Effect of High-Pressure and Thermal Pasteurization on Microbial and Physico-Chemical Properties of Opuntia ficus-indica Juices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Opuntia ficus-indica Juices
2.2. Thermal Pasteurization (TP)
2.3. High-Pressure Pasteurization (HPP)
2.4. Microbial Load
2.5. pH and Titratable Acidity
2.6. Total Soluble Solid Analyses (°Brix), Browning, Cloudiness
2.7. Major Composition
2.8. Phytochemicals
2.8.1. Total Phenolic Content
2.8.2. Total Betalains
2.8.3. UHPLC-DAD-ESI-MSn Analysis
2.9. Enzymatic Activity
2.10. Antioxidant Activity
2.10.1. ABTS•+ Assay
2.10.2. Superoxide (SO•) Scavenging Assay
2.10.3. Nitric Oxide (NO•) Scavenging Assay
2.11. Principal Components Analysis (PCA)
3. Results and Discussion
3.1. Microbial Load
3.2. Variations in pH, Titratable Acidity, °Brix, Browning and Cloudiness
3.2.1. pH and Titratable Acidity
3.2.2. Total Soluble Solids (TSS)
3.2.3. Browning and Cloudiness
3.3. Nutritional Composition
3.4. Phytochemicals
3.4.1. Phenolic Compounds
3.4.2. Betalains
3.5. Determination of Enzymatic Activity (PPO, POD and PME)
3.6. Antioxidant Capacity
3.7. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Neupane, D.; Mayer, J.A.; Niechayev, N.A.; Bishop, C.D.; Cushman, J.C. Five-year field trial of the biomass productivity and water input response of cactus pear (Opuntia spp.) as a bioenergy feedstock for arid lands. GCB Bioenergy 2021, 13, 719–741. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; López-Martínez, J.M.; Hernández-Brenes, C.; Gutiérrez-Uribe, J.A.; Welti-Chanes, J. Dietary fiber, phytochemical composition and antioxidant activity of Mexican commercial varieties of cactus pear. J. Food Compos. Anal. 2015, 41, 66–73. [Google Scholar] [CrossRef]
- Barba, F.J.; Putnik, P.; Bursać Kovačević, D.; Poojary, M.M.; Roohinejad, S.; Lorenzo, J.M.; Koubaa, M. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci. Technol. 2017, 67, 260–270. [Google Scholar] [CrossRef]
- Verón, H.E.; Di Risio, H.D.; Isla, M.I.; Torres, S. Isolation and selection of potential probiotic lactic acid bacteria from Opuntia ficus-indica fruits that grow in Northwest Argentina. LWT-Food Sci. Technol. 2017, 84, 231–240. [Google Scholar] [CrossRef]
- Sáenz, C.; Sepúlveda, E. Cactus-Pear Juices. J. Prof. Assoc. Cactus Dev. 2001, 4, 3–10. [Google Scholar]
- Jaramillo-Flores, M.E.; González-Cruz, L.; Cornejo-Mazón, M.; Dorantes-álvarez, L.; Gutiérrez-López, G.F.; Hernández-Sánchez, H. Effect of Thermal Treatment on the Antioxidant Activity and Content of Carotenoids and Phenolic Compounds of Cactus Pear Cladodes (Opuntia ficus-indica). Food Sci. Technol. Int. 2003, 9, 271–278. [Google Scholar] [CrossRef]
- Cruz-Cansino, N.D.S.; Montiel-Columna, N.I.; Bautista-Velueta, P.G.; Pérez-Tinoco, M.R.; Alanís-García, E.; Ramírez-Moreno, E. Optimization of Thermoultrasound Conditions for the Processing of A Prickly Pear Juice Blend (Opuntia Ficus Indica) Using Response Surface Methodology. J. Food Qual. 2016, 39, 780–791. [Google Scholar] [CrossRef]
- de Albuquerque, J.G.; Escalona-Buendía, H.B.; de Magalhães Cordeiro, A.M.T.; dos Santos Lima, M.; de Souza Aquino, J.; da Silva Vasconcelos, M.A. Ultrasound treatment for improving the bioactive compounds and quality properties of a Brazilian nopal (Opuntia ficus-indica) beverage during shelf-life. LWT-Food Sci. Technol. 2021, 149, 111814. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; Jäger, H.; Knorr, D.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Sci. Technol. 2017, 79, 534–542. [Google Scholar] [CrossRef]
- Felker, P.; Stintzing, F.C.; Müssig, E.; Leitenberger, M.; Carle, R.; Vogt, T.; Bunch, R. Colour inheritance in cactus pear (Opuntia ficus-indica) fruits. Ann. Appl. Biol. 2008, 152, 307–318. [Google Scholar] [CrossRef]
- Santos, C.D.; Ismail, M.; Cassini, A.S.; Marczak, L.D.F.; Tessaro, I.C.; Farid, M. Effect of thermal and high pressure processing on stability of betalain extracted from red beet stalks. J. Food Sci. Technol. 2018, 55, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.M.; Saraiva, J.A. High-pressure processing of fruits and fruit products. In Emerging Technologies for Food Processing; Elsevier Science & Technology: Amsterdam, The Netherlands, 2014; pp. 65–76. ISBN 9780124114791. [Google Scholar]
- Ashurst, P. The stability and shelf life of fruit juices and soft drinks. In The Stability and Shelf Life of Food; Elsevier Ltd.: Ludlow, VT, USA, 2016; pp. 347–374. ISBN 9780081004357. [Google Scholar]
- Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Van der Plancken, I.; Hendrickx, M.E.; Matser, A.M. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innov. Food Sci. Emerg. Technol. 2011, 12, 235–243. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W.; International, A. Official Methods of Analysis of AOAC International; CD-ROM; AOAC International: Gaithersburg, MA, USA, 2005. [Google Scholar]
- Bell, L.N.; Park, Y.W. Determination of moisture and ash Contents of Foods. In Handbook of Food Analysis; CRC Press: New York, NY, USA, 2004; pp. 55–82. ISBN 082475039X. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.S.; Monteiro, F.; Passos, C.P.; Silva, A.M.S.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food Res. Int. 2020, 132, 109055. [Google Scholar] [CrossRef]
- Pinto, C.; Moreira, S.A.; Fidalgo, L.G.; Santos, M.D.; Vidal, M.; Delgadillo, I.; Saraiva, J.A. Impact of different hyperbaric storage conditions on microbial, physicochemical and enzymatic parameters of watermelon juice. Food Res. Int. 2017, 99, 123–132. [Google Scholar] [CrossRef]
- Amarante, S.J.; Catarino, M.D.; Marçal, C.; Silva, A.M.S.; Ferreira, R.; Cardoso, S.M. Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus. Mar. Drugs 2020, 18, 559. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.; Cruz, M.T.; Mateus, N.; Silva, A.M.S.; Cardoso, S.M. Phlorotannins from fucus vesiculosus: Modulation of inflammatory response by blocking nf-κb signaling pathway. Int. J. Mol. Sci. 2020, 21, 6897. [Google Scholar] [CrossRef] [PubMed]
- Corbo, M.R.; Altieri, C.; D’Amato, D.; Campaniello, D.; Del Nobile, M.A.; Sinigaglia, M. Effect of temperature on shelf life and microbial population of lightly processed cactus pear fruit. Postharvest Biol. Technol. 2004, 31, 93–104. [Google Scholar] [CrossRef]
- Cansino, N.C.; Carrera, G.P.; Rojas, Q.Z.; Olivares, L.D.; García, E.A.; Moreno, E.R. Ultrasound Processing on Green Cactus Pear (Opuntia ficus Indica) Juice: Physical, Microbiological and Antioxidant Properties. J. Food Process. Technol. 2013, 4. [Google Scholar]
- Del Socorro Cruz-Cansino, N.; Ramírez-Moreno, E.; León-Rivera, J.E.; Delgado-Olivares, L.; Alanís-García, E.; Ariza-Ortega, J.A.; De Jesús Manríquez-Torres, J.; Jaramillo-Bustos, D.P. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment. Ultrason. Sonochem. 2015, 27, 277–286. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Karabagias, I.K.; Gatzias, I.; Riganakos, K.A. Characterization of prickly pear juice by means of shelf life, sensory notes, physicochemical parameters and bio-functional properties. J. Food Sci. Technol. 2019, 56, 3646–3659. [Google Scholar] [CrossRef]
- Madadi, E.; Mazloum-Ravasan, S.; Yu, J.S.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Therapeutic application of betalains: A review. Plants 2020, 9, 1219. [Google Scholar] [CrossRef]
- Cota-Sánchez, J.H. Nutritional Composition of the Prickly Pear (Opuntia ficus-indica) Fruit. In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2015; pp. 691–712. ISBN 9780124081178. [Google Scholar]
- Gurrieri, S.; Miceli, L.; Maria Lanza, C.; Tomaselli, F.; Bonomo, R.P.; Rizzarelli, E. Chemical characterization of sicilian prickly pear (Opuntia ficus indica) and perspectives for the storage of its juice. J. Agric. Food Chem. 2000, 48, 5424–5431. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Khatchadourian, H.A.; Safi, W.M.; Al-Muhammad, H.M. Chemical characterization of prickly pear pulp, Opuntia ficus-indica, and the manufacturing of prickly pear jam. Int. J. Food Sci. Technol. 1983, 18, 183–193. [Google Scholar] [CrossRef]
- Chandran, J.; Nisha, P.; Singhal, R.S.; Pandit, A.B. Degradation of colour in beetroot (Beta vulgaris L.): A kinetics study. J. Food Sci. Technol. 2014, 51, 2678–2684. [Google Scholar] [CrossRef] [Green Version]
- Herbach, M.K.; Stintzing, F.C.; Carle, R. Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhizus (Weber) Brittonv & Rose] monitored by high-performance liquid chromatography-tandem mass spectometric analyses. Eur. Food Res. Technol. 2004, 219, 377–385. [Google Scholar]
- Liu, F.; Zhang, X.; Zhao, L.; Wang, Y.; Liao, X. Potential of high-pressure processing and high-temperature/short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innov. Food Sci. Emerg. Technol. 2016, 34, 51–58. [Google Scholar] [CrossRef]
- Sadler, G.D.; Murphy, P.A. pH and Titratable Acidity. In Foan; Springer: Boston, MA, USA, 2010; pp. 219–238. [Google Scholar]
- Naraian, R.; Kumari, S. Microbial production of organic acids. In Progress in Industrial Microbiology; Elsevier Science: Amsterdam, The Netherlands, 1995; Volume 33, pp. 249–272. [Google Scholar]
- Palmeri, R.; Parafati, L.; Arena, E.; Grassenio, E.; Restuccia, C.; Fallico, B. Antioxidant and antimicrobial properties of semi-processed frozen prickly pear juice as affected by cultivar and harvest time. Foods 2020, 9, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Queirós, R.P.; Rainho, D.; Santos, M.D.; Fidalgo, L.G.; Delgadillo, I.; Saraiva, J.A. High pressure and thermal pasteurization effects on sweet cherry juice microbiological stability and physicochemical properties. High Press. Res. 2015, 35, 69–77. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Frígola, A. High Pressure Treatment Effect on Physicochemical and Nutritional Properties of Fluid Foods During Storage: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 307–322. [Google Scholar] [CrossRef]
- Teodorowicz, M.; van Neerven, J.; Savelkoul, H. Food processing: The influence of the Maillard Reaction on immunogenicity and allergenicity of food proteins. Nutrients 2017, 9, 835. [Google Scholar] [CrossRef] [Green Version]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef] [Green Version]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; de Bellis, L.; Blando, F. Betalains, phenols and antioxidant capacity in cactus pear [opuntia ficus-indica (L.) mill.] fruits from Apulia (South Italy) genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain stability and degradation—Structural and chromatic aspects. J. Food Sci. 2006, 71, 41–50. [Google Scholar] [CrossRef]
- Zhang, C.; Trierweiler, B.; Li, W.; Butz, P.; Xu, Y.; Rüfer, C.E.; Ma, Y.; Zhao, X. Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chem. 2011, 126, 254–260. [Google Scholar] [CrossRef]
- Sin, H.N.; Yusof, S.; Hamid, N.S.A.; Rahman, R.A. Optimization of enzymatic clarification of sapodilla juice using response surface methodology. J. Food Eng. 2006, 73, 313–319. [Google Scholar] [CrossRef]
- Queirós, R.P.; Santos, M.D.; Fidalgo, L.G.; Mota, M.J.; Lopes, R.P.; Inácio, R.S.; Delgadillo, I.; Saraiva, J.A. Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration. Food Chem. 2014, 147, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Eagerman, B.A.; Rouse, A.H. Heat Inactivation Temperature-Time Relationships for Pectinesterase Inactivation in Citrus Juices. J. Food Sci. 1976, 41, 1396–1397. [Google Scholar] [CrossRef]
- Kubo, M.T.K.; Augusto, P.E.D.; Cristianini, M. Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Res. Int. 2013, 51, 170–179. [Google Scholar] [CrossRef]
- Mgaya-Kilima, B.; Remberg, S.F.; Chove, B.E.; Wicklund, T. Influence of storage temperature and time on the physicochemical and bioactive properties of roselle-fruit juice blends in plastic bottle. Food Sci. Nutr. 2014, 2, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Dehbi, F.; Hasib, A.; Ouatmane, A.; Elbatal, H.; Jaouad, A. Physicochemical Characteristics of Moroccan Prickly Pear Juice (Opuntia ficus indica L.). Int. J. Emerg. Technol. Adv. Eng. 2005, 9001, 300–306. [Google Scholar]
- Okokon, E.J.; Okokon, E.O. Proximate analysis and sensory evaluation of freshly produced apple fruit juice stored at different temperatures and treated with natural and artificial preservatives. Glob. J. Pure Appl. Sci. 2019, 25, 31. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; Escobedo-Avellaneda, Z.; Martín-Belloso, O.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; García-García, R.; Torres, J.A.; Welti-Chanes, J. Effect of High Hydrostatic Pressure on the Content of Phytochemical Compounds and Antioxidant Activity of Prickly Pears (Opuntia ficus-indica) Beverages. Food Eng. Rev. 2015, 7, 198–208. [Google Scholar] [CrossRef]
- Eroglu, E.C.; Arslan, R.; Güleç, A.; Aksay, S. Determination of physical and phytochemical properties of prickly pear (Opuntia ficus-indica L.). J. Food Process. Preserv. 2021, e15990. [Google Scholar] [CrossRef]
- Bulegon, R.; de Almeida Gomes, G.; Rigo, E. Influence of the Pasteurization Conditions on Sugarcane Juice Packaged in Glass Packaging. Rev. Congr. Bras. Eng. Aliment. 2019, 4, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Pünsch, M.; Venir, E. Effect of processing and storage on the quality of beetroot and apple mixed juice. Foods 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Maria de Fátima, D.L.; Alves Filho, E.G.; Silva, L.M.A.; Fonteles, T.V.; Wurlitzer, N.J.; de Brito, E.S.; Fernandes, F.A.N.; Rodrigues, S. Thermal and non-thermal processing effect on açai juice composition. Food Res. Int. 2020, 136, 109506. [Google Scholar]
- De Roeck, A.; Sila, D.N.; Duvetter, T.; Van Loey, A.; Hendrickx, M. Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chem. 2008, 107, 1225–1235. [Google Scholar] [CrossRef]
- Wei, H.; He, C.; Zhang, S.; Xiong, H.; Ni, H.; Li, Q. Effects of four storage conditions on the sugar content, acidity, and flavor of “Guanxi” honey pomelo. J. Food Process. Preserv. 2021, 45, e15088. [Google Scholar] [CrossRef]
- Belitz, H.; Grosh, W. Food Chemistry, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 53, ISBN 9788578110796. [Google Scholar]
- Pimienta-Barrios, E. Prickly pear (Opuntia spp.): A valuable fruit crop for the semi-arid lands of Mexico. J. Arid Environ. 1994, 28, 1–11. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC-DAD-ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef]
- Tokuşoǧlu, Ö. Effect of high hydrostatic pressure processing strategies on retention of antioxidant phenolic bioactives in foods and beverages—A review. Pol. J. Food Nutr. Sci. 2016, 66, 243–251. [Google Scholar] [CrossRef]
- Chen, C.; Chang, M.; Huang, S. Effects of storage time and temperature on antioxidants in juice from Momordica charantia L. and Momordica charantia L. var. abbreviata Ser. Molecules 2020, 25, 3614. [Google Scholar]
- Chavez-Santoscoy, R.A.; Gutierrez-Uribe, J.A.; Serna-Saldívar, S.O. Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum. Nutr. 2009, 64, 146–152. [Google Scholar] [CrossRef]
- Techakanon, C.; Sirimuangmoon, C. The Effect of Pasteurization and Shelf Life on the Physicochemical, Microbiological, Antioxidant, and Sensory Properties of Rose Apple Cider during Cold Storage. Beverages 2020, 6, 43. [Google Scholar] [CrossRef]
- Wang, L.; Deng, W.; Wang, P.; Huang, W.; Wu, J.; Zheng, T.; Chen, J. Degradations of aroma characteristics and changes of aroma related compounds, PPO activity, and antioxidant capacity in sugarcane juice during thermal process. J. Food Sci. 2020, 85, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, N.A.F.; Hazmi, N.A.M.; How, M.S.; Kantono, K.; Silva, F.V.M.; Sulaiman, A. Thermal, High Pressure, and Ultrasound Inactivation of Various Fruit Cultivars’ Polyphenol Oxidase: Kinetic Inactivation Models and Estimation of Treatment Energy Requirement. Appl. Sci. 2022, 12, 1864. [Google Scholar] [CrossRef]
- Houška, M.; Silva, F.V.M.; Evelyn; Buckow, R.; Terefe, N.S.; Tonello, C. High Pressure Processing Applications in Plant Foods. Foods 2022, 11, 223. [Google Scholar] [CrossRef] [PubMed]
- Chisari, M.; Barbagallo, R.N.; Spagna, G. Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit. J. Agric. Food Chem. 2007, 55, 3469–3476. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.R.; Förch, K.; Neidhart, S.; Wolf, G.; Carle, R. Effects of thermal treatments and storage on pectin methylesterase and peroxidase activity in freshly squeezed orange juice. J. Agric. Food Chem. 2008, 56, 5691–5699. [Google Scholar] [CrossRef]
- Pérez-Lamela, C.; Franco, I.; Falqué, E. Impact of high-pressure processing on antioxidant activity during storage of fruits and fruit products: A review. Molecules 2021, 26, 5265. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; García-Pastor, M.E.; Valero, D.; Amorós, A.; Almansa, M.S.; Legua, P.; Hernández, F. Influence of storage on physiological properties, chemical composition, and bioactive compounds on cactus pear fruit (Opuntia ficus-indica (l.) mill.). Agriculture 2021, 11, 62. [Google Scholar] [CrossRef]
- Gonzalez, M.E.; Barrett, D.M. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J. Food Sci. 2010, 75, R121–R130. [Google Scholar] [CrossRef]
Moisture (%) | Ash (%) | Total Dietary Fiber (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
‘Rossa’ | ‘Gialla’ | ‘Bianca’ | ‘Rossa’ | ‘Gialla’ | ‘Bianca’ | ‘Rossa’ | ‘Gialla’ | ‘Bianca’ | ||
NP | t0 | 87.24 ± 0.02 | 86.73 ± 0.01 | 87.92 ± 0.0 | 0.559 ± 0.004 | 0.548 ± 0.003 | 0.597 ± 0.002 | 17.33 ± 0.03 | 17.39 ± 0.04 | 17.46 ± 0.02 |
t3 | 87.29 ± 0.01 | 86.81 ± 0.02 | 87.85 ± 0.02 | 0.501 ± 0.003 | 0.521 ± 0.002 | 0.556 ± 0.006 | 17.15 ± 0.07 | 17.12 ± 0.09 | 17.35 ± 0.01 | |
t5 | 87.31 ± 0.03 | 86.75 ± 0.01 | 87.79 ± 0.03 | 0.445 ± 0.003 | 0.499 ± 0.003 | 0.523 ± 0.001 | 17.04 ± 0.03 | 17.05 ± 0.02 | 17.34 ± 0.03 | |
TP | t0 | 87.13 ± 0.01 | 87.01 ± 0.08 | 88.23 ± 0.02 | 0.470 ± 0.005 | 0.586 ± 0.009 | 0.582 ± 0.007 | 17.29 ± 0.01 | 17.41 ± 0.02 | 17.45 ± 0.06 |
t8 | 86.98 ± 0.03 | 86.92 ± 0.03 | 88.19 ± 0.05 | 0.452 ± 0.002 | 0.573 ± 0.002 | 0.563 ± 0.002 | 17.28 ± 0.05 | 17.29 ± 0.03 | 17.29 ± 0.03 | |
t15 | 87.03 ± 0.03 | 86.89 ± 0.06 | 87.99 ± 0.04 | 0.439 ± 0.001 | 0.561 ± 0.005 | 0.560 ± 0.003 | 17.03 ± 0.02 | 17.21 ± 0.07 | 17.14 ± 0.01 | |
t30 | 87.21 ± 0.06 | 87.03 ± 0.02 | 88.07 ± 0.02 | 0.416 ± 0.006 | 0.518 ± 0.002 | 0.542 ± 0.005 | 16.81 ± 0.01 | 17.03 ± 0.01 | 16.99 ± 0.02 | |
HPP | t0 | 87.23 ± 0.04 | 87.00 ± 0.01 | 88.05 ± 0.04 | 0.546 ± 0.004 | 0.610 ± 0.003 | 0.568 ± 0.001 | 17.23 ± 0.04 | 17.35 ± 0.01 | 17.49 ± 0.06 |
t8 | 87.38 ± 0.01 | 86.94 ± 0.02 | 88.12 ± 0.05 | 0.525 ± 0.002 | 0.595 ± 0.002 | 0.542 ± 0.002 | 17.18 ± 0.08 | 17.21 ± 0.03 | 17.33 ± 0.03 | |
t15 | 87.12 ± 0.02 | 87.06 ± 0.01 | 87.93 ± 0.03 | 0.515 ± 0.005 | 0.580 ± 0.008 | 0.519 ± 0.002 | 17.02 ± 0.02 | 17.09 ± 0.07 | 17.17 ± 0.05 | |
t30 | 87.22 ± 0.03 | 86.85 ± 0.06 | 87.89 ± 0.05 | 0.481 ± 0.006 | 0.572 ± 0.006 | 0.503 ± 0.002 | 16.92 ± 0.05 | 16.95 ± 0.06 | 17.05 ± 0.01 | |
t45 | 86.41 ± 0.06 | 87.02 ± 0.02 | 88.06 ± 0.06 | 0.460 ± 0.006 | 0.564 ± 0.001 | 0.491 ± 0.009 | 16.63 ± 0.02 | 16.81 ± 0.02 | 16.92 ± 0.06 |
RT (min) | λmax | [M-H]− (m/z) | MS/MS (m/z) | Identification |
---|---|---|---|---|
1.5 | 245 | 191 | 209 | Quinic acid |
1.5 | 204, 242 | 133 | 115, 133 | Malic acid |
1.8 | 206, 253 | 191 | 111, 173 | Citric acid |
3.7 | 224, 274 | 255 | 165, 193 | Piscidic acid |
6.3 | 219, 278 | 253 | 177 | Not identified |
8.6 | 224, 272 | 239 | 179, 149 | Eucomic acid |
10.8 | 229, 270 | 613 | 405 | Syrinigil (t8-O-4) guaiacyl |
11.4 | 254, 352 | 769 | 315, 338 | Isorhamnetin glucosyl-di-rhamnoside |
11.5 | 254, 352 | 755 | 315 | Isorhamnetin pentosyl-rutinoside |
12.1 | 251, 351 | 609 | 315, 314 | Isorhamnetin pentosyl-hexoside |
12.7 | 254, 345 | 623 | 315 | Isorhamnetin-rutinoside |
PPO | PME (VNaOH/min/mL) | POD (U/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
‘Rossa’ | ‘Gialla’ | ‘Bianca’ | ‘Rossa’ | ‘Gialla’ | ‘Bianca’ | ‘Rossa’ | ‘Gialla’ | ‘Bianca’ | ||
NP | t0 | 0.679 | 0.654 | 0.631 | 0.477 | 0.452 | 0.433 | 0.195 | 0.186 | 0.179 |
t3 | 0.676 | 0.651 | 0.628 | 0.455 | 0.431 | 0.413 | 0.186 | 0.177 | 0.171 | |
t5 | 0.660 | 0.633 | 0.611 | 0.422 | 0.400 | 0.383 | 0.172 | 0.164 | 0.158 | |
TP | t0 | 0.432 | 0.412 | 0.401 | 0.104 | 0.088 | 0.079 | 0.029 | 0.021 | 0.019 |
t8 | 0.430 | 0.410 | 0.399 | 0.099 | 0.083 | 0.075 | 0.026 | 0.018 | 0.017 | |
t15 | 0.422 | 0.399 | 0.388 | 0.092 | 0.079 | 0.071 | 0.024 | 0.017 | 0.015 | |
t30 | 0.419 | 0.389 | 0.376 | 0.087 | 0.073 | 0.066 | 0.019 | 0.014 | 0.011 | |
HPP | t0 | 0.419 | 0.400 | 0.386 | 0.075 | 0.066 | 0.054 | 0.018 | 0.016 | 0.015 |
t8 | 0.411 | 0.392 | 0.375 | 0.070 | 0.062 | 0.050 | 0.013 | 0.012 | 0.011 | |
t15 | 0.402 | 0.381 | 0.368 | 0.066 | 0.058 | 0.047 | 0.012 | 0.011 | 0.010 | |
t30 | 0.385 | 0.377 | 0.359 | 0.061 | 0.053 | 0.043 | 0.011 | 0.010 | 0.009 | |
t45 | 0.374 | 0.371 | 0.349 | 0.056 | 0.049 | 0.040 | 0.010 | 0.009 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.M.; Amaral, R.A.; Silva, A.M.S.; Cardoso, S.M.; Saraiva, J.A. Effect of High-Pressure and Thermal Pasteurization on Microbial and Physico-Chemical Properties of Opuntia ficus-indica Juices. Beverages 2022, 8, 84. https://doi.org/10.3390/beverages8040084
Ferreira RM, Amaral RA, Silva AMS, Cardoso SM, Saraiva JA. Effect of High-Pressure and Thermal Pasteurization on Microbial and Physico-Chemical Properties of Opuntia ficus-indica Juices. Beverages. 2022; 8(4):84. https://doi.org/10.3390/beverages8040084
Chicago/Turabian StyleFerreira, Ricardo M., Renata A. Amaral, Artur M. S. Silva, Susana M. Cardoso, and Jorge A. Saraiva. 2022. "Effect of High-Pressure and Thermal Pasteurization on Microbial and Physico-Chemical Properties of Opuntia ficus-indica Juices" Beverages 8, no. 4: 84. https://doi.org/10.3390/beverages8040084
APA StyleFerreira, R. M., Amaral, R. A., Silva, A. M. S., Cardoso, S. M., & Saraiva, J. A. (2022). Effect of High-Pressure and Thermal Pasteurization on Microbial and Physico-Chemical Properties of Opuntia ficus-indica Juices. Beverages, 8(4), 84. https://doi.org/10.3390/beverages8040084