Preliminary Study of the Effect of Short Maceration with Cherry and Oak Wood Chips on the Volatile Composition of Different Craft Beers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Craft Beers and Wood Chip Species
2.2. Experimental Conditions
2.3. Beer Volatile Compound Profile
2.4. Statistical Analysis
3. Results and Discussion
3.1. Volatile Fingerprint of Craft Beers
3.1.1. Alcohols
3.1.2. Esters
3.1.3. Acids
3.1.4. Aldehydes
3.1.5. Ketones
3.1.6. Terpenes
3.1.7. Furfural, Pyrazines, and Other Compounds
3.2. PCA Applied to the Volatile Characterization of Craft Beers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baiano, A. Craft beer: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 20, 1829–1856. [Google Scholar] [CrossRef] [PubMed]
- Inui, T.; Tsuchiya, F.; Ishimaru, M.; Oka, K.; Komura, H. Different beers with different hops. Relevant compounds for their aroma characteristics. J. Agric. Food Chem. 2013, 61, 4758–4764. [Google Scholar] [CrossRef] [PubMed]
- Callejo, N.J.; Tesfaye, W.; González, M.; Morata, A. Craft Beers: Current situation and future trends. In New Advances on Fermentation Processes; Martinez-Espinosa, R.M., Ed.; Intech Open: London, UK, 2019. [Google Scholar] [CrossRef]
- Palamand, S.R.; Aldenhoff, J.M. Bitter tasting compounds of beer: Chemistry and taste properties of some hop resin compounds. J. Agric. Food Chem. 1973, 21, 535–543. [Google Scholar] [CrossRef]
- Castro, F.; Ross, C.F.; Vixie, K.R. Optimization of a solid phase dynamic extraction (SPDE) method for beer volatile profiling. Food Anal. Methods 2015, 8, 2115–2124. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavor-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Kishimoto, T.; Noba, S.; Yako, N.; Kobayashi, M.; Watanabe, T. Simulation of Pilsner-type beer aroma using 76 odor-active compounds. J. Biosci. Bioeng. 2018, 126, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer volatile fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Shimizu, H.; Shioya, S. Review: Beer volatile compounds and their application to low-malt beer fermentation. J. Biosci. Bioeng. 2008, 106, 317–323. [Google Scholar] [CrossRef]
- Coelho, E.; Magalhães, J.; Pereira, F.B.; Macieira, F.; Domingues, L.; Oliveira, J.M. Volatile fingerprintig differentiates diverse-aged craft beers. LWT—Food Sci. Technol. 2019, 108, 129–136. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O.; Mullen, W.; Crozier, A. Effect of ellagitannins, ellagic acid and some volatile compounds from oak wood on the (+)-catechin, procyanidin B1 and malvidin-3-glucoside content of model wine solutions. Aust. J. Grape Wine Res. 2008, 14, 260–270. [Google Scholar] [CrossRef]
- Jordão, A.M.; Lozano, V.; González-SanJosé, M.L. Influence of different wood chip extracts species on color changes and anthocyanin content in synthetic wine solutions. Foods 2019, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Correia, A.C.; Ortega-Heras, M.; García-Lomillo, J.; González-SanJosé, M.L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Acacia, cherry and oak wood chips used on a short aging period of rosé wines: Effects on general phenolic parameters, volatile composition and sensory profile. J. Sci. Food Agric. 2019, 99, 3588–3603. [Google Scholar] [CrossRef] [PubMed]
- Setzer, W.N. Volatile components of oak and cherry wood chips used in aging of beer, wine, and sprits. Am. J. Essent. Oil. Nat. Prod. 2016, 4, 37–40. [Google Scholar]
- Wyler, P.; Angeloni, L.H.P.; Alcarde, A.R.; Cruz, S.H. Effect of oak wood on the quality of beer. J. Inst. Brew. 2015, 121, 62–69. [Google Scholar] [CrossRef]
- Sanna, V.; Pretti, L. Effect of wine barrel ageing or sapa addition on total polyphenol content and antioxidant activities of some Italian craft beers. Int. J. Food Sci. Technol. 2015, 50, 700–707. [Google Scholar] [CrossRef]
- Guimarães, B.P.; Neves, L.E.P.; Guimarães, M.G.; Ghesti, G.F. Evaluation of maturation congeners in beer aged with Brazilian woods. J. Brew. Distilling 2020, 9, 1–7. [Google Scholar] [CrossRef]
- Sterckx, F.L.; Saison, D.; Delvaux, F.R. Wood aging of beer. Part I: Influence on beer flavor and monophenol concentrations. J. Am. Soc. Brew. Chem. 2012, 70, 55–61. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Buttery, R.G.; Guadagni, D.G.; Ling, L.C. Volatile aroma components of cooked artichoke. J. Agric. Food Chem. 1978, 26, 791–793. [Google Scholar] [CrossRef]
- Van Aardt, M.; Duncan, S.E.; Marcy, J.E.; O’Keefe, S.F.; Long, T.E.; Nielsen-Sims, S.R. Aroma analysis of light-exposed milk stored with and without natural and synthetic antioxidants. J. Dairy Sci. 2005, 88, 881–890. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, M.; Ouyang, Y.; Zhao, X.; Ju, Y.; Fang, Y. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area. Food Nutr. Res. 2015, 59, 29290. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.S.; Shewfelt, R.L.; Lee, K.-S.; Kays, S.J. Comparison of odor-active compounds from six distinctly different rice flavor types. J. Agric. Food Chem. 2008, 56, 2780–2787. [Google Scholar] [CrossRef] [PubMed]
- Meilgaard, M. Flavor chemistry of beer: Part II: Flavor threshold of 239 aroma volatiles. Tech. Q. Master Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Li, H.; Tao, Y.; Wang, H.; Zhang, L. Impact odorants of Chardonnay dry white wine from Changli County (China). Eur. Food Res. Technol. 2008, 227, 287–292. [Google Scholar] [CrossRef]
- Neiens, S.D.; Steinhaus, M. Odor-active compounds in the special flavor hops huell melon and polaris. J. Agric. Food Chem. 2018, 66, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Witrick, K.A.; Rouseff, R.L.; Cadawallader, K.R.; Duncan, S.E.; Eigel, W.E.; Tanko, J.M.; O’Keefe, S.F. Comparison of two extraction techniques, solid-phase microextraction versus continuous liquid-liquid extraction/solvent-assisted flavor evaporation, for the analysis of flavor compounds in gueuze lambic beer. J. Food Sci. 2015, 80, C571–C576. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Wójtowski, J.; Pikul, J.; Danków, R.; Majcher, M.; Teichert, J.; Bagnicka, E. The effect of unsaturated fatty acid concentration on the aroma profile of goat’s milk. Ann. Anim. Sci. 2019, 19, 483–498. [Google Scholar] [CrossRef]
- Reyes-Díaz, R.; González-Córdova, A.F.; Estrada-Montoya, M.C.; José, I.; Méndez-Romero, J.I.; Mazorra-Manzano, M.A.; Herlinda Soto-Valdez, H.; Vallejo-Cordoba, B. Volatile and sensory evaluation of Mexican Fresco cheese as affected by specific wild Lactococcus lactis strains. J. Dairy Sci. 2020, 103, 242–253. [Google Scholar] [CrossRef]
- Dong-Hyun, L.; Bo-Sik, K.; Hyun-Jin, P. Effect of oxygen on volatile and sensory characteristics of Cabernet Sauvignon during secondary shelf life. J. Agric. Food Chem. 2011, 59, 11657–11666. [Google Scholar] [CrossRef]
- Etiévant, P. Wine. In Volatile Compounds in Food and Beverages; Maarse, H., Ed.; Marcell Dekker Inc.: New York, NY, USA, 1991; pp. 483–545. [Google Scholar] [CrossRef]
- Cortés-Diéguez, S.; Rodriguez-Solana, R.; Domínguez, J.M.; Díaz, E. Impact odorants and sensory profile of young red wines from four Galician (NW of Spain) traditional cultivars. J. Inst. Brew. 2015, 121, 628–635. [Google Scholar] [CrossRef]
- Schreier, P.; Parochy, J.H. Volatile constituents from Concord, Niagara (Vitis labrusca, L.) and Elvira (V. labrusca, L. × V. riparia, M.) grapes. Can. Inst. Food Sci. Technol. J. 1981, 14, 112–118. [Google Scholar] [CrossRef]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatograpgy–olfactory and chemical qualitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Opstaele, F.V.; De Causmaecker, B.; Aerts, G.; De Cooman, L. Characterization of novel varietal floral hop aromas by headspace solid phase microextraction and gas chromatography-mass spectrometry/olfactometry. J. Agric. Food Chem. 2012, 60, 12270–12281. [Google Scholar] [CrossRef] [PubMed]
- Gilardoni, G.; Montalván, M.; Ortiz, M.; Vinueza, D.; Montesinos, J.V. The flower essential oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, enantioselective, and olfactometric analyses. Plants 2020, 9, 1403. [Google Scholar] [CrossRef] [PubMed]
- Vuerich, M.; Ferfuia, C.; Zuliani, F.; Piani, B.; Sepulcri, A.; Baldini, M. Yield and quality of essential oils in hemp varieties in different environments. Agronomy 2019, 9, 356. [Google Scholar] [CrossRef]
- Gobato, R.; Gobato, A.; Fedrigo, D.F.G. Molecular electrostatic potential of the mainmonoterpenoids compounds found in oil LemonTahiti—(Citrus Latifolia Var Tahiti). Parana J. Sci. Educ. 2015, 1, 1–10. [Google Scholar]
- Aisala, H.; Sola, J.; Hopia, A.; Linderborg, K.M.; Sandell, M. Odor-contributing volatile compounds of wild edible Nordic mushrooms analyzed with HS-SPME-GC-MS and HS-SPME-GC-O/FID. Food Chem. 2019, 283, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.C.; Oliveira, D.S.; Hantao, L.W. Bottom-up approach for data mining in bioaromatization of beers using flow-modulated comprehensive two-dimensional gas chromatography/mass spectrometry. Separations 2019, 6, 46. [Google Scholar] [CrossRef]
- Tandon, K.S.; Baldwin, E.A.; Shewfelt, R.L. Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum, Mill.) as affected by the medium of evaluation. Postharvest Biol. Technol. 2000, 20, 261–268. [Google Scholar] [CrossRef]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Unveiling the lager beer volatile terpenic compounds. Food Res. Int. 2018, 114, 199–207. [Google Scholar] [CrossRef]
- Praet, T.; Opstaele, F.V.; Steenackers, B.; De Vos, D.; Aerts, G.; De Cooman, L. Flavor activity of sesquiterpene oxidation products, formed upon lab-scale Boiling of a hop essential oil–derived sesquiterpene hydrocarbon fraction (cv. Saaz). J. Am. Soc. Brew. Chem. 2016, 74, 65–76. [Google Scholar] [CrossRef]
- Gong, X.; Han, Y.; Zhu, J.-C.; Hong, L.; Zhu, D.; Liu, J.-H.; Zhang, X.; Niu, Y.-W.; Xiao, Z.-B. Identification of the aroma-active compounds in Longjing tea characterized by odor activity value, gas chromatography- olfactometry, and aroma recombination. Int. J. Food Prop. 2017, 20, S1107–S1121. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, J.; Wang, L.; Li, Z. Development of a SPME-GC-MS method for the determination of volatile compounds in Shanxi aged vinegar and its analytical characterization by aroma wheel. J. Food Sci. Technol. 2016, 53, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Xu, Y.; Jiang, W.; Li, J. Identification and quantification of impact aroma compounds in 4 nonfloral Vitis vinífera varieties grapes. J. Food Sci. 2010, 75, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Scholtes, C.; Nizet, S.; Collin, S. Guaiacol and 4-methylphenol as specific markers of torrefied malts. Fate of volatile phenols in special beers through aging. J. Agric. Food Chem. 2014, 62, 9522–9528. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Liu, S.; Gu, Y.; Xu, N.; Shang, Y.; Xhu, J. Discrimination of cherry wines based on their sensory properties and aromatic finger printing using HS-SPME-GC-MS and multivariate analysis. J. Food Sci. 2014, 79, C284–C294. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.E.; Boulton, C.A.; Brookes, P.A.; Stevens, R. Brewing. In Science and Practice, 1st ed.; CRC Press: Boca Ratón, FL, USA, 2004. [Google Scholar] [CrossRef]
- Eshkol, N.; Sendovski, M.; Bahalul, M.; Katz-Ezov, T.; Kashi, Y.; Fishman, A. Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J. Appl. Microbiol. 2009, 106, 534–542. [Google Scholar] [CrossRef]
- Del-Barrio-Galán, R.; Ortega-Heras, M.; Sánchez-Iglesias, M.; Pérez-Magariño, S. Interactions of phenolic and volatile compounds with yeast lees, commercial yeast derivatives and non toasted chips in model solutions and young red wines. Eur. Food Res. Technol. 2012, 234, 231–244. [Google Scholar] [CrossRef]
- Alarcón, M.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Isolation of natural flavoring compounds from cooperage woods by pressurized hot water extraction (PHWE). Holzforschung 2018, 73, 295–303. [Google Scholar] [CrossRef]
- Coelho, E.; Teixeira, J.A.; Tavares, T.; Domingues, L.; Oliveira, J.M. Reuse of oak chips for modification of the volatile fraction of alcoholic beverages. LWT—Food Sci. Technol. 2021, 135, 110046. [Google Scholar] [CrossRef]
- Dennenlöh, J.; Thörner, S.; Manowski, A.; Rettberg, N. Analysis of selected hop aroma compounds in commercial lager and craft beers using HS-SPME-GC-MS/MS. J. Am. Soc. Brew. Chem. 2020, 78, 16–31. [Google Scholar] [CrossRef]
- Farrell, R.R.; Wellinger, M.; Gloess, A.N.; Nichols, D.S.; Breadmore, M.C.; Shelli, R.A.; Yeretizan, C. Real-time mass spectrometry monitoring of oak wood toasting: Elucidating aroma development relevant to oak-aged wine quality. Sci. Rep. 2015, 5, 17334. [Google Scholar] [CrossRef] [PubMed]
- Lodolo, E.J.; Kock, J.L.F.; Axcell, B.C.; Brooks, M. The yeast Saccharomyces cerevisiae–the main character in beer brewing. FEMS Yeast Res. 2008, 8, 1018–1036. [Google Scholar] [CrossRef] [PubMed]
- Baert, J.J.; De Clippeleer, J.; Hughes, P.S.; De Cooman, L.; Guido-Aerts, G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar] [CrossRef] [PubMed]
- Ruvalcaba, J.E.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Development of a stir bar sorptive extraction method to study different beer styles volatile profiles. Food Res. Int. 2019, 326, 108680. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Nam, P.W.; Lee, S.J.; Lee, K.G. Volatile compounds isolated from rice beers brewed with three medicinal plants. J. Inst. Brew. 2013, 119, 271–279. [Google Scholar] [CrossRef]
- Browning, M. The effects of temperature on major beer compounds during barrel maturation. Master Brew. Assoc. Am. 2014, 51, 12–18. [Google Scholar] [CrossRef]
- Tarko, T.; Krankowski, F.; Duda-Chodak, A. The Impact of compounds extracted from wood on the quality of alcoholic beverages. Molecules 2023, 28, 620. [Google Scholar] [CrossRef]
- King, A.J.; Dickinson, J.R. Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res. 2003, 3, 53–62. [Google Scholar] [CrossRef]
- Jordão, A.M.; Lozano, V.; Correia, A.C.; Ortega-Heras, M.; González-SanJosé, M.L. Comparative analysis of volatile and phenolic composition of alternative wood chips from cherry, acacia and oak for potential use in enology, 39th World Congress of Vine and Wine. In Proceedings of the BIO Web of Conferences, Bento Gonçalves, Brazil, 24–28 October 2016; Volume 7, p. 02012. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verstrepen, K.J.; Freddy, R.; Delvaux, F.R.; Verachtert, H.; Derdelinckx, G. Influence of the brewing process on furfuryl ethyl ether formation during beer aging. J. Agric. Food Chem. 2004, 52, 6755–6764. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. J. Agric. Food Chem. 2009, 57, 5823–5831. [Google Scholar] [CrossRef]
- Vandecan, S.M.G.; Daems, N.; Schouppe, N.; Saison, D.; Delvaux, F.R. Formation of flavor, color, and reducing power during the production process of dark specialty malts. J. Am. Soc. Brew. Chem. 2011, 69, 150–157. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Miró, P.; Serra-Cayuela, A.; Buxaderas, S.; López-Tamames, E. Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC-MS. Food Res. Int. 2014, 57, 196–202. [Google Scholar] [CrossRef]
- Tokita, K.; Takazumi, K.; Oshima, T.; Shigyo, T. A new method for analyzing the characteristic flavor of beer using selectable one-dimensional or two-dimensional gas chromatography-olfactometry/mass spectrometry. J. Am. Soc. Brew. Chem. 2014, 72, 154–161. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Torrea-Goñi, D.; Ancín-Azpilicueta, A. Accumulation of volatile compounds during ageing of two red wines with different composition. J. Food Eng. 2004, 65, 349–356. [Google Scholar] [CrossRef]
- Peng, S.; Scalbert, A.; Monties, B. Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry 1991, 30, 775–778. [Google Scholar] [CrossRef]
Volatile Compounds | Sensorial Odor Descriptors | References |
---|---|---|
Alcohols | ||
2-Methyl-1-propanol | Malty | [6,19] |
1-Octen-3-ol | Mushroom | [20] |
1-Heptanol | Violet, herbal | [21] |
2-Nonanol | Fruity, rose | [22] |
1-Octanol | Nuts, coconut, oily | [10] |
1-Nonanol | Fatty | [23] |
Phenethyl ethanol | Flowery, honey | [19] |
Ethyl esters | ||
Hexanoic acid ethyl ester | Rancid, fatty, fruity | [24] |
Decanoic acid ethyl ester | Rancid, waxy, soap | [24] |
Dodecanoic acid ethyl ester | Metallic, fatty | [25] |
Heptanoic acid ethyl ester | Sweaty, fruity | [26] |
Octanoic acid ethyl ester | Sweaty, fatty | [24] |
Nonanoic acid ethyl ester | Sweaty, fruity | [27] |
Tetradecanoic acid ethyl ester | Fatty, soapy, waxy | [28] |
Trans-4-decenoic ethyl acid | Fruity | [29] |
9-Decenoic acid ethyl ester | Rancid, sweaty | [7] |
Undecanoic acid ethyl ester | Bitterness, dairy | [30] |
Benzoic acid ethyl ester | Chemical | [31] |
Diethyl succinate | Vinous, floral | [32] |
Acetates | ||
Ethyl acetate | Pineapple, fruity | [33] |
Isoamyl acetate | Banana, apple, solvent | [24] |
Phenylethyl acetate | Floral, pleasant | [34] |
Acids | ||
Acetic acid | Sour, vinegar, pungent | [26] |
Hexanoic acid | Rancid, fatty | [24] |
2,5-Dimetil, 4-hexenoic acid | ---- | ---- |
Octanoic acid | Sweaty, fatty | [24] |
Decanoic acid | Rancid, waxy, soap | [24] |
Aldehydes | ||
Octanal | Fatty, orange, lemon | [26] |
Nonanal | Citrus-like, fatty | [26] |
Decanal | Sweet, green, fruity | [35] |
Ketones | ||
6-Methyl-5-hepten-2-one | Fruity | [8] |
2-Undecanone | Fruity | [8] |
Terpenes | ||
2-β-Pinene | Woody | [36] |
Δ-3-Carene | Resin, sweet, lemon | [37] |
β-Phellandrene | Mint | [37] |
DL-Limonene | Lemon, citric | [38] |
Eucalyptol | Mint, pepper | [39] |
β-Ocimene | Herb, sweet | [37] |
Linalool | Aniseed, lemon | [10] |
α-Humulene | Herbal, woody | [2,40] |
β-Citronellol | Flowery | [10] |
Geranyl acetone | Fruity | [41] |
β-Caryophyllene | Spice, citrus | [8] |
Cis-Calamenene | Herb, clove | [26] |
Δ-Cadinene | Wood, herbaceous | [42] |
Cadalene | Spicy | [43] |
Furfuryl derivates | ||
Furfural | Bread, almond, sweet | [7] |
2-Acetylfuran | Peanut, sweet | [44] |
2-Furanmeethanol (furfuryl alcohol) | Hay, moldy | [10] |
Pyrazines | ||
2-Methyl pyrazine | Cocoa, roasted | [45] |
3-Ethyl-2,6-dimethyl-pyridine | Earth, nutty | [7] |
Other compounds | ||
p-Allyl anisole | Spicy, anise | [46] |
Eugenol | Spicy, medicinal | [47] |
2-Acetylpyrrole | Nutty, herbal | [44] |
Methoxy phenyl oxime | Green, bitter | [48] |
Acetoin | Mushroom, sweet | [45] |
Compounds (†) | Craft Beer Types | |||||
---|---|---|---|---|---|---|
Ale | Lager | Porter | ||||
Ale | Ale + Ch | Lager | Lager + Ch | Porter | Porter + Oak | |
Alcohols | ||||||
Higher | ||||||
2-Methyl-1-propanol | 6.45 × 106 b * ±1.13 × 106 (17.5%) (††) | 3.80 × 106 b ±1.21 × 105 (3.2%) | 2.37 × 106 b * ±6.35 × 105 (26.8%) | 3.54 × 106 b ±2.57 × 105 (7.3%) | 1.42 × 107 a ±2.41 × 106 (16.9%) | 1.20 × 107 a ±2.74 × 106 (22.9%) |
>C6 Alcohols | ||||||
1-Octen-3-ol | 6.74 × 105 d ±7.14 × 104 (10.6%) | 8.48 × 105 c ±8.62 × 104 (10.2%) | 1.44 × 106 a *** ±1.06 × 105 (7.3%) | 9.58 × 105 c ±6.18 × 104 (6.5%) | 1.18 × 106 b *** ±3.42 × 104 (2.9%) | 9.05 × 105 c ±3.11 × 104 (3.4%) |
1-Heptanol | 6.27 × 105 c ±1.30 × 105 (20.8%) | 7.63 × 105 c ±1.61 × 104 (2.1%) | 1.05 × 106 b ** ±5.28 × 104 (5.%) | 8.13 × 105 c ±6.23 × 104 (7.7%) | 1.40 × 106 a ** ±1.01 × 105 (7.3%) | 1.04 × 106 b ±4.51 × 104 (4.3%) |
2-Nonanol | 6.77 × 105 b * ±7.13 × 104 (10.5%) | 2.74 × 105 c ±1.28 × 104 (4.7%) | 1.39 × 106 a ** ±2.23 × 105 (16.0%) | 8.35 × 105 b ±2.72 × 104 (3.3%) | 3.24 × 105 c ±3.99 × 104 (12.3%) | 3.05 × 105 c ±2.89 × 104 (9.5%) |
1-Octanol | 2.76 × 106 a,b ±3.57 × 105 (12.9%) | 2.31 × 106 b ±5.17 × 104 (2.2%) | 1.75 × 106 c * ±1.64 × 105 (9.3%) | 1.37 × 106 c ±1.40 × 105 (10.2%) | 3.14 × 106 a * ±1.33 × 105 (4.2%) | 2.51 × 106 b ±4.16 × 105 (16.6%) |
1-Nonanol | n.q. | 2.24 × 106 a ±1.15 × 105 (5.1%) | n.q. | 1.39 × 106 b ±2.49 × 105 (18.0%) | 1.85 × 106 a,b ±4.28 × 105 (23.2%) | 1.41 × 106 b ±1.61 × 105 (11.4%) |
Total average peak area >C6 Alcohols | 4.06 × 106 d *** ±2.90 × 105 (7.1%) | 6.44 × 106 b ±5.21 × 104 (0.8%) | 5.63 × 106 c ±4.47 × 105 (7.9%) | 5.36 × 106 c ±3.87 × 105 (7.2%) | 7.88 × 106 a ** ±4.56 × 105 (5.8%) | 5.82 × 106 c,b ±6.03 × 105 (10.3%) |
Aromatic | ||||||
Phenethyl ethanol | 1.14 × 108 b ±5.91 × 106 (5.2%) | 1.16 × 108 b ±3.27 × 106 (2.8%) | 1.02 × 108 b ** ±4.02 × 106 (3.9%) | 8.64 × 107 b ±6.84 × 106 (7.9%) | 2.39 × 108 a ±2.49 × 107 (10.4%) | 2.34 × 108 a ±4.60 × 107 (19.7%) |
Total average peak area | 1.25 × 108 b | 1.26 × 108 b | 1.09 × 108 b * | 9.53 × 107 b | 2.61 × 108 a | 2.52 × 108 a |
Ethyl Esters | ||||||
Major | ||||||
Hexanoic acid ethyl ester | 1.09 × 108 a ±2.08 × 107 (19.1%) | 8.16 × 107 b ±2.21 × 106 (2.7%) | 7.73 × 107 b ** ±1.03 × 107 (13.4%) | 1.19 × 108 a ±1.15 × 107 (9.7%) | 3.46 × 107 c ±5.79 × 106 (16.7%) | 4.88 × 107 c ±1.70 × 107 (34.8%) |
Decanoic acid ethyl ester | 4.78 × 108 a ** ±2.41 × 107 (5.0%) | 2.90 × 108 b ±1.98 × 107 (6.8%) | 2.96 × 108 b ** ±6.04 × 107 (20.4%) | 1.30 × 108 c ±8.42 × 106 (6.5%) | 8.41 × 107 d,c ±2.04 × 107 (24.3%) | 5.26 × 107 d ±1.91 × 107 (36.3%) |
Dodecanoic acid ethyl ester | 5.59 × 107 b ±1.71 × 107 (30.6%) | 5.08 × 107 b ±4.13 × 106 (8.1%) | 8.37 × 107 a ** ±1.44 × 107 (17.2%) | 4.22 × 107 b ±6.21 × 106 (14.7%) | 2.05 × 107 c ±2.32 × 106 (11.3%) | 3.76 × 107 c,b ±1.72 × 107 (45.8%) |
Total average peak area of major ethyl esters | 6.42 × 108 a ** ±2.70 × 107 (4.2%) | 4.22 × 108 b ±2.18 × 107 (5.2%) | 4.57 × 108 b ** ±8.20 × 107 (17.9%) | 2.91 × 108 c ±1.10 × 107 (3.8%) | 1.22 × 108 d ±6.08 × 106 (5.0%) | 1.15 × 108 d ±6.60 × 107 (57.6%) |
Ethyl Esters | ||||||
Minor | ||||||
Heptanoic acid ethyl ester | 3.41 × 106 a,b * ±5.85 × 105 (17.2%) | 2.13 × 106 c ±9.69 × 104 (4.5%) | 4.42 × 106 a ±5.25 × 105 (11.9%) | 3.86 × 106 a ±3.13 × 105 (8.1%) | 4.26 × 106 a ** ±5.81 × 105 (13.6%) | 2.65 × 106 c,b ±4.35 × 105 (16.4%) |
Octanoic acid ethyl ester | 2.65 × 106 a ±5.65 × 105 (21.3%) | 1.49 × 106 b ±1.57 × 104 (1.1%) | 1.69 × 106 a,b * ±9.58 × 104 (5.7%) | 1.26 × 106 b ±3.51 × 104 (2.8%) | 2.24 × 106 a,b ±9.69 × 104 (4.3%) | 1.30 × 106 b ±3.33 × 105 (25.7%) |
Nonanoic acid ethyl ester | 9.24 × 106 a *** ±7.25 × 105 (7.8%) | 4.82 × 106 b ±7.33 × 104 (1.5%) | 4.51 × 106 b ±1.12 × 106 (24.9%) | 3.06 × 106 c ±6.57 × 105 (21.5%) | 3.02 × 106 c ** ±3.63 × 105 (12.0%) | 1.56 × 106 d ±5.31 × 105 (34.0%) |
Tetradecanoic acid ethyl ester | 1.03 × 107 a * ±1.73 × 106 (16.8%) | 6.54 × 106 b ±7.04 × 105 (10.8%) | 8.73 × 106 a * ±1.26 × 106 (14.4%) | 6.47 × 106 b ±1.30 × 106 (20.1%) | 5.18 × 106 b ±3.45 × 105 (6.7%) | 4.48 × 106 b ±3.76 × 105 (8.4%) |
Trans-4-decenoic acid ethyl ester | 1.41 × 106 a ±1.40 × 105 (10.0%) | n.q. | 1.01 × 106 a ±1.32 × 105 (13.1%) | n.q. | n.q. | n.q. |
9-Decenoic acid ethyl ester | 4.34 × 105 a ±5.92 × 104 (13.6%) | 5.39 × 105 a,b ±3.63 × 104 (6.7%) | 6.27 × 105 a * ±1.41 × 105 (22.4%) | 3.50 × 105 a,b ±7.95 × 104 (22.7%) | 3.29 × 105 b ±3.73 × 104 (11.3%) | 4.09 × 105 a,b ±1.42 × 105 (34.7%) |
Undecanoic acid ethyl ester | 7.23 × 105 a ±6.35 × 104 (8.8%) | 6.93 × 105 a ±7.96 × 104 (11.5%) | 6.25 × 105 a,b ±1.54 × 105 (24.6%) | 5.11 × 105 c,a,b ±1.12 × 105 (22.0%) | 4.06 × 105 c,b ±7.39 × 104 (18.2%) | 2.99 × 105 c ±1.22 × 105 (40.7%) |
Benzoic acid ethyl ester | 1.01 × 106 b ** ±4.68 × 104 (4.6%) | 2.57 × 106 a ±1.37 × 105 (5.4%) | 6.48 × 105 c ** ±3.50 × 104 (5.4%) | 1.05 × 106 b ±1.14 × 105 (10.9%) | 7.84 × 105 c ±1.05 × 105 (13.4%) | 6.43 × 105 c ±1.40 × 105 (21.7%) |
Diethyl succinate | 4.79 × 105 c ±2.27 × 104 (4.7%) | 4.55 × 105 c ±4.11 × 103 (0.9%) | n.q. | 2.00 × 105 c ±1.23 × 104 (6.2%) | 1.11 × 106 b * ±9.50 × 104 (8.6%) | 1.75 × 106 a ±3.96 × 105 (22.6%) |
Total average peak area of minor ethyl esters | 2.94 × 107 a * ±2.93 × 106 (9.9%) | 1.92 × 107 b ±4.51 × 105 (2.3%) | 2.14 × 107 b ** ±1.63 × 106 (7.6%) | 1.54 × 107 c ±1.67 × 106 (10.9%) | 1.60 × 107 c *** ±1.28 × 106 (8.0%) | 1.08 × 107 d ±8.72 × 105 (8.1%) |
Total average peak area | 6.72 × 108 a ** | 4.41 × 108 b | 4.79 × 108 b ** | 3.07 × 108 c | 1.38 × 108 d | 1.25 × 108 d |
Acetates | ||||||
Ethyl acetate | 7.14 × 107 a,b ±7.60 × 106 (10.7%) | 5.45 × 107 c ±9.28 × 106 (17.0%) | 6.33 × 107 c,b ±1.61 × 107 (25.4%) | 7.60 × 107 a,b ±2.91 × 106 (3.8%) | 7.23 × 107 a,b * ±5.84 × 106 (8.1%) | 8.47 × 107 a ±4.87 × 106 (5.8%) |
Isoamyl acetate | 4.51 × 107 c ±6.62 × 106 (14.7%) | 4.29 × 107 c ±1.14 × 106 (2.7%) | 8.61 × 107 b ** ±9.07 × 106 (10.5%) | 1.05 × 108 a ±3.15 × 106 (3.0%) | 1.03 × 108 a * ±1.20 × 107 (11.6%) | 8.14 × 107 b ±5.66 × 106 (7.0%) |
Phenylethyl acetate | 2.94 × 107 d ±2.33 × 106 (7.9%) | 2.64 × 107 d ±4.30 × 105 (1.6%) | 5.64 × 107 c * ±7.49 × 106 (13.3%) | 3.96 × 107 d ±6.78 × 106 (17.1%) | 8.10 × 107 b ±5.57 × 106 (6.9%) | 9.83 × 107 a ±1.50 × 107 (15.3%) |
Total average peak area | 1.46 × 108 c * | 1.24 × 108 c | 2.06 × 108 b | 2.20 × 108 b | 2.57 × 108 a | 2.64 × 108 a |
Acids | ||||||
Acetic acid | 7.05 × 106 a * ±1.02 × 106 (14.4%) | 2.92 × 106 b ±1.27 × 105 (4.4%) | 2.98 × 106 b *** ±6.39 × 105 (21.4%) | 7.91 × 106 a ±8.15 × 105 (10.3%) | 1.39 × 106 c *** ±9.37 × 104 (6.7%) | 7.16 × 106 b ±1.09 × 106 (15.2%) |
Hexanoic acid | 1.40 × 107 b ±2.07 × 106 (14.8%) | 1.33 × 107 b ±1.74 × 106 (13.0%) | 1.71 × 107 a ±1.25 × 106 (7.3%) | 1.72 × 107 a ±1.76 × 106 (10.2%) | 6.31 × 106 c ±8.47 × 105 (13.4%) | 8.25 × 106 c ±1.76 × 106 (21.4%) |
2,5-Dimetil, 4-hexenoic acid | 1.34 × 106 a ±7.0 × 104 (5.2%) | 1.19 × 106 a ±2.54 × 104 (2.1%) | 1.08 × 106 a ±1.59 × 105 (14.7%) | 1.38 × 106 a ±3.25 × 104 (2.4%) | n.q. | 1.06 × 106 a ±2.20 × 105 (20.7%) |
Octanoic acid | 9.60 × 107 a ±1.05 × 107 (11.0%) | 9.69 × 107 a ±4.44 × 106 (4.6%) | 1.04 × 108 a ±1.47 × 107 (14.2%) | 9.09 × 107 a ±7.04 × 106 (7.7%) | 3.37 × 107 b ±3.26 × 106 (9.7%) | 3.00 × 107 b ±8.05 × 106 (26.8%) |
Decanoic acid | 1.48 × 107 b * ±3.61 × 106 (24.4%) | 2.24 × 107 a ±3.37 × 105 (1.5%) | 2.25 × 107 a * ±7.65 × 106 (34.0%) | 1.14 × 107 c,b ±1.93 × 106 (16.9%) | 6.44 × 106 d,c ±1.50 × 106 (23.0%) | 4.72 × 106 d ±1.61 × 106 (34.0%) |
Total average peak area | 1.29 × 108 a | 1.37 × 108 a | 1.42 × 108 a | 1.28 × 108 a | 4.78 × 107 b | 5.00 × 107 b |
Aldehydes | ||||||
Octanal | 1.72 × 106 a ±4.83 × 105 (28.1%) | 1.37 × 106 a ±1.83 × 105 (13.3%) | 8.88 × 105 a * ±4.49 × 104 (5.1%) | 1.31 × 106 a ±3.26 × 105 (24.9%) | 1.27 × 106 a ±4.12 × 105 (32.5%) | 1.25 × 106 a ±1.72 × 105 (13.8%) |
Nonanal | 1.39 × 107 a ** ±6.02 × 105 (4.3%) | 8.65 × 106 b ±1.07 × 105 (1.2%) | 4.18 × 106 c ±1.49 × 106 (35.6%) | 8.02 × 106 b ±1.66 × 106 (20.7%) | 7.81 × 106 b ±1.50 × 106 (19.3%) | 6.77 × 106 b ±2.12 × 105 (3.1%) |
Decanal | 6.33 × 106 a ±2.22 × 106 (35.1%) | 8.62 × 106 a ±1.15 × 106 (13.3%) | 3.37 × 106 b ** ±2.33 × 105 (6.9%) | 8.76 × 106 a ±1.97 × 106 (22.5%) | 6.63 × 106 a ±1.68 × 106 (25.3%) | 6.63 × 106 a ±1.65 × 106 (24.9%) |
Total average peak area | 1.69 × 107 a | 1.86 × 107 a | 6.34 × 106 a ** | 1.81 × 107 a | 1.34 × 107 a | 1.10 × 107 a |
Ketones | ||||||
6-Methyl-5-hepten-2-one | 6.76 × 105 b ±5.73 × 104 (8.5%) | 5.68 × 105 b ±3.79 × 104 (6.7%) | 1.45 × 106 a ** ±1.43 × 105 (9.9%) | 8.69 × 105 b ±1.93 × 105 (22.2%) | 1.55 × 106 a ±7.44 × 105 (48.2%) | n.q. |
2-Undecanone | 1.97 × 105 c ** ±3.65 × 104 (18.6%) | 3.86 × 105 b ±2.21 × 104 (5.7%) | 4.27 × 105 b ±4.89 × 104 (11.4%) | n.q. | 6.41 × 105 a ±1.69 × 105 (26.4%) | n.q. |
Total average peak area | 8.72 × 105 b * | 9.54 × 105 b | 1.87 × 106 a *** | 8.69 × 105 b | 1.41 × 106 a,b | (--) |
Terpenes | ||||||
Monoterpenes | ||||||
2-β-Pinene | 3.80 × 106 a * ±1.25 × 106 (32.9%) | 3.15 × 105 b ±7.76 × 102 (0.2%) | 4.11 × 106 a ** ±9.70 × 105 (23.6%) | 3.96 × 105 b ±9.97 × 104 (25.2%) | 4.37 × 105 b ±1.40 × 105 (32.2%) | 7.00 × 105 b ±2.41 × 105 (34.4%) |
Δ-3-Carene | 4.16 × 106 a ±4.55 × 105 (10.9%) | n.q. | 2.41 × 106 a ±5.38 × 105 (22.3%) | n.q. | 3.85 × 106 a ±2.00 × 106 (52.1%) | 5.48 × 105 b ±1.18 × 105 (21.5%) |
β-Phellandrene | 3.10 × 107 a ** ±5.88 × 107 (19.0%) | 6.45 × 106 b ±8.81 × 103 (0.1%) | 2.70 × 107 a ** ±5.61 × 106 (20.8%) | 6.41 × 106 b ±1.19 × 106 (18.5%) | 6.41 × 106 b ±1.06 × 106 (16.5%) | 6.92 × 106 b ±3.36 × 106 (48.5%) |
DL-Limonene | 7.44 × 107 a * ±2.59 × 107 (34.8%) | 5.67 × 106 c ±1.22 × 106 (21.5%) | 2.43 × 107 b *** ±3.84 × 106 (15.8%) | 3.49 × 106 c ±9.90 × 105 (28.4%) | 6.97 × 106 c ±1.61 × 106 (23.1%) | 7.16 × 106 c ±9.67 × 105 (13.5%) |
Eucalyptol | 4.23 × 106 b * ±3.52 × 105 (8.3%) | 1.36 × 106 c ±3.56 × 105 (26.1%) | 6.89 × 106 a ** ±2.01 × 106 (29.2%) | 2.53 × 106 c,b ±5.44 × 105 (21.5%) | n.q. | 4.18 × 106 b ±1.58 × 106 (37.8%) |
β-Ocimene | 3.33 × 106 a ±9.09 × 105 (27.3%) | 2.14 × 106 a,b ±1.21 × 105 (5.7%) | 3.20 × 106 a ** ±3.83 × 105 (12.0%) | 2.15 × 106 a,b ±6.13 × 104 (2.8%) | 2.38 × 106 a,b * ±5.16 × 105 (21.7%) | 1.41 × 106 b ±5.77 × 104 (4.1%) |
Linalool | 4.92 × 106 b ** ±7.39 × 105 (15.0%) | 1.39 × 106 c ±3.75 × 105 (27.0%) | 1.27 × 107 a *** ±1.30 × 106 (10.3%) | 2.80 × 106 c ±3.30 × 105 (11.8%) | 2.14 × 106 c * ±3.98 × 105 (18.6%) | 1.47 × 106 c ±2.56 × 105 (17.5%) |
α-Humulene | 8.02 × 105 c ±1.60 × 105 (19.9%) | 4.56 × 105 c ±8.97 × 103 (2.0%) | 2.81 × 106 b ** ±6.58 × 105 (23.4%) | 2.78 × 105 c ±6.31 × 104 (22.7%) | 8.94 × 106 a *** ±9.50 × 105 (10.6%) | 3.31 × 105 c ±9.89 × 104 (29.9%) |
β-Citronellol | 4.98 × 106 a ±9.69 × 105 (19.4%) | 4.38 × 106 a ±3.99 × 104 (0.9%) | 1.63 × 106 c ** ±8.53 × 104 (5.2%) | 1.21 × 106 c ±1.73 × 105 (14.3%) | 4.61 × 106 a *** ±1.79 × 105 (3.9%) | 3.35 × 106 b ±1.96 × 105 (5.9%) |
Geranyl acetone | 1.44 × 106 a ** ±2.21 × 105 (15.3%) | 4.74 × 105 b ±7.26 × 104 (15.3%) | 1.37 × 106 a ±1.97 × 105 (14.4%) | 1.62 × 106 a ±1.86 × 105 (11.5%) | 7.04 × 105 b ±2.38 × 105 (33.9%) | 4.83 × 105 b ±3.46 × 104 (7.2%) |
Total average peak area of monoterpenes | 1.12 × 108 a * ±4.32 × 107 (38.5%) | 2.26 × 107 b ±5.76 × 105 (2.5%) | 8.23 × 107 a *** ±6.62 × 106 (8.0%) | 1.77 × 107 b ±3.02 × 106 (17.0%) | 3.43 × 107 b ** ±3.15 × 106 (9.2%) | 2.05 × 107 b ±5.09 × 106 (24.8%) |
Sexquiterpens | ||||||
Caryophyllene | 1.21 × 106 b * ±2.29 × 105 (18.9%) | 3.40 × 105 b ±1.94 × 105 (57.1%) | 2.19 × 107 a ±1.94 × 106 (8.9%) | n.q. | 9.33 × 105 b ±2.30 × 105 (24.7%) | n.q. |
Cis-Calamenene | 1.39 × 106 c * ±1.55 × 105 (11.1%) | 1.93 × 106 c,b ±1.96 × 104 (1.0%) | 2.69 × 106 b ±7.98 × 105 (29.7%) | 2.02 × 106 c,b ±2.78 × 105 (13.8%) | 4.46 × 106 a *** ±4.81 × 105 (10.8%) | 2.35 × 106 c,b ±3.39 × 105 (14.4%) |
Δ-Cadinene | 5.39 × 105 b * ±5.39 × 104 (10.0%) | 4.19 × 105 b ±2.12 × 104 (5.1%) | 1.03 × 106 b ±4.68 × 105 (45.5%) | 5.49 × 105 b ±2.51 × 105 (45.6%) | 2.12 × 106 a ** ±5.38 × 105 (25.4%) | 4.45 × 105 b ±2.78 × 104 (6.2%) |
Cadalene | 9.04 × 105 a,b ±2.74 × 105 (30.3%) | 9.00 × 105 a,b ±1.80 × 104 (2.0%) | 9.33 × 105 a,b ±2.91 × 105 (31.2%) | 7.88 × 105 c,b ±4.95 × 104 (6.3%) | 1.18 × 106 a ** ±4.30 × 104 (3.6%) | 5.18 × 105 c ±1.44 × 105 (27.7%) |
Total average peak area ofSexquiterpens | 3.75 × 106 b ±3.79 × 105 (10.1%) | 3.59 × 106 b ±1.78 × 105 (5.0%) | 1.56 × 107 a * ±1.12 × 107 (51.9%) | 3.36 × 106 b ±5.65 × 105 (16.8%) | 8.10 × 106 a,b *** ±2.71 × 105 (3.3%) | 3.31 × 106 b ±4.83 × 105 (14.6%) |
Total average peak area | 1.16 × 108 a | 2.62 × 107 b | 9.79 × 107 a *** | 2.10 × 107 b | 4.24 × 107 b ** | 2.38 × 107 b |
Furfuryl derivates | ||||||
Furfural | 3.12 × 105 d *** ±1.51 × 104 (4.8%) | 1.56 × 105 d ±6.35 × 103 (4.1%) | 6.95 × 105 a *** ±8.44 × 104 (12.2%) | 1.34 × 105 d ±1.61 × 104 (12.0%) | 4.11 × 105 b * ±8.35 × 104 (20.3%) | 2.78 × 105 c ±5.42 × 104 (19.5%) |
2-Acetylfuran | n.q. | n.q. | 1.47 × 106 b ** ±6.46 × 104 (4.4%) | 7.08 × 105 b ±6.63 × 104 (9.4%) | 3.58 × 106 a ±3.89 × 105 (10.9%) | 3.09 × 106 a ±6.17 × 105 (20.0%) |
2-Furanmethanol (Furfuryl alcohol) | 2.60 × 105 c ±6.47 × 104 (24.9%) | 2.43 × 105 c ±1.33 × 103 (0.5%) | 5.51 × 105 b ** ±5.19 × 104 (9.4%) | 3.99 × 105 c ±5.48 × 104 (13.7%) | 1.26 × 106 a ±1.05 × 105 (8.3%) | 1.34 × 106 a ±1.56 × 105 (11.6%) |
Total average peak area | 5.72 × 105 c * | 4.00 × 105 c | 1.98 × 106 b * | 8.87 × 105 c | 5.25 × 106 a | 4.71 × 106 a |
Pyrazines | ||||||
2-Methyl pyrazine | n.q. | 1.88 × 105 b ±8.02 × 104 (42.7%) | n.q. | 5.51 × 105 b ±1.67 × 105 (30.3%) | 2.92 × 106 a ±3.73 × 105 (12.8%) | 2.75 × 106 a ±3.96 × 105 (14.4%) |
3-Ethyl-2,6-dimethyl-pyrazine | n.q. | 1.25 × 105 d ±3.78 × 103 (3.0%) | 4.55 × 105 c * ±7.71 × 104 (16.9%) | 3.38 × 105 c ±4.92 × 104 (14.6%) | 7.97 × 105 a ±1.43 × 105 (17.9%) | 6.38 × 105 b ±2.72 × 104 (4.3%) |
Total average peak area | (--) | 3.13 × 105 b | 4.55 × 105 b ** | 8.89 × 105 b | 3.72 × 106 a | 3.39 × 106 a |
Other compounds | ||||||
p-Allyl anisole | 3.92 × 105 a ±6.04 × 104 (15.4%) | n.q. | 2.01 × 105 a ±2.30 × 104 (11.4%) | n.q. | n.q. | n.q. |
Eugenol | 3.21 × 105 b ±1.38 × 105 (43.1%) | 6.45 × 105 b ±1.43 × 105 (22.3%) | 2.24 × 107 a ±8.42 × 106 (37.5%) | n.q. | n.q. | n.q. |
2-Acetylpyrrole | 3.81 × 105 b * ±1.90 × 104 (5.0%) | 4.77 × 105 b ±4.84 × 104 (10.2%) | 7.38 × 105 b ±8.42 × 104 (11.4%) | 6.74 × 105 b ±1.29 × 105 (19.2%) | 1.56 × 106 a ±1.41 × 105 (9.0%) | 1.59 × 106 a ±5.17 × 105 (32.5%) |
Methoxy phenyl oxime | 1.90 × 107 c *** ±2.10 × 106 (11.0%) | 4.31 × 107 a ±2.76 × 106 (6.4%) | 2.18 × 107 c ** ±4.53 × 106 (20.8%) | 3.45 × 107 b ±2.03 × 106 (5.9%) | 2.51 × 107 c ±2.66 × 106 (10.6%) | 2.25 × 107 c ±4.88 × 106 (21.7%) |
Acetoin | 3.69 × 106 b * ±4.64 × 105 (12.6%) | 2.41 × 106 c ±4.87 × 105 (20.2%) | 2.51 × 106 c ±2.80 × 105 (11.2%) | 2.55 × 106 c ±6.51 × 105 (25.5%) | 1.88 × 106 c ** ±7.11 × 105 (37.8%) | 4.83 × 106 a ±9.89 × 105 (20.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, A.C.; González-SanJosé, M.L.; Ortega-Heras, M.; Jordão, A.M. Preliminary Study of the Effect of Short Maceration with Cherry and Oak Wood Chips on the Volatile Composition of Different Craft Beers. Beverages 2023, 9, 79. https://doi.org/10.3390/beverages9030079
Correia AC, González-SanJosé ML, Ortega-Heras M, Jordão AM. Preliminary Study of the Effect of Short Maceration with Cherry and Oak Wood Chips on the Volatile Composition of Different Craft Beers. Beverages. 2023; 9(3):79. https://doi.org/10.3390/beverages9030079
Chicago/Turabian StyleCorreia, Ana C., Maria L. González-SanJosé, Miriam Ortega-Heras, and António M. Jordão. 2023. "Preliminary Study of the Effect of Short Maceration with Cherry and Oak Wood Chips on the Volatile Composition of Different Craft Beers" Beverages 9, no. 3: 79. https://doi.org/10.3390/beverages9030079
APA StyleCorreia, A. C., González-SanJosé, M. L., Ortega-Heras, M., & Jordão, A. M. (2023). Preliminary Study of the Effect of Short Maceration with Cherry and Oak Wood Chips on the Volatile Composition of Different Craft Beers. Beverages, 9(3), 79. https://doi.org/10.3390/beverages9030079