Copper(II) and Sulfur Dioxide in Chardonnay Juice and Shiraz Must: Impact on Volatile Aroma Compounds and Cu Forms in Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Wine Making and Bentonite Treatment
2.3. Juice, Must, and Wine Compositional Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Basic Parameters for Chardonnay and Shiraz Wines
3.2. Evolution of the Concentrations of Cu and SO2 during Wine Production
3.3. Impact of Cu or SO2 Addition to Juice/Must on Total Concentrations of Low Molecular Weight Sulfur Compounds (LMWSCs) in Wine
3.4. Impact of Cu or SO2 Addition to Juice/Must on Total Concentrations of Volatile Aldehyde Compounds in Wine
3.5. Impacts of Cu or SO2 Addition to Juice/Must on Wine Color Parameters, Protein Concentration (Chardonnay Only), and Esters and Terpenes Concentrations in Wine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bueno, M.N.; Carrascón, V.; Ferreira, V. Release and formation of oxidation-related aldehydes during wine oxidation. J. Agric. Food Chem. 2016, 64, 608–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurie, V.F.; Clark, A.C. Wine oxidation. In Oxidation in Foods and Beverages and Antioxidant Applications. Volume 2: Management in Different Industry Sectors; Decker, E.A., Elias, R.J., McClements, D.J., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2010; pp. 445–475. [Google Scholar]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Culleré, L.; Cacho, J.; Ferreira, V. An assessment of the role played by some oxidation-related aldehydes in wine aroma. J. Agric. Food Chem. 2007, 55, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Silva Ferreira, A.C.; Hogg, T.; Guedes de Pinho, P. Identification of key odorants related to the typical aroma of oxidation-spoiled white wines. J. Agric. Food Chem. 2003, 51, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Daran, J.-M.; van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant-Preece, P.; Fang, H.; Schmidtke, L.M.; Clark, A.C. Sensorially important aldehyde production from amino acids in model wine systems: Impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide. Food Chem. 2013, 141, 304–312. [Google Scholar] [CrossRef]
- Rizzi, G.P. Formation of strecker aldehydes from polyphenol-derived quinones and α-amino acids in a nonenzymic model system. J. Agric. Food Chem. 2006, 54, 1893–1897. [Google Scholar] [CrossRef]
- Pripis-Nicolau, L.; de Revel, G.; Bertrand, A.; Maujean, A. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions. J. Agric. Food Chem. 2000, 48, 3761–3766. [Google Scholar] [CrossRef]
- Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef]
- Barbe, J.-C.; de Revel, G.; Annick, J.; Lonvaud-Funel, A.; Bertrand, A. Role of carbonyl compounds in SO2 binding phenomena in musts and wines from botrytized grapes. J. Agric. Food Chem. 2000, 48, 3413–3419. [Google Scholar] [CrossRef]
- De Azevedo, L.C.; Reis, M.M.; Motta, L.F.; da Rocha, G.O.; Silva, L.A.; de Andrade, J.B. Evaluation of the formation and stability of hydroxyalkylsulfonic acids in wines. J. Agric. Food Chem. 2007, 55, 8670–8680. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.P.; Valente, I.M.; Gonçalves, L.M.; Rodrigues, J.A.; Barros, A.A. Application of gas-diffusion microextraction to the analysis of free and bound acetaldehyde in wines by HPLC–UV and characterization of the extracted compounds by MS/MS detection. Anal. Bioanal. Chem. 2012, 403, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Mattivi, F.; Arapitsas, P.; Perenzoni, D.; Guella, G. Influence of storage conditions on the composition of red wines. In Advances in Wine Research; Ebeler, S.B., Sacks, G., Vidal, S., Winterhalter, P., Eds.; American Chemical Society: Washington, DC, USA, 2015; pp. 29–49. [Google Scholar]
- Ferreira, V.; Bueno, M.; Franco-Luesma, E. New insights into the chemistry involved in aroma development during wine bottle aging: Slow redox processes and chemical equilibrium shifts. In Advances in Wine Research; Ebeler, S.B., Sacks, G., Vidal, S., Winterhalter, P., Eds.; American Chemical Society: Washington, DC, USA, 2015; pp. 275–289. [Google Scholar]
- Escudero, A.; Cacho, J.; Ferreira, V. Isolation and identification of odorants generated in wine during its oxidation: A gas chromatography–olfactometric study. Eur. Food Res. Technol. 2000, 211, 105–110. [Google Scholar] [CrossRef]
- Smith, M.E.; Bekker, M.Z.; Smith, P.A.; Wilkes, E.N. Sources of volatile sulfur compounds in wine. Aust. J. Grape Wine Res. 2015, 21, 705–712. [Google Scholar] [CrossRef]
- Moreira, N.; Mendes, F.; Pereira, O.; Guedes de Pinho, P.; Hogg, T.; Vasconcelos, I. Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts. Anal. Chim. Acta 2002, 458, 157–167. [Google Scholar] [CrossRef]
- Moreira, N.; Guedes de Pinho, P.; Santos, C.; Vasconcelos, I. Volatile sulphur compounds composition of monovarietal white wines. Food Chem. 2010, 123, 1198–1203. [Google Scholar] [CrossRef]
- Bekker, M.Z.; Day, M.P.; Holt, H.; Wilkes, E.; Smith, P.A. Effect of oxygen exposure during fermentation on volatile sulfur compounds in Shiraz wine and a comparison of strategies for remediation of reductive character. Aust. J. Grape Wine Res. 2016, 22, 24–35. [Google Scholar] [CrossRef]
- Hallinan, C.P.; Saul, D.J.; Jiranek, V. Differential utilisation of sulfur compounds for H2S liberation by nitrogen-starved wine yeasts. Aust. J. Grape Wine Res. 1999, 5, 82–90. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 2007, 74, 954–960. [Google Scholar] [CrossRef]
- Franco-Luesma, E.; Ferreira, V. Reductive off-odors in wines: Formation and release of H2S and methanethiol during the accelerated anoxic storage of wines. Food Chem. 2016, 199, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Landaud, S.; Helinck, S.; Bonnarme, P. Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Appl. Microbiol. Biotechnol. 2008, 77, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Bekker, M.Z.; Wilkes, E.N.; Smith, P.A. Evaluation of putative precursors of key ‘reductive’ compounds in wines post-bottling. Food Chem. 2018, 245, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M.; Dieval, J.B.; Siebert, T.E.; Kwiatkowski, M.; Aagaard, O.; Vidal, S.; Waters, E.J. Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre- and postbottling controlled oxygen exposure. J. Agric. Food Chem. 2012, 60, 8561–8570. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhou, Q.; Peck, J.; Soles, R.; Qian, M.C. The effect of wine closures on volatile sulfur and other compounds during post-bottle ageing. Flavour Fragr. J. 2013, 28, 118–128. [Google Scholar] [CrossRef]
- Ye, D.-Q.; Zheng, X.-T.; Xu, X.-Q.; Wang, Y.-H.; Duan, C.-Q.; Liu, Y.-L. Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels. Food Chem. 2016, 202, 236–246. [Google Scholar] [CrossRef] [PubMed]
- De Mora, S.J.; Lee, P.; Shooter, D.; Eschenbruch, R. The analysis and importance of dimethylsulfoxide in wine. Am. J. Enol. Vitic. 1993, 44, 327–332. [Google Scholar]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. A comparative study of partial dealcoholisation versus early harvest: Effects on wine volatile and sensory profiles. Food Chem. 2018, 261, 21–29. [Google Scholar] [CrossRef]
- Kreitman, G.Y.; Danilewicz, J.C.; Jeffery, D.W.; Elias, R.J. Reaction mechanisms of metals with hydrogen sulfide and thiols in model wine. Part 1: Copper-catalyzed oxidation. J. Agric. Food Chem. 2016, 64, 4095–4104. [Google Scholar] [CrossRef]
- Clark, A.C.; Grant-Preece, P.; Cleghorn, N.; Scollary, G.R. Copper(II) addition to white wines containing hydrogen sulfide: Residual copper concentration and activity. Aust. J. Grape Wine Res. 2015, 21, 30–39. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Aline, L. Hand book of Enology. Volume 1: The Microbiology of Wine and Vinifications, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar]
- Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 2014, 374, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Rousseva, M.; Kontoudakis, N.; Schmidtke, L.M.; Scollary, G.R.; Clark, A.C. Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption. Food Chem. 2016, 203, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.C.; Kontoudakis, N.; Barril, C.; Schmidtke, L.M.; Scollary, G.R. Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes. Talanta 2016, 154, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Siebert, T.E.; Solomon, M.R.; Pollnitz, A.P.; Jeffery, D.W. Selective determination of volatile sulfur compounds in wine by gas chromatography with sulfur chemiluminescence detection. J. Agric. Food Chem. 2010, 58, 9454–9462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kontoudakis, N.; Clark, A.C. Rapid quantitation of 12 volatile aldehyde compounds in wine by LC-QQQ-MS: A combined measure of free and hydrogen-sulfite-bound forms. J. Agric. Food Chem. 2019, 67, 3502–3510. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.-C.; de Revel, G. Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-solid-phase microextraction-gas chromatography–mass spectrometry. Food Chem. 2010, 121, 1236–1245. [Google Scholar] [CrossRef]
- Somers, C.T.; Evans, M.E. Spectral evaluation of young red wines: Anthocyanin equilibria, total phenolics, free and molecular SO2, “chemical age”. J. Sci. Food Agric. 1977, 28, 279–287. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bekker, M.Z.; Day, M.P.; Smith, P.A. Changes in metal ion concentrations in a Chardonnay wine related to oxygen exposure during vinification. Molecules 2019, 24, 1523. [Google Scholar] [CrossRef] [Green Version]
- Vystavna, Y.; Zaichenko, L.; Klimenko, N.; Rätsep, R. Trace metals transfer during vine cultivation and winemaking processes. J. Sci. Food Agric. 2017, 97, 4520–4525. [Google Scholar] [CrossRef]
- Kreitman, G.Y.; Danilewicz, J.C.; Jeffery, D.W.; Elias, R.J. Copper(II)-mediated hydrogen sulfide and thiol oxidation to disulfides and organic polysulfanes and their reductive cleavage in wine: Mechanistic elucidation and potential applications. J. Agric. Food Chem. 2017, 65, 2564–2571. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Mierczynska-Vasilev, A.; Guo, A.; Smith, P.A.; Scollary, G.R.; Wilkes, E.N.; Clark, A.C. Removal of sulfide-bound copper from white wine by membrane filtration. Aust. J. Grape Wine Res. 2019, 25, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Kontoudakis, N.; Clark, A.C. Sulfide-binding to Cu(II) in wine: Impact on oxygen consumption rates. Food Chem. in press.
- Bekker, M.Z.; Kreitman, G.Y.; Jeffery, D.W.; Danilewicz, J.C. Liberation of hydrogen sulfide from dicysteinyl polysulfanes in model wine. J. Agric. Food Chem. 2018, 66, 13483–13491. [Google Scholar] [CrossRef] [PubMed]
- Kreitman, G.Y.; Elias, R.J.; Jeffery, D.W.; Sacks, G.L. Loss and formation of malodorous volatile sulfhydryl compounds during wine storage. Crit. Rev. Food Sci. Nutr. 2019, 59, 1728–1752. [Google Scholar] [CrossRef]
- Cavazza, A.; Guzzon, R.; Malacarne, M.; Larcher, R. The influence of the copper content in grape must on alcoholic fermentation kinetics and wine quality. A survey on the performance of 50 commercial active dry yeasts. Vitis 2013, 52, 149–155. [Google Scholar]
- Yasokawa, D.; Murata, S.; Kitagawa, E.; Iwahashi, Y.; Nakagawa, R.; Hashido, T.; Iwahashi, H. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis. Environ. Toxicol. 2008, 23, 599–606. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Schmidtke, L.M.; Bekker, M.Z.; Smith, M.; Smith, P.A.; Scollary, G.R.; Wilkes, E.N.; Clark, A.C. Analytical strategies for the measurement of different forms of Cu and Fe in wine: Comparison between approaches in relation to wine composition. Food Chem. 2019, 274, 89–99. [Google Scholar] [CrossRef]
- Ugliano, M.; Kwiatkowski, M.; Vidal, S.; Capone, D.; Siebert, T.; Dieval, J.-B.; Aagaard, O.; Waters, E.J. Evolution of 3-mercaptohexanol, hydrogen sulfide, and methyl mercaptan during bottle storage of Sauvignon Blanc wines. Effect of glutathione, copper, oxygen exposure, and closure-derived oxygen. J. Agric. Food Chem. 2011, 59, 2564–2572. [Google Scholar] [CrossRef]
- Yeat Assimilable Nitrogen (YAN). Available online: https://www.awri.com.au/industry_support/winemaking_resources/wine_fermentation/yan/ (accessed on 31 October 2019).
- Kontoudakis, N.; Guo, A.; Scollary, G.R.; Clark, A.C. The impact of aging wine in high and low oxygen conditions on the fractionation of Cu and Fe in Chardonnay wine. Food Chem. 2017, 229, 319–328. [Google Scholar] [CrossRef]
- Gruenwedel, D.W.; Patnaik, R.K. Release of hydrogen sulfide and methyl mercaptan from sulfur-containing amino acids. J. Agric. Food Chem. 1971, 19, 775–779. [Google Scholar] [CrossRef]
- Bueno, M.; Marrufo-Curtido, A.; Carrascón, V.; Fernández-Zurbano, P.; Escudero, A.; Ferreira, V. Formation and accumulation of acetaldehyde and strecker aldehydes during red wine oxidation. Front. Chem. 2018, 6. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
a,b Chardonnay | Control | LCu | HCu | LSO2 | HSO2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
total Cu (µg/L) | ||||||||||
J | 1222 ± 49 c | 4295 ± 92 b | 7299 ± 227 a | 1182 ± 21 c | 1225 ± 87 c | |||||
PAF | 124 ± 2 c | 311 ± 4 b | 430 ± 14 a | 124 ± 3 c | 121 ± 2 c | |||||
PCold | 86 ± 7 c | 186 ± 0 b | 321 ± 47 a | 76 ± 1 c | 73 ± 3 c | |||||
PB: nonB/Bent | 82 ± 1d | 46 ± 2 e | 203 ± 2 b | 153 ± 11 c | 335 ± 42 a | 229 ± 2 b | 79 ± 5 d | 45 ± 13 e | 73 ± 2 de | 60 ± 6 de |
15Mo: nonB/Bent | 11 ± 11 d | 38 ± 9 e | 167 ± 10 c | 136 ± 1 cd | 305 ± 49 a | 204 ± 13 b | 63 ± 10 e | 51 ± 10 e | 50 ± 1 e | 44 ± 9 e |
free Cu (µg/L) | ||||||||||
J | n/a | n/a | n/a | n/a | n/a | |||||
PAF | 17 ± 2 bc | 24 ± 9 b | 52 ± 2 a | 17 ± 1 bc | 10 ± 1 c | |||||
PCold | 28 ± 1 c | 55 ± 3 b | 80 ± 6 a | 24 ± 2 c | 22 ± 3 c | |||||
PB: nonB/Bent | 34 ± 4 e | 26 ± 2 fg | 66 ± 4 c | 50 ± 6 d | 93 ± 3 a | 75 ± 8 b | 33 ± 4 ef | 23 ± 2 g | 19 ± 1 g | 21 ± 0 g |
15Mo: nonB/Bent | nil | nil | nil | nil | nil | nil | nil | nil | nil | nil |
bound Cu (µg/L) | ||||||||||
J | n/a | n/a | n/a | n/a | n/a | |||||
PAF | 107 ± 2 c | 287 ± 9 b | 390 ± 4 a | 108 ± 2 c | 110 ± 2 c | |||||
PCold | 58 ± 8 c | 131 ± 3 b | 224 ± 20 a | 52 ± 3 c | 51 ± 6 c | |||||
PB: nonB/Bent | 48 ± 5 d | 21 ± 1 e | 137 ± 5 b | 103 ± 15 c | 229 ± 20 a | 151 ± 4 b | 51 ± 6 d | 22 ± 10 e | 54 ± 1 d | 42 ± 1 d |
15Mo: nonB/Bent | 110 ± 11 d | 38 ± 9 e | 167 ± 10 c | 136 ± 1 cd | 305 ± 49 a | 204 ± 13 b | 63 ± 10 e | 51 ± 10 e | 50 ± 1 e | 44 ± 9 e |
total SO2 (mg/L) | ||||||||||
J | 8 ± 0 c | 7 ± 0 c | 8 ± 0 c | 48 ± 1 b | 66 ± 1 a | |||||
PAF | 55 ± 1 e | 64 ± 1 d | 69 ± 3 c | 88 ± 3 b | 101 ± 2 a | |||||
PCold | 108 ± 1 c | 114 ± 3 bc | 120 ± 5 b | 144 ± 8 a | 151 ± 3 a | |||||
c PB: nonB/Bent | 129 ± 7 cd | 123 ± 4 d | 156 ± 4 ab | 152 ± 2 b | 163 ± 4 a | 161 ± 2 a | 136 ± 6 c | 131 ± 2 c | 132 ± 4 c | 132 ± 4 c |
15Mo: nonB/Bent | 89 ± 3 e | 94 ± 10 e | 106 ± 5 d | 111 ± 4 cd | 119 ± 3 b | 120 ± 5 b | 120 ± 2 b | 118 ± 3 bc | 129 ± 3 a | 129 ± 2 a |
free SO2 (mg/L) | ||||||||||
J | 0 c | 0 c | 0 c | 25 ± 1 b | 39 ± 1 a | |||||
PAF | 0 a | 0 a | 0 a | 1 ± 0 a | 1 ± 0 a | |||||
PCold | 10 ± 2 a | 6 ± 1 b | 2 ± 1 c | 12 ± 2 a | 10 ± 1 a | |||||
c PB: nonB/Bent | 24 ± 2 b | 25 ± 2 ab | 26 ± 3 ab | 29 ± 5 a | 24 ± 1 b | 26 ± 1 ab | 18 ± 1 c | 20 ± 1 c | 11 ± 1 d | 12 ± 1 d |
15Mo: nonB/Bent | 4 ± 1 ab | 5 ± 3 a | 4 ± 1 ab | 4 ± 1 ab | 2 ± 1 b | 3 ± 1 b | 4 ± 1 ab | 3 ± 1 ab | 4 ± 1 ab | 4 ± 0 ab |
a,b Shiraz | Control | LCu | HCu | LSO2 | HSO2 |
---|---|---|---|---|---|
total Cu (µg/L) | |||||
M | 2007 ± 76 c | 10577 ± 412 b | 15051 ± 2756 a | 1985 ± 70 c | 1807 ± 78 c |
PAF | 567 ± 31 a | 679 ± 100 a | 598 ± 31 a | 565 ± 28 a | 577 ± 77 a |
PB | 305 ± 34 bc | 351 ± 23 ab | 278 ± 27 c | 331 ± 22 abc | 383 ± 60 a |
15Mo | 272 ± 33 a | 189 ± 20 b | 142 ± 0 c | 188 ± 18 b | 212 ± 30 ab |
free Cu (µg/L) | |||||
M | n/a | n/a | n/a | n/a | n/a |
PAF | 59 ± 5 b | 62 ± 8 b | 131 ± 26 a | 39 ± 1 bc | 28 ± 3 c |
PB | 40 ± 2 a | 31 ± 3 b | 22 ± 4 c | 22 ± 0 c | 34 ± 2 ab |
15Mo | nil | nil | nil | nil | nil |
bound Cu (µg/L) | |||||
M | n/a | n/a | n/a | n/a | n/a |
PAF | 508 ± 30 ab | 618 ± 95 a | 467 ± 14 b | 526 ± 27 ab | 549 ± 79 ab |
PB | 270 ± 32 b | 320 ± 23 ab | 256 ± 28 b | 306 ± 18 ab | 349 ± 58 a |
15Mo | 272 ± 33 a | 189 ± 20 b | 142 ± 0 c | 188 ± 18 b | 212 ± 30 ab |
total SO2 (mg/L) | |||||
M | 0 c | 0 c | 0 c | 135 ± 38 b | 244 ± 71 |
PAF | 6 ± 1 c | 6 ± 0 c | 5 ± 0 c | 12 ± 1 b | 20 ± 1 a |
c PB (pre-SO2) | 65 ± 4 b | 66 ± 4 b | 75 ± 15 ab | 76 ± 8 ab | 88 ± 1 a |
d PB (post-SO2) | 120 ± 8 b | 119 ± 5 b | 129 ± 6 ab | 138 ± 9 a | 129 ± 4 ab |
15Mo | 79 ± 3 b | 80 ± 7 b | 91 ± 2 a | 89 ± 4 ab | 92 ± 3 a |
free SO2 (mg/L) | |||||
M | 0 c | 0 c | 0 c | 57 ± 17 b | 109 ± 36 a |
PAF | 0 a | 0 a | 0 a | 0 a | 1 ± 0 a |
c PB (pre-SO2) | 5 ± 0 b | 5 ± 0 b | 4 ± 0 b | 8 ± 2 a | 8 ± 1 a |
d PB (post-SO2) | 29 ± 10 a | 27 ± 1 a | 24 ± 0 a | 29 ± 1 a | 30 ± 4 a |
15Mo | 23 ± 3 a | 21 ± 3 a | 21 ± 4 a | 25 ± 4 a | 26 ± 6 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Kontoudakis, N.; Blackman, J.W.; Clark, A.C. Copper(II) and Sulfur Dioxide in Chardonnay Juice and Shiraz Must: Impact on Volatile Aroma Compounds and Cu Forms in Wine. Beverages 2019, 5, 70. https://doi.org/10.3390/beverages5040070
Zhang X, Kontoudakis N, Blackman JW, Clark AC. Copper(II) and Sulfur Dioxide in Chardonnay Juice and Shiraz Must: Impact on Volatile Aroma Compounds and Cu Forms in Wine. Beverages. 2019; 5(4):70. https://doi.org/10.3390/beverages5040070
Chicago/Turabian StyleZhang, Xinyi, Nikolaos Kontoudakis, John W. Blackman, and Andrew C. Clark. 2019. "Copper(II) and Sulfur Dioxide in Chardonnay Juice and Shiraz Must: Impact on Volatile Aroma Compounds and Cu Forms in Wine" Beverages 5, no. 4: 70. https://doi.org/10.3390/beverages5040070
APA StyleZhang, X., Kontoudakis, N., Blackman, J. W., & Clark, A. C. (2019). Copper(II) and Sulfur Dioxide in Chardonnay Juice and Shiraz Must: Impact on Volatile Aroma Compounds and Cu Forms in Wine. Beverages, 5(4), 70. https://doi.org/10.3390/beverages5040070