google Scholar] [CrossRef]
- Koutchma, T.; Keller, S.; Chirtel, S.; Parisi, B. Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innov. Food Sci. Emerg. Technol. 2004, 5, 179–189. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Tagnetti, R. Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Glob. Chang. Biol. 2001, 7, 291–301. [Google Scholar] [CrossRef]
- Schramm, D.; Karim, M.; Schrader, H.; Roberta, R.; Kirkpatrick, N.; Polagruto, J.; Ensunsa, J.; Schmitz, H.; Keen, C. Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci. 2003, 73, 857–869. [Google Scholar] [CrossRef]
- Parada, J.; Aguilera, J.M. Food microstructure affects the bioavailability of several nutrients. J. Food Sci. 2007, 72, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Guendouze-Bouchefa, N.; Madani, K.; Chibane, M.; Boulekbache-Makhlouf, L.; Hauchard, D.; Kiendrebeogo, M.; Stévigny, C.; Okusa, P.N.; Dueze, P. Phenolic compounds, antioxidant and antibacterial activities of three Ericaceae from Algeria. Ind. Crop. Prod. 2015, 70, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Zamora, A.; Delgado-Andrade, C.; Rufián-Henares, J.A. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem. 2016, 199, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Vucic, D.M.; Petkovic, M.R.; Rodic-Grabovac, B.B.; Stefanovic, O.D.; Vasic, S.M.; Comic, L.R. Phenolic Content, Antibacterial and Antioxidant Activities of Erica Herbacea, L. Acta Pol. Pharm. 2013, 70, 1021–1026. [Google Scholar] [PubMed]
- Amezouar, F.; Hsaine, M.; Bourhim, N.; Faugroch, H. Antioxidant and anti-inflammatory activities of Moroccan Erica arborea L. Pathol. Biol. 2013, 61, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Mathivha, P.L.; Mudau, F.N. Response of Total Phenolic Content and Antioxidant Activities of Bush Tea and Special Tea Using Different Selected Extraction Solvents. J. Consum. Sci. 2017, 45, 27–33. [Google Scholar]
- Kiliç, C.; Can, Z.; Yilmaz, A.; Yildiz, S.; Turna, H. Antioxidant Properties of Some Herbal Teas (Green tea, Senna, Corn Silk, Rosemary) Brewed at Different Temperatures. Int. J. Second. Metab. 2017, 4, 142–148. [Google Scholar]
- Saura-Calixto, F.; Serrano, J.; Goni, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.J.L.; Almeidaa, T.S.; Medeirosa, J.L.M.; Vieira, L.R.; Moreira, T.B.; Maia, A.I.V.; Ribeiro, P.R.V.; Brito, E.S.; Farias, D.F.; Carvalho, A.F.U. Impact of bioaccessibility and bioavailability of phenolic compounds in biological systems upon the antioxidant activity of the ethanolic extract of Triplaris gardneriana seeds. Biomed. Pharmacother. 2017, 88, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, A.G.; Rosa, L.A.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions. Molecules 2017, 22, 669. [Google Scholar] [CrossRef] [PubMed]
Analyses | Water Soluble Dry Matter (g 100 g−1) | Titratable Acidity (g 100 mL−1) ˜ | pH | Ascorbic Acid (mg 100 mL−1) | Color | NTU | ||
---|---|---|---|---|---|---|---|---|
L | a | b | ||||||
CETB | 8.10 ± 0.00 | 0.17 ± 0.00 | 3.21 ± 0.00 | 28.39 ± 1.84 | 19.26 ± 0.20 | −9.93 ± 0.83 | 3.70 ± 0.45 | 0.71 ± 0.06 |
Fe | Ca | Mg | K | Na | |
---|---|---|---|---|---|
Dried leaves (mg kg−1) | 108.65 ± 0.27 | 5900 ± 0.01 | 2274.75 ± 54.46 | 3800 ± 0.01 | 358.59 ± 7.89 |
Water used in process (mg L−1) | 0.03 | 13.0 | 1.72 | 0.51 | 14.3 |
Beverage (mg L−1) | 0.20 ± 0.02 | 58.62 ± 0.54 | 22.82 ± 0.52 | 53.74 ± 1.46 | 40.99 ± 0.89 |
Phenolic Content | Antioxidant Capacity | ||||||
---|---|---|---|---|---|---|---|
Phenolics (mg GAE * 100 mL−1) | Bioaccessible Phenolics (mg GAE * 100 mL−1) | DPPH (μmol trolox mL−1 *) | Bioaccessible DPPH (μmol trolox mL−1 *) | FRAP (μmol trolox mL−1 *) | Bioaccessible FRAP (μmol trolox mL−1*) | CUPRAC (μmol trolox mL−1 *) | Bioaccessible CUPRAC (μmol trolox mL−1 *) |
174.06 ± 24.53 | 96.07 ± 3.96 | 27.20 ± 1.09 | 0.17 ± 0.02 | 22.41 ± 2.49 | 3.09 ± 0.44 | 21.09 ± 1.65 | 0.02 ± 0.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suna, S.; Özcan-Sinir, G.; Tamer, C.E.; İncedayi, B.; Çopur, Ö.U. Antioxidant Capacity and Physicochemical Characteristics of Carbonated Erica Arborea Tea Beverage. Beverages 2018, 4, 50. https://doi.org/10.3390/beverages4030050
Suna S, Özcan-Sinir G, Tamer CE, İncedayi B, Çopur ÖU. Antioxidant Capacity and Physicochemical Characteristics of Carbonated Erica Arborea Tea Beverage. Beverages. 2018; 4(3):50. https://doi.org/10.3390/beverages4030050
Chicago/Turabian StyleSuna, Senem, Gülşah Özcan-Sinir, Canan Ece Tamer, Bige İncedayi, and Ömer Utku Çopur. 2018. "Antioxidant Capacity and Physicochemical Characteristics of Carbonated Erica Arborea Tea Beverage" Beverages 4, no. 3: 50. https://doi.org/10.3390/beverages4030050
APA StyleSuna, S., Özcan-Sinir, G., Tamer, C. E., İncedayi, B., & Çopur, Ö. U. (2018). Antioxidant Capacity and Physicochemical Characteristics of Carbonated Erica Arborea Tea Beverage. Beverages, 4(3), 50. https://doi.org/10.3390/beverages4030050