Fruit Spirit Production from Coffee Cherries—Process Analysis and Sensory Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Mash Preparation
2.3. Fermentation Analysis
2.4. Distillation Process
2.5. Analytical Methods
2.6. Sensory Evaluation
3. Results and Discussion
3.1. Substrate Characteristics
3.2. Fermentation
3.3. Distillation
3.4. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jack, F.R.; Steele, M.G. Modelling the sensory characteristics of Scotch whisky using neural networks—A novel tool for generic protection. Food Qual. Prefer. 2002, 13, 163–172. [Google Scholar] [CrossRef]
- Bovo, B.; Andriguetto, C.; Carlot, M.; Corich, V.; Lombardi, A.; Giacomini, A. Yeast population dynamics during pilot-scale storage of grape marcs for the production of Grappa, a traditional Italian alcoholic beverage. Int. J. Food Microbiol. 2009, 129, 221–228. [Google Scholar] [CrossRef]
- Pino, J.A.; Tolle, S.; Gök, R.; Winterhalter, P. Characterisation of odouractive compounds in aged rum. Food Chem. 2012, 132, 1436–1441. [Google Scholar] [CrossRef]
- Campos, C.R.; Silva, C.F.; Dias, D.R.; Basso, L.C.; Amorim, H.; Schwan, R.F. Features of Saccharomyces cerevisiae as a culture starter for the production of the distilled sugar cane beverage cachaca in Brazil. J. Appl. Microbiol. 2009, 108, 1871–1879. [Google Scholar] [PubMed]
- Hang, Y.D.; Woodams, E.E. Influence of apple cultivar and juice pasteurization on hard cider and eau-de-vie methanol content. Bioresour. Technol. 2010, 101, 1396–1398. [Google Scholar] [CrossRef]
- Diéguez, S.C.; de la Peña, M.L.G.; Gómez, E.F. Volatile composition and sensory characters of commercial Galician orujo spirits. J. Agric. Food Chem. 2005, 53, 6759–6765. [Google Scholar] [CrossRef]
- Silva, M.L.; Malcata, F.X.; De Revel, G. Volatile contents of grape marcs in Portugal. J. Food Compos. Anal. 1996, 9, 72–80. [Google Scholar] [CrossRef]
- Satora, P.; Tuszynski, T. Chemical characteristics of Sliwowica Łacka and other plum brandies. J. Sci. Food Agric. 2008, 88, 167–174. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Frank, W.; Kuballa, T. Application of tandem mass spectrometry combined with gas chromatography to the routine analysis of ethyl carbamate in stone-fruit spirits. Rapid. Commun. Mass. Spectrom. 2005, 19, 108–112. [Google Scholar] [CrossRef]
- Nikićević, N. Production of superior quality fruit brandies in small domestic distilleries in Serbia. In Proceedings of the Spirit of Rakia, 1st International Conference & Exhibition, Pula, Croatia, 27–30 March 2019. [Google Scholar]
- Duarte, W.F.; Amorim, J.C.; de Assis Lago, L.; Dias, D.R.; Schwan, R.F. Optimization of Fermentation Conditions for Production of the Jabuticaba (Myrciaria cauliflora) Spirit Using the Response Surface Methodology. J. Food Sci. 2011, 76, 782–790. [Google Scholar] [CrossRef]
- do Santos, C.C.A.A.; Duarte, W.F.; Carreiro, S.C.; Schwan, R.F. Inoculated fermentation of orange juice (Citrus sinensis L.) for production of a citric fruit spirit. J. Inst. Brew. 2013, 119, 280–287. [Google Scholar] [CrossRef]
- Moore, P.H.; Ming, R. Genomics of Tropical Crop Plants; Springer: New York, NY, USA, 2008. [Google Scholar]
- Bakker, R.R.C. Availability of Lignocellulosic Feedstocks for Lactic Acid Production; UR Food & Biobased Research: Wageningen, The Netherlands, 2013. [Google Scholar]
- Heeger, A.; Kosińska-Cagnazzo, A.; Cantergiani, E.; Andlauer, W. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 2017, 221, 969–975. [Google Scholar] [CrossRef]
- Somashekar, K.L.; Anu Appaiah, K.A. Coffee cherry husk—A potential feed stock for alcohol production. Int. J. Environ. Waste Manag. 2013, 11, 410–419. [Google Scholar]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry byproducts and value addition—A review. Resour. Conserv. Recy. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Dragone, G.; Mussatto, S.I.; Oliveira, J.M.; Teixeira, J.A. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 2009, 112, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Vilanova, M.; Zamuz, S.; Tardáguila, J.; Masa, A. Descriptive analysis of wines from Vitis vinifera cv. Albariño. J. Sci. Food Agric. 2008, 88, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of food. Principle and Practices; Kluwer Academic/Plenum Publishers: Massachusetts, MA, USA, 1998. [Google Scholar]
- Carlucci, A.; Monteleone, E. Statistical validation of sensory data: A study on wine. J. Sci. Food Agric. 2001, 81, 751–758. [Google Scholar]
- Deutsches Institut für Normung DIN. DIN EN 14774-3 Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample; Beuth Verlag: Berlin, Germany, 2010. [Google Scholar]
- Deutsches Institut für Normung DIN. DIN EN 14775 Solid Biofuels—Determination of Ash Content; Beuth Verlag: Berlin, Germany, 2010. [Google Scholar]
- Clifford, M.N.; Willson, K.C. Coffee—Botany, Biochemistry and Production of Beans and Beverage; Springer: Boston, MA, USA, 1985. [Google Scholar]
- Samuelsson, R.S.; Burvall, J.; Jirjis, R. Comparison of different methods for the determination of moisture content in biomass. Biomass Bioenergy 2006, 30, 929–934. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic acids and other cinnamates—Nature, occurrence and dietary burden. J. Sci. Food Agric. 1999, 79, 362–372. [Google Scholar]
- Dietrich, H.; Krüger-Steden, E.; Patz, C.D.; Will, F.; Rheinberg, A.; and Hopf, I. Increase of sorbitol in pear and apple juice by water stress, a consequence of climatic change? Fruit Process. 2007, 17, 348–355. [Google Scholar]
- Jacques, K.A.; Lyons, T.P.; Kelsall, D.R. The Alcohol Textbook, 4th ed.; Nottingham University Press: Nottingham, UK, 2003. [Google Scholar]
- Schehl, B.; Lachenmeier, D.; Senn, T.; Heinisch, J.J. Effect of the Stone Content on the Quality of Plum and Cherry Spirits Produced from Mash Fermentations with Commercial and Laboratory Yeast Strains. J. Agric. Food Chem. 2005, 53, 8230–8238. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.V. Quality-Control Analytical Methods—Refractometry. Int. J. Pharm. Compd. 2003, 7, 383. [Google Scholar]
- German customs. Abfindungs- und Stoffbesitzerbrennen—Zugelassene Rohstoffe (§§ 9 und 11 Alkoholsteuergesetz) und Festgelegte Amtliche Ausbeutesätze; Generalzolldirektion: Bonn, Germany, 2018. [Google Scholar]
- Duarte, W.F.; Ferreira de Sousa, M.V.; Dias, D.R.; Schwan, R.F. Effect of Co-Inoculation of Saccharomyces cerevisiae and Lactobacillus fermentum on the Quality of the Distilled Sugar Cane Beverage Cachaca. J. Food Sci. 2011, 76, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council. Regulation (EC) no 110/2008 of the European Parliament and of the council of 15 January 2008 on the definition, description, presentation, labelling and the protection of geographical indications of fruit spirits and repealing council regulation (EEC) no 1576/89. Off. J. Eur. Union 2008, L39, 16–54. [Google Scholar]
- Zhang, H.; Woodams, E.E.; Hang, Y.D. Influence of pectinase treatment on fruit spirits from apple mash, juice and pomace. Process. Biochem. 2011, 46, 1909–1913. [Google Scholar]
- Riachi, L.G.; Santos, A.; Moreira, R.F.A.; De Maria, C.A.B. A review of ethyl carbamate and polycyclic aromatic hydrocarbon contamination risk in cachaça and other Brazilian sugarcane spirits. Food Chem. 2014, 149, 159–169. [Google Scholar]
- García-Llobodanin, L.; Roca, J.; López, J.R.; Pérez-Correa, J.R.; López, F. The lack of reproducibility of different distillation techniques and its impact on pear spirit composition. Int. J. Food Sci. Technol. 2011, 46, 1956–1963. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Coffee, Tea, Cocoa. In Food Chemistry; Belitz, H.D., Grosch, W., Schieberle, P., Eds.; Springer: Berlin, Germany, 2009. [Google Scholar]
- Christoph, N.; Bauer-Christoph, C. Flavour of Spirit Drinks: Raw Materials, Fermentation, Distillation, and Ageing. In Flavours and Fragrances; Berger, R.G., Ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
Domain | Descriptor | Mean |
---|---|---|
color | clarity | 5.0 ± 0 |
colorlessness | 5.0 ± 0 | |
odor | vegetal | 3.2 ± 1.0 |
nutty | 3.0 ± 1.3 | |
earthy | 2.8 ± 1.0 | |
tart | 2.3 ± 1.5 | |
herbs | 1.0 ± 0.9 | |
taste | vegetal | 3.2 ± 1.6 |
alcoholic | 2.8 ± 1.5 | |
nutty | 2.5 ± 0.8 | |
sweet | 2.3 ± 1.2 | |
earthy | 2.3 ± 1.6 | |
tart | 2.2 ± 1.2 | |
bitter | 2.0 ± 0.9 | |
coffee | 0.5 ± 0.5 | |
total performance | odor | 2.8 ± 1.2 |
taste | 3.2 ± 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Einfalt, D.; Meissner, K.; Kurz, L.; Intani, K.; Müller, J. Fruit Spirit Production from Coffee Cherries—Process Analysis and Sensory Evaluation. Beverages 2020, 6, 57. https://doi.org/10.3390/beverages6030057
Einfalt D, Meissner K, Kurz L, Intani K, Müller J. Fruit Spirit Production from Coffee Cherries—Process Analysis and Sensory Evaluation. Beverages. 2020; 6(3):57. https://doi.org/10.3390/beverages6030057
Chicago/Turabian StyleEinfalt, Daniel, Klaus Meissner, Lena Kurz, Kiatkamjon Intani, and Joachim Müller. 2020. "Fruit Spirit Production from Coffee Cherries—Process Analysis and Sensory Evaluation" Beverages 6, no. 3: 57. https://doi.org/10.3390/beverages6030057
APA StyleEinfalt, D., Meissner, K., Kurz, L., Intani, K., & Müller, J. (2020). Fruit Spirit Production from Coffee Cherries—Process Analysis and Sensory Evaluation. Beverages, 6(3), 57. https://doi.org/10.3390/beverages6030057