Permanent Stations for Calibration/Validation of Thermal Sensors over Spain
Abstract
:1. Introduction
2. Spanish Test Sites
2.1. Barrax
2.2. Doñana
2.3. Cabo de Gata
2.4. Field Meassurements
2.4.1. LST and Radiometer Accuracy
2.4.2. Emissivity
2.4.3. Down-Welling Radiation
2.4.4. Homogeneity
2.5. Uncertainty of Field Measures
3. Applications
3.1. Vicarious Calibration Landsat-8 TIRS Bands
3.2. LST Validation for Low Resolution Sensors
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol. 2009, 149, 2071–2081. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Kustas, W.P.; Caselles, V.; Anderson, M.C. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ. 2008, 112, 1130–1143. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A.; Verhoef, W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens. Environ. 1999, 103, 43–55. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; et al. Evaluation of the Surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar] [CrossRef]
- Li, Z-L.; Tang, B-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; De Miguel, E. Land Surface Temperature Derived from Airborne Hyperspectral Scanner Thermal Infrared Data. Remote Sens. Environ. 2006, 102, 99–115. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristobal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images. IEEE Transac. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S.; Bork-Unkelbach, A. Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia. Int. J. Remote Sens. 2013, 34, 3069–3083. [Google Scholar] [CrossRef]
- Wang, W.; Liang, S.; Meyers, T. Validating MODIS Land Surface Temperature Products Using Long-Term Nighttime Ground Measurements. Remote Sens. Environ. 2008, 112, 623–635. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; Ninyerola, M.; Pons, X. Improvements in land surface temperature retrieval from the Landsat series termal band using water vapor and air temperature. J. Geophys. Res. 2009, 114, D08103. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Skoković, D.; Jiménez-Muñoz, J.C. Spatial analysis of the homogeneity of the land surface temperature in three Spanish test sites. Int. J. Remote Sens. 2015, 36, 4793–4807. [Google Scholar] [CrossRef]
- Andreu, A.; Timmermans, W.J.; Skoković, D.; Gonzalez-Dugo, M.P. Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard. Acta Geophys. 2015, 63, 1540–1570. [Google Scholar] [CrossRef]
- Peres, L.F.; Sobrino, J.A.; Libonati, R.; Jiménez-Muñoz, J.C.; Dacamara, C.C.; Romaguera, M. Validation of a temperature emissivity separation hybrid method from airborne hyperspectral scanner data and ground measurements in the SEN2FLEX field campaign. Int. J. Remote Sens. 2008, 29, 7251–7268. [Google Scholar] [CrossRef]
- Morillas, L.; García, M.; Nieto, H.; Villagarcia, L.; Sandholt, I.; Gonzalez-Dugo, M.P.; Zarco-Tejada, P.J.; Domingo, F. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective. Remote Sens. Environ. 2013, 136, 234–246. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. Emissivity spectra obtained from field and laboratory measurements using the temperature and emissivity separation algorithm. Appl. Opt. 2007, 45, 7104–7109. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Galve, J.M.; Coll, C.; Caselles, V.; Valor, E. An atmospheric radiosounding database for generating land surface temperature algorithms. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1547–1557. [Google Scholar] [CrossRef]
- Duguay-Tetzlaff, A.; Bento, V.; Göttsche, F.; Stöckli, R.; Martins, J.; Trigo, I.; Olesen, F.; Bojanowski, J.; da Camara, C.; Kunz, H. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties. Remote Sens. 2015, 7, 13139–13156. [Google Scholar] [CrossRef]
- Slater, P.N.; Biggar, S.F.; Thome, K.J.; Gellman, D.I.; Spyak, P.R. Vicarious radiometric calibrations of EOS sensors. J. Atmos. Ocean. Technol. 1996, 13, 349–359. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2015, 6, 11607–11626. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A.; Sòria, G. Retrieving and broadcasting near-real time biophysical parameters from MODIS and SEVIRI receiving stations at the Global Change Unit of the University of Valencia. Int. J. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Hulley, G.; Veraverbeke, S.; Hook, S. Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21). Remote Sens. Environ. 2014, 140, 755–765. [Google Scholar] [CrossRef]
- Coll, C.; García-Santos, V.; Niclòs, R.; Caselles, V. Test of the MODIS Land Surface Temperature and Emissivity Separation Algorithm with Ground Measurements Over a Rice Paddy. IEEE Transac. Geosci. Remote Sens. 2016, 54, 3061–3069. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Ruescas, A.B.; Danne, O.; Brockmann, C.; Ghent, D.; Remedios, J.; North, P.; Merchant, C.; et al. Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote Sens. Environ. 2016, 179, 149–161. [Google Scholar] [CrossRef]
Bias | Sigma | RMSE | Slope | Offset | R2 | |
---|---|---|---|---|---|---|
Soils | 0.0032 (0.0004) | 0.0022 (0.0007) | 0.0038 (0.0008) | 0.90 | 9.81 | 0.99 |
Water/Vegetation | 0.0007 | 0.0013 | 0.0015 | - | - | - |
Bias | Sigma | RMSE | Slope | Offset | R2 | ||
---|---|---|---|---|---|---|---|
Barrax (El Cruce) | No correction | 1.02 | 0.56 | 1.16 (±0.5) | - | - | - |
Correction | −0.02 | 0.25 | 0.25 (±0.1) | 0.35 | 2.12 | 0.60 |
Test Sites | Doñana | Bararx | Cabo de Gata | |||
---|---|---|---|---|---|---|
Names | Cortes | Fuente Duque | Juncabalejo | Las Tiesas | El Cruce | Balsa Blanca |
Location | 36.996 N 6.513 W | 36.998 N 6.434 W | 36.946 N 6.389 W | 39.059 N 2.099 W | 39.061 N 2.099 W | 36.939 N 2.034 W |
Field cover | PN | W or BS/SV | W or BS/SV | BS or WH | GG | BS/SV or BS/GV |
Field extension (km × km) | 2.5 × 3 | >10 × 10 | 2 × 5 | 1 × 1 | 0.12 × 0.20 | 4 × 4 |
Measured area | 5 | 5 | 2 | 3 | 1 | 2 |
Inhomogeneity for MRS/LRS (10−1 K) Wi-Sp-Su-At | MRS | MRS | MRS | MRS | MRS | MRS |
7-15-9-5 | 4-11-9-4 | 5-13-10-4 | 5-8-11-3 | 4-8-10-4 | 4-14-10-5 | |
/-/-/-/ | 7-35-10-5 | 8-40-12-6 | 10-/-/-8 * | /-/-/-/ | 7-21-11-6 | |
LRS | LRS | LRS | LRS | LRS | LRS | |
Emissivity range | 0.97–0.99 | 0.95–0.99 | 0.95–0.99 | 0.95–0.99 | 0.97–0.99 | 0.95–0.98 |
Mean accuracy measurement (K) | MRS/LRS | MRS/LRS | MRS/LRS | MRS/LRS | MRS/LRS | MRS/LRS |
0.9/… | 0.7/1.0 | 0.8/1.0 | 0.7/0.9 * | 0.6/… | 0.8/1.1 |
(N = 46) | Las Tiesas (10) | Fuente Duque (24) | Juncabalejo (5) | Cortes (7) | |
---|---|---|---|---|---|
TIRS b10 | Bias | 0.05 (0.4) | 0.02 (0.2) | −0.06 (−0.5) | −0.02 (−0.2) |
sigma | 0.14 (0.9) | 0.12 (0.8) | 0.08 (0.6) | 0.14 (0.9) | |
RMSE | 0.15 (1.0) | 0.12 (0.8) | 0.10 (0.7) | 0.14 (0.9) | |
TIRS b11 | Bias | −0.12 (−1.0) | −0.19 (−1.6) | −0.15 (−1.2) | −0.08 (−0.7) |
sigma | 0.25 (2.1) | 0.19 (1.6) | 0.21 (1.7) | 0.09 (0.8) | |
RMSE | 0.28 (2.3) | 0.27 (2.2) | 0.26 (2.2) | 0.12 (1.0) | |
TOTAL | Bias | sigma | RMSE | slope | r |
TIRS b10 | 0.01 (0.1) | 0.12 (0.8) | 0.12 (0.8) | 0.956 ± 0.015 | 0.994 |
TIRS b11 | −0.16 (−1.3) | 0.19 (1.6) | 0.25 (2.1) | 0.954 ± 0.030 | 0.979 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobrino, J.A.; Skoković, D. Permanent Stations for Calibration/Validation of Thermal Sensors over Spain. Data 2016, 1, 10. https://doi.org/10.3390/data1020010
Sobrino JA, Skoković D. Permanent Stations for Calibration/Validation of Thermal Sensors over Spain. Data. 2016; 1(2):10. https://doi.org/10.3390/data1020010
Chicago/Turabian StyleSobrino, Jose Antonio, and Dražen Skoković. 2016. "Permanent Stations for Calibration/Validation of Thermal Sensors over Spain" Data 1, no. 2: 10. https://doi.org/10.3390/data1020010
APA StyleSobrino, J. A., & Skoković, D. (2016). Permanent Stations for Calibration/Validation of Thermal Sensors over Spain. Data, 1(2), 10. https://doi.org/10.3390/data1020010