Biocatalyst Potential of Cellulose-Degrading Microorganisms Isolated from Orange Juice Processing Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrichment and Isolation of Cellulose-Degrading Microorganisms
2.2. Cellulase Activities of Orange Juice Processing Waste and Cellulose-Degrading Microorganisms Isolated from this Orange Juice Waste
2.3. Phylogenetic Identification of Cellulose-Degrading Bacteria
2.4. Statistical Analysis of Enzyme Data
3. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Citrus Fruit—Fresh and Processed, Statistical Bulletin, 2016; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Toushik, S.H.; Lee, K.-T.; Lee, J.-S.; Kim, K.-S. Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries. J. Food Sci. 2017, 82, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Arsad, P.; Sukor, R.; Wan Ibadullah, W.Z.; Mustapha, N.A.; Meor Hussin, A.S. Effects of enzymatic treatment on physicochemical properties of sugar palm fruit juice. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 308–312. [Google Scholar] [CrossRef]
- Vaillant, F.; Millan, A.; Dornier, M.; Decloux, M.; Reynes, M. Strategy for economical optimization of the clarification of pulpy fruit juices using crossflow microfiltration. J. Food Eng. 2001, 48, 83–90. [Google Scholar] [CrossRef]
- Huang, J.; Xia, T.; Li, G.; Li, X.; Li, Y.; Wang, Y.; Wang, Y.; Chen, Y.; Xie, G.; Bai, F.W.; et al. Overproduction of native endo-β-1,4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnol. Biofuels 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.P.; Patel, H.; Sugandha. Enzymatic added extraction and clarification of fruit juices–A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Avendaño, K.A.; Anguiano, M.; López, C.E.; Montañez, L.E.; Sifuentes, L.; Balagurusamy, N. Microbial enzymes: Applications in food processing. Agro Food Ind. Tech. 2016, 27, 63–67. [Google Scholar]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Characterization of dietary fiber from orange juice extraction. Food Res. Int. 1998, 31, 355–361. [Google Scholar] [CrossRef]
- Cypriano, D.Z.; da Silva, L.L.; Tasic, L. High value-added products from the orange juice industry waste. Waste Manag. 2018, 79, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, R.K. Role of enzymes in fruit juices clarification during processing: A review. Int. J. Biol. Technol. 2015, 6, 1–12. [Google Scholar]
- Sanchez-Bel, P.; Egea, I.; Serrano, M.; Romojaro, A.; Pretel, M.T. Obtaining and storage of ready-to-use segments from traditional orange obtained by enzymatic peeling. Food Sci. Technol. Int. 2012, 18, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Mamma, D.; Christakopoulos, P. Biotransformation of citrus by-products into value added products. Waste Biomass Valorization 2014, 5, 529–549. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Liu, S.; Li, F.; Zhang, X.; Chen, H.; Liu, Y. Studying safe storage time of orange peel (Citrus reticulata) using high-throughput sequencing and conventional pure culture. Food Sci. Nutr. 2018, 6, 2545–2552. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, Q.; Chen, F.; Zhang, X. Analysis of culturable yeast diversity in spontaneously fermented orange wine, orange peel and orangery soil of a Ponkan plantation in China. Ann. Microbiol. 2015, 65, 2387–2391. [Google Scholar] [CrossRef]
- Fujii, K.; Shintoh, Y. Degradation of mikan (Japanese mandarin orange) peel by a novel Penicillium species with cellulolytic and pectinolytic activity. J. Appl. Microbiol. 2006, 101, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Maki, M.; Leung, K.T.; Qin, W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 2009, 5, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xiong, P.; He, B. Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Bioresour. Technol. 2016, 200, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.M.; Glawe, A.J.; Labeda, D.P.; Cann, I.K.O.; Mackie, R.I. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int. J. Syst. Evol. Microbiol. 2009, 59, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.P.; Seo, G.-W.; An, S.-D.; Kim, H. A cold-active acidophilic endoglucanase of Paenibacillus sp. Y2 isolated from soil in an alpine region. J. Appl. Biol. Chem. 2017, 60, 257–263. [Google Scholar] [CrossRef]
- Ntougias, S.; Papadopoulou, K.K.; Zervakis, G.I.; Kavroulakis, N.; Ehaliotis, C. Suppression of soil-borne pathogens of tomato by composts derived from agro-industrial wastes abundant in Mediterranean regions. Biol. Fertil. Soils 2008, 44, 1081–1090. [Google Scholar] [CrossRef]
- Remmas, N.; Melidis, P.; Voltsi, C.; Athanasiou, D.; Ntougias, S. Novel hydrolytic extremely halotolerant alkaliphiles from mature landfill leachate with key involvement in maturation process. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Baldrian, P.; Valášková, V.; Merhautová, V.; Gabriel, J. Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res. Microbiol. 2005, 156, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Muyzer, G.; Brinkhoff, T.; Nübel, U.; Santegoeds, C.; Schäfer, H.; Waver, C. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Molecular Microbial Ecology Manual; Akkermans, A., van Elsas, J., de Bruijn, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 1–27. [Google Scholar]
- Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, NY, USA, 1969; pp. 21–132. ISBN 0125106017. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Xia, R.; Wang, M.; Xiao, Z.; Liu, P. Changes in dietary fibre, polygalacturonase, cellulase of navel orange (Citrus sinensis (L.) Osbeck ‘Cara Cara’) fruits under different storage conditions. Sci. Hortic. 2008, 116, 414–420. [Google Scholar] [CrossRef]
- Marín, M.; Sánchez, A.; Artola, A. Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. J. Clean. Prod. 2019, 209, 937–946. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Y.; Zeng, W.; Deng, X. Physicochemical and molecular analysis of cell wall metabolism between two navel oranges (Citrus sinensis) with different mastication traits. J. Sci. Food Agric. 2010, 90, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Srivastava, M.; Manikanta, A.; Singh, P.; Ramteke, P.W.; Mishra, P.K.; Malhotra, B.D. Production and optimization of physicochemical parameters of cellulase using untreated orange waste by newly isolated Emericella variecolor NS3. Appl. Biochem. Biotechnol. 2017, 183, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.A.R.; Silva, A.J.D.; Gómez-Mendoza, D.P.; Santos Júnior, A.C.M.D.; Cologna, N.D.M.D.; Almeida, R.M.; Miller, R.N.G.; Fontes, W.; Sousa, M.V.; Ricart, C.A.O.; et al. Identification of multienzymatic complexes in the Clonostachys byssicola secretomes produced in response to different lignocellulosic carbon sources. J. Biotechnol. 2017, 254, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Attri, I.; Gurumayum, S.; Kaur, S.; Nagal, S.; Tuli, M. Utilization of orange peel and wheat straw for cellulase enzyme production from Aspergillus terreus MTCC 7600. Ecol. Environ. Conserv. 2016, 22, S297–S302. [Google Scholar]
- Li, P.-J.; Xia, J.-L.; Shan, Y.; Nie, Z.-Y.; Wang, F.-R. Effects of surfactants and microwave-assisted pretreatment of orange peel on extracellular enzymes production by Aspergillus japonicus PJ01. Appl. Biochem. Biotechnol. 2015, 176, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Kannahi, M.; Elangeswari, S. Enhanced production of cellulase on different fruit peel under submerged fermentation. Int. J. Pharm. Sci. Res. 2015, 32, 161–165. [Google Scholar]
- Gutiérrez-Soto, G.; Medina-González, G.E.; García-Zambrano, E.A.; Treviño-Ramírez, J.E.; Hernández-Luna, C.E. Selection and characterization of a native Pycnoporus sanguineus strain as a lignocellulolytic extract producer from submerged cultures of various agroindustrial wastes. BioResources 2015, 10, 3564–3576. [Google Scholar] [CrossRef]
- Tsiklauri, N.; Khvedelidze, R.; Zakariashvili, N.; Aleksidze, T.; Bakradze-Guruli, M.; Kvesitadze, E. Higher basidial fungi isolated from different zones of Georgia—Producers of lignocellulosic enzymes. Bull. Georg. Natl. Acad. Sci. 2014, 8, 102–109. [Google Scholar]
- Delabona, P.D.S.; Pirota, R.D.P.B.; Codima, C.A.; Tremacoldi, C.R.; Rodrigues, A.; Farinas, C.S. Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Ind. Crops Prod. 2013, 42, 236–242. [Google Scholar] [CrossRef]
- Bansal, N.; Tewari, R.; Soni, R.; Soni, S.K. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 2012, 32, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.B.; De Ory, I.; Caro, I.; Blandino, A. Enhance hydrolytic enzymes production by Aspergillus awamori on supplemented grape pomace. Food Bioprod. Process. 2012, 90, 72–78. [Google Scholar] [CrossRef]
- Omojasola, P.F.; Jilani, O.P. Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange. Pak. J. Biol. Sci. 2008, 11, 2382–2388. [Google Scholar] [CrossRef] [PubMed]
- Niture, S.K.; Pant, A. Production of cell wall-degrading enzymes by a pH tolerant estuarine fungal isolate Fusarium moniliforme NCIM1276 in different culture conditions. World J. Microbiol. Biotechnol. 2007, 23, 1169–1177. [Google Scholar] [CrossRef]
- Hamdy, H.S. Purification and characterization of the pectin lyase secreted within the macerating fluid of Rhizopus oryzae (went & prinsen geerligs) grown on orange peel. Ind. J. Biotechnol. 2006, 5, 284–291. [Google Scholar]
- Saito, K.; Kawamura, Y.; Oda, Y. Role of the pectinolytic enzyme in the lactic acid fermentation of potato pulp by Rhizopus oryzae. J. Ind. Microbiol. Biotechnol. 2003, 30, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.-M.S. Utilization of orange peels for the production of multienzyme complexes by some fungal strains. Process Biochem. 1996, 31, 645–650. [Google Scholar] [CrossRef]
Parameter | Mean ± SE |
---|---|
pH * | 3.86 ± 0.02 |
Electrical Conductivity (μS/cm) * | 511 ± 0.33 |
Dry weight content (%) | 14.89 ± 0.05 |
Organic matter (% w/w) | 99.05 ± 0.02 |
Carbon (% w/w) | 57.45 ± 0.01 |
Ash content (% w/w) | 0.95 ± 0.03 |
Nitrogen (% w/w) | 0.68 ± 0.05 |
Soluble carbohydrates (% w/w) | 51.97 ± 2.00 |
Anthrone-reactive C (% w/w) | 4.12 ± 0.04 |
Phosphorus (mg/g d.w.) | 12.68 ± 0.14 |
Soluble phenolics (mg/g d.w.) | 12.48 ± 0.14 |
Endo-1,4-β-d-Glucanase Activity (U/g d.w.) | Exo-1,4-β-d-Glucanase Activity (U/g d.w.) | β-1,4-glucosidase Activity (U/g d.w.) | |
---|---|---|---|
Sonicated waste | 4.00 ± 0.11 | 2.60 ± 0.19 | 5.69 ± 0.23 |
Non-sonicated waste | 3.71 ± 0.16 | 1.69 ± 0.16 | 3.93 ± 0.14 |
p-value | 0.200 | 0.022 * | 0.003 ** |
Substrate | Cellulase Activity | Reference |
---|---|---|
Orange pulp | 6.5 mg/(g.min) or 36.1 U/g f.w. | [33] |
Orange peel | 3 mg/(g.min) or 16.7 U/g f.w. | |
Orange peel (mixed with compost and bulking agent) | 7.8 mg/(g.h) or 0.1 U/g d.w. | [34] |
Orange pulp | 0.29 U/g f.w. | [35] |
Orange juice processing waste (orange peel) | 4.0 U/g d.w. or 26.9 U/g f.w. | Present study |
Endo-1,4-β-d-Glucanase Activity | Exo-1,4-β-d-Glucanase Activity | β-1,4-Glucosidase Activity | ||||
---|---|---|---|---|---|---|
Isolate | U/mg protein | U/L broth | U/mg protein | U/L broth | U/mg protein | U/L broth |
CEL-1 | 3.52 ± 0.05 (b) | 1.52 ± 0.02 (a) | 4.42 ± 0.11 (d) | 5.58 ± 0.14 (d) | 0.13 ± 0.02 (a) | 0.17 ± 0.02 (a) |
CEL-3 | 2.87 ± 0.06 (a) | 2.02 ± 0.04 (b) | 5.55 ± 0.09 (e) | 8.38 ± 0.14 (f) | 6.30 ± 0.20 (c) | 9.51 ± 0.30 (b) |
CEL-6 | 3.41 ± 0.10 (b) | 1.65 ± 0.05 (a) | 3.61 ± 0.07 (c) | 4.77 ± 0.09 (c) | 0.07 ± 0.03 (a) | 0.10 ± 0.04 (a) |
CEL-7 | 3.64 ± 0.07 (b) | 2.84 ± 0.05 (c) | 0.98 ± 0.04 (a) | 1.30 ± 0.05 (b) | 9.52 ± 2.40 (d) | 12.55 ± 3.16 (b) |
CEL-8 | 2.82 ± 0.10 (a) | 2.09 ± 0.07 (b) | 1.96 ± 0.26 (b) | 0.29 ± 0.04 (a) | 3.29 ± 0.08 (b) | 0.49 ± 0.01 (a) |
CEL-9 | 3.40 ± 0.10 (b) | 3.03 ± 0.09 (d) | 10.67 ± 0.14 (f) | 17.70 ± 0.23 (g) | 7.26 ± 0.24 (c) | 12.04 ± 0.40 (b) |
CEL-11 | 3.89 ± 0.08 (c) | 2.84 ± 0.06 (c) | 5.59 ± 0.08 (e) | 6.20 ± 0.09 (e) | 10.69 ± 0.04 (d) | 11.86 ± 0.04 (b) |
Cellulase-Producing Microorganism | Fermentative Substrate | Cellulase Activity | Isolation Source | Reference |
---|---|---|---|---|
Xanthomonas axonopodis pv. citri Xac 306 | citrus pulp | 0.12 U/mL | host: sweet orange | [9] |
Emericella variecolor NS3 | orange peel | 31 U/g | rotten wood | [36] |
Clonostachys byssicola RCFS6 | orange peel | 0.27 U/mL | soil | [37] |
Aspergillus terreus MTCC 7600 | orange peel | 15.8 U/mL | soil | [38] |
Aspergillus japonicus PJ01 | orange peel | 1.6 U/mL | soil | [39] |
Aspergillus niger strain-Trichoderma viridae strain | orange peel | 0.30 U/mL-0.62 U/mL | soil | [40] |
Pycnoporus sanguineus CS2 | orange peel | 0.16 U/mL | oak forest | [41] |
Pleurotus ostreatus GK10-Fomes sp. KA20-Ganoderma sp. GM 04 | orange peel | 22.1 U/mL-17.3 U/mL-5.9 U/mL | soil | [42] |
Aspergillus niger P47C3-Aspergilus fumigatus P40M2 | orange bagasse | 39.2 U/g 39.0 U/g | soil | [43] |
Aspergillus niger NS2-2 | orange peel | 1.0 U/g | agricultural residues | [44] |
Aspergillus awamori 2B.361 U2/1 | orange peel | 2.8 U/g | not reported | [45] |
Trichoderma longibrachiatum strain-Aspergillus niger strain-Saccharomyces cerevisiae strain | orange albedo, orange pulp & orange peel | 1.8, 1.3 & 1.1 U/mL-1.9, 1.6 & 1.2 U/mL-1.6, 1.4 & 1.1 U/mL | rotten wood and palm wine | [46] |
Fusarium moniliforme NCIM1276 | wheat bran & orange pulp | 27.5 U/g | soil | [47] |
Rhizopus oryzae strain | orange peel | 2.4 U/g | soil | [48] |
Rhizopus oryzae NBRC 4707 | orange peel | 0.7 U/g | not reported | [49] |
A. niger A-20-A. oryzae 1911-Memnoniella sp. 6-P. chrysogenum 3486-P. oxalicum 7 | dried orange peels | 1.3 U/mL-1.1 U/mL-3.4 U/mL-0.9 U/mL-2.4 U/mL | not reported | [50] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerva, I.; Remmas, N.; Ntougias, S. Biocatalyst Potential of Cellulose-Degrading Microorganisms Isolated from Orange Juice Processing Waste. Beverages 2019, 5, 21. https://doi.org/10.3390/beverages5010021
Zerva I, Remmas N, Ntougias S. Biocatalyst Potential of Cellulose-Degrading Microorganisms Isolated from Orange Juice Processing Waste. Beverages. 2019; 5(1):21. https://doi.org/10.3390/beverages5010021
Chicago/Turabian StyleZerva, Ioanna, Nikolaos Remmas, and Spyridon Ntougias. 2019. "Biocatalyst Potential of Cellulose-Degrading Microorganisms Isolated from Orange Juice Processing Waste" Beverages 5, no. 1: 21. https://doi.org/10.3390/beverages5010021
APA StyleZerva, I., Remmas, N., & Ntougias, S. (2019). Biocatalyst Potential of Cellulose-Degrading Microorganisms Isolated from Orange Juice Processing Waste. Beverages, 5(1), 21. https://doi.org/10.3390/beverages5010021