Portable Analyses of Strategic Metal-Rich Minerals Using pXRF and pLIBS: Methodology and Database Development
Abstract
:1. Summary
2. Data Description
- “Photos” folder >> date (“Year_Month_Day”) folders >> PNG files. The “Photos” folder includes photos of the analyzed samples and photos of the spots where the analyses were performed on the sample. For the pXRF, the red circles have the diameter size of the analyses;
- “Spectra” folder >> date (Year_Month_Day) folders >> data of each tool;
- A CSV file for each tool (“pXRF/pLIBS_database.csv”) giving a description of the analyses and samples. The different information is:
- “Date”: date of the acquisition (Year/Month/Day);
- “Mineral”: analyzed mineral;
- “Chemical formula”: mineral’s chemical formula;
- “Sample ID”: sample’s name. The sample ID was retained when the sample had already been named in a previous study. When no name was available, the given ID corresponds to the mineral followed by a number;
- “References”: when available, bibliographic references from previous studies conducted on the sample;
- “Type of sample”: single crystal mineral or mineral in rock;
- “Surface state”: flat, rough, or polished block;
- “Locality”: sample’s locality;
- “Country”: sample’s country;
- “Type of deposit”: sample’s deposit type as described in the literature when available. With question mark: hypothetic (determined as the most probable) due to a data lack;
- “Analysis ID”: pXRF/pLIBS analysis name appearing in the database (“Spectra” folder);
- “Number of locations”: only for pLIBS. Number of locations of analyses done on the same spot;
- “Cleaning shots”: only for pLIBS. Number of cleaning shots per location;
- “Shots”: only for pLIBS. Number of laser shots per location;
- “Shots to average”: only for pLIBS. Number of shots to average per location;
- “Sample photo ID”: sample photo name appearing in the database (“Photos” folder);
- “Spot analysis photo ID”: name of the photo showing where the analysis was performed (“Photos” folder);
- “Comment”: any comment on the analysis;
- “pXRF/pLIBS on sample”: yes/no;
- “pXRF/pLIBS analysis ID on sample”: pXRF/pLIBS analysis name on the same sample;
- “pXRF/pLIBS on spot”: yes/no;
- “pXRF/pLIBS analysis ID on spot”: pXRF/pLIBS analysis name on the same spot of the sample.
2.1. Portable XRF Database
- Firstly, 2070 MCA files corresponding to the raw XRF spectra with no processing treatment. They relate to the intensity (counts) for each channel. Each analysis leads to two spectra (0 and 1), one at high voltage (0) in the tube and one at lower voltage (1), optimized for high- and low-Z elements, respectively. The header of MCA files contains 21 lines of general information on analytical conditions with the pXRF (e.g., live time, real time, filter position). The format of the MCA file name is “Analysis ID_Filter position_Date_Hour”, with “Analysis ID” corresponding to the number of the analysis given by the instrument (cf. “pXRF_database.csv” file). “Filter position” relates to the tube voltage (0 or 1). “Date” is the date of acquisition (“Year.Month.Day” format) and “Hour” is the hour and minutes. The hour is noted on a 24-h clock, hence numbers ranging from 13 to 23 are for pm times.
- Secondly, there are 13 CSV files corresponding to interpreted data in weight% for elements included in the quantification program of the pXRF. There is one CSV file for each day of pXRF measurements. In the CSV file, there is the date (“Date”) corresponding to the acquisition date and time (Day/Month/Year and Hour:Minutes in 24-h clock), the analysis number (“Analysis ID”) referring to MCA file name, the real time of the acquisition in seconds («Real time»), and the reference of the pXRF tool (“Serial number”). Then, there are all the elements with their relative error which the pXRF can quantify in weight%. For the element hydrogen (“H”), the value corresponds to all light elements (Z < 12) undetectable with this pXRF.
2.2. Portable LIBS Database
3. Sample Selection
3.1. Minerals as Single Crystal Samples
3.2. Minerals Within Rock Samples
3.3. Sample Preparation
4. Analytical Techniques
4.1. X-Ray Fluorescence
4.1.1. Portable XRF X-250 Characteristics
4.1.2. Portable XRF Acquisition Settings
4.1.3. Portable XRF Data
4.2. Laser-Induced Breakdown Spectroscopy
4.2.1. Portable LIBS Z-300 Characteristics
4.2.2. Portable LIBS Acquisition Settings
4.2.3. Portable LIBS Data
5. User Note
5.1. Data Quality
5.2. Data Representativeness
5.3. XRF Data Processing
5.4. LIBS Data Processing
5.5. Examples of Data Use
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strategic Materials. Available online: https://www.dla.mil/Strategic-Materials/Materials/ (accessed on 6 November 2024).
- Critical Raw Materials—European Commission. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 6 November 2024).
- Guo, X.; Zhou, T.; Wang, F.; Fan, Y.; Fu, P.; Kong, F. Distribution of Co, Se, Cd, In, Re and other critical metals in sulfide ores from a porphyry-skarn system: A case study of Chengmenshan Cu deposit, Jiangxi, China. Ore Geol. Rev. 2023, 158, 105520. [Google Scholar] [CrossRef]
- Benites, D.; Torró, L.; Vallance, J.; Laurent, O.; Valverde, P.E.; Kouzmanov, K.; Chelle-Michou, C.; Fontboté, L. Distribution of indium, germanium, gallium and other minor and trace elements in polymetallic ores from a porphyry system: The Morococha district, Peru. Ore Geol. Rev. 2021, 136, 104236. [Google Scholar] [CrossRef]
- Crespo, J.; Reich, M.; Barra, F.; Verdugo, J.J.; Martínez, C. Critical Metal Particles in Copper Sulfides from the Supergiant Río Blanco Porphyry Cu–Mo Deposit, Chile. Minerals 2018, 8, 519. [Google Scholar] [CrossRef]
- Voudouris, P.; Repstock, A.; Spry, P.G.; Frenzel, M.; Mavrogonatos, C.; Keith, M.; Tarantola, A.; Melfos, V.; Tombros, S.; Zhai, D.; et al. Physicochemical constraints on indium-, tin-, germanium-, gallium-, gold-, and tellurium-bearing mineralizations in the Pefka and St Philippos polymetallic vein- and breccia-type deposits, Greece. Ore Geol. Rev. 2022, 140, 104348. [Google Scholar] [CrossRef]
- Voudouris, P.C.; Melfos, V.; Spry, P.G.; Bindi, L.; Kartal, T.; Arikas, K.; Moritz, R.; Ortelli, M. Rhenium-Rich Molybdenite and Rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au Prospect, Northern Greece: Implications for the Re Geochemistry of Porphyry-Style Cu-Mo and Mo Mineralization. Can. Mineral. 2009, 47, 1013–1036. [Google Scholar] [CrossRef]
- Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Baker, T.; Melfos, V.; Klemd, R.; Haase, K.; Repstock, A.; Djiba, A.; Bismayer, U.; et al. Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol. Rev. 2019, 107, 654–691. [Google Scholar] [CrossRef]
- Lemière, B.; Harmon, R.S. XRF and LIBS for Field Geology. In Portable Spectroscopy and Spectrometry, 1st ed.; Crocombe, R., Leary, P., Kammrath, B., Eds.; Wiley: New York, NY, USA, 2021; pp. 455–497. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119636489.ch42 (accessed on 15 November 2024).
- Lemière, B.; Uvarova, Y.A. New developments in field-portable geochemical techniques and on-site technologies and their place in mineral exploration. Geochem. Explor. Environ. Anal. 2020, 20, 205–216. [Google Scholar] [CrossRef]
- Lemière, B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef]
- Fabre, C. Advances in Laser-Induced Breakdown Spectroscopy analysis for geology: A critical review. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105799. [Google Scholar] [CrossRef]
- Harmon, R.S.; Russo, R.E.; Hark, R.R. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochim. Acta Part B At. Spectrosc. 2013, 87, 11–26. [Google Scholar] [CrossRef]
- El Haddad, J.; De Lima Filho, E.S.; Vanier, F.; Harhira, A.; Padioleau, C.; Sabsabi, M.; Wilkie, G.; Blouin, A. Multiphase mineral identification and quantification by laser-induced breakdown spectroscopy. Miner. Eng. 2019, 134, 281–290. [Google Scholar] [CrossRef]
- Müller, S.; Meima, J.A. Mineral classification of lithium-bearing pegmatites based on laser-induced breakdown spectroscopy: Application of semi-supervised learning to detect known minerals and unknown material. Spectrochim. Acta Part B At. Spectrosc. 2022, 189, 106370. [Google Scholar] [CrossRef]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Barton, I.F.; Rathkopf, C.A.; Barton, M.D. Rhenium in Molybdenite: A Database Approach to Identifying Geochemical Controls on the Distribution of a Critical Element. Min. Metall. Explor. 2020, 37, 21–37. [Google Scholar] [CrossRef]
- Factuel|le Site D’actu de l’Université de Lorraine 2022. ARTeMIS: Un Projet Erasmus+ de Formation par la Recherche Pour la Géologie de Demain. Available online: https://factuel.univ-lorraine.fr/node/19542 (accessed on 6 November 2024).
- Melfos, V.; Voudouris, P.C. Geological, Mineralogical and Geochemical Aspects for Critical and Rare Metals in Greece. Minerals 2012, 2, 300–317. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Bindi, L.; Moritz, R.; Ortelli, M.; Kartal, T. Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration. Minerals 2013, 3, 165–191. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P.; Arikas, K.; Vavelidis, M. Rhenium—Rich molybdenites in Thracian porphyry Mo ± Cu occurrences, NE—Greece. Geosociety 2001, 34, 1015. [Google Scholar] [CrossRef]
- Márquez-Zavalía, M.F.; Galliski, M.Á.; Drábek, M.; Vymazalová, A.; Watanabe, Y.; Murakami, H.; Bernhardt, H.-J. Ishiharaite, (Cu,Ga,Fe,In,Zn)S, a New Mineral from the Capillitas Mine, Northwestern Argentina. Can. Mineral. 2014, 52, 969–980. [Google Scholar] [CrossRef]
- Márquez-Zavalía, M.F.; Vymazalová, A.; Galliski, M.Á.; Watanabe, Y.; Murakami, H. Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina. J. Geosci. 2020, 65, 97–109. [Google Scholar] [CrossRef]
- Sahlström, F.; Arribas, A.; Dirks, P.; Corral, I.; Chang, Z. Mineralogical Distribution of Germanium, Gallium and Indium at the Mt Carlton High-Sulfidation Epithermal Deposit, NE Australia, and Comparison with Similar Deposits Worldwide. Minerals 2017, 7, 213. [Google Scholar] [CrossRef]
- Shimizu, T.; Morishita, Y. Petrography, Chemistry, and Near-Infrared Microthermometry of Indium-Bearing Sphalerite from the Toyoha Polymetallic Deposit, Japan. Econ. Geol. 2012, 107, 723–735. [Google Scholar] [CrossRef]
- Biagioni, C.; George, L.L.; Cook, N.J.; Makovicky, E.; Moëlo, Y.; Pasero, M.; Sejkora, J.; Stanley, C.J.; Welch, M.D.; Bosi, F. The tetrahedrite group: Nomenclature and classification. Am. Mineral. 2020, 105, 109–122. [Google Scholar] [CrossRef]
- Harmon, R.S.; Remus, J.; McMillan, N.J.; McManus, C.; Collins, L.; Gottfried, J.L.; DeLucia, F.C.; Miziolek, A.W. LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Appl. Geochem. 2009, 24, 1125–1141. [Google Scholar] [CrossRef]
- Harmon, R.S.; DeLucia, F.C.; McManus, C.E.; McMillan, N.J.; Jenkins, T.F.; Walsh, M.E.; Miziolek, A. Laser-induced breakdown spectroscopy—An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl. Geochem. 2006, 21, 730–747. [Google Scholar] [CrossRef]
- Rukhlov, A.; Mao, M.; Rippon, C. Rapid identification of sand-size mineral grains using portable XRF: A new method for indicator mineral surveys. In Geological Fieldwork 2017, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Paper 2018-1; pp. 167–182. Available online: https://cmscontent.nrs.gov.bc.ca/geoscience/publicationcatalogue/Paper/BCGS_P2018-01-09_Rukhlov.pdf (accessed on 6 November 2024).
- Laperche, V.; Lemière, B. Possible Pitfalls in the Analysis of Minerals and Loose Materials by Portable XRF, and How to Overcome Them. Minerals 2021, 11, 33. [Google Scholar] [CrossRef]
- Parsons, C.; Margui Grabulosa, E.; Pili, E.; Floor, G.H.; Roman-Ross, G.; Charlet, L. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: Considerations for sample preparation and measurement conditions. J. Hazard. Mater. 2013, 262, 1213–1222. [Google Scholar] [CrossRef]
- Morris, P.A. Field-Portable X-Ray Fluorescence Analysis and Its Application in GSWA; Geological Survey of Western Australia: East Perth, WA, Australia, 2009.
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Menges, F. Spectroscopy. Spectroscopy Ninja—Optical Spectroscopy Software and Services. Available online: http://spectroscopy.ninja/ (accessed on 6 November 2024).
- NIST LIBS Database. Available online: https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html (accessed on 6 November 2024).
Mineral | Category | Chemical Formula | pXRF | pLIBS | ||
---|---|---|---|---|---|---|
Samples | Analyses | Samples | Analyses | |||
Native antimony | Native element | Sb | 1 | 5 | ND | ND |
Native arsenic | Native element | As | 7 | 21 | 1 | 4 |
Native bismuth | Native element | Bi | 6 | 26 | 3 | 6 |
Native tellurium | Native element | Te | 2 | 7 | 1 | 2 |
Arsenopyrite | Sulfide | FeAsS | 2 | 15 | 2 | 23 |
Chalcopyrite | Sulfide | CuFeS2 | ND | ND | 4 | 16 |
Covellite | Sulfide | CuS | 1 | 3 | ND | ND |
Galena | Sulfide | PbS | 14 | 194 | 13 | 146 |
Molybdenite | Sulfide | MoS2 | 28 | 190 | 14 | 102 |
Pyrite | Sulfide | FeS2 | 9 | 53 | 11 | 96 |
Sphalerite | Sulfide | ZnS | 12 | 82 | 6 | 51 |
Stibnite | Sulfide | Sb2S3 | 5 | 32 | 5 | 13 |
Boulangerite | Sulfosalt | Pb5Sb4S11 | 3 | 23 | 3 | 46 |
Enargite | Sulfosalt | Cu3AsS4 | 2 | 13 | 1 | 5 |
Nagyagite | Sulfosalt | Pb5Au(Te,Sb)4S5-8 | ND | ND | 4 | 13 |
Tetrahedrite | Sulfosalt | (Cu,Ag)10(Fe,Zn)2Sb4S13 | 3 | 15 | 4 | 9 |
Tetrahedrite–tennantite | Sulfosalt | (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 | 27 | 308 | 11 | 204 |
Safflorite | Arsenide | (Co,Fe,Ni)As3 | 3 | 19 | 2 | 27 |
Skutterudite | Arsenide | (Co,Fe,Ni)As2-3 | 3 | 29 | 3 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatteau, M.; Cauzid, J.; Fabre, C.; Voudouris, P.; Soulamidis, G.; Tarantola, A. Portable Analyses of Strategic Metal-Rich Minerals Using pXRF and pLIBS: Methodology and Database Development. Data 2025, 10, 12. https://doi.org/10.3390/data10020012
Jatteau M, Cauzid J, Fabre C, Voudouris P, Soulamidis G, Tarantola A. Portable Analyses of Strategic Metal-Rich Minerals Using pXRF and pLIBS: Methodology and Database Development. Data. 2025; 10(2):12. https://doi.org/10.3390/data10020012
Chicago/Turabian StyleJatteau, Marjolène, Jean Cauzid, Cécile Fabre, Panagiotis Voudouris, Georgios Soulamidis, and Alexandre Tarantola. 2025. "Portable Analyses of Strategic Metal-Rich Minerals Using pXRF and pLIBS: Methodology and Database Development" Data 10, no. 2: 12. https://doi.org/10.3390/data10020012
APA StyleJatteau, M., Cauzid, J., Fabre, C., Voudouris, P., Soulamidis, G., & Tarantola, A. (2025). Portable Analyses of Strategic Metal-Rich Minerals Using pXRF and pLIBS: Methodology and Database Development. Data, 10(2), 12. https://doi.org/10.3390/data10020012