A Multi-Year Data Set of Beach-Foredune Topography and Environmental Forcing Conditions at Egmond aan Zee, The Netherlands
Abstract
:1. Summary
2. Data Description
2.1. Study Site
2.2. Data Records
ncols | 301 |
nrows | 1401 |
xllcenter | −250.000 |
yllcenter | −650.000 |
cellsize | 1.000 |
NODATA_value | −9999.000 |
2.3. Supplementary Data
- hourly offshore significant wave height [m] and period [s];
- offshore water level [m MSL] at 10-min intervals;
- wind speed [m/s] and direction [°N] at 10 m above ground level, also at 10-min intervals;
- four DEMs of the intertidal and subtidal bathymetry extending to 9 m water depth (Table 1); and
- annual cross-shore bathymetry transects for six 250-m spaced survey lines extending to 14 m water depth (Table 1).
ncols | 1051 |
nrows | 1401 |
xllcenter | −50.000 |
yllcenter | −650.000 |
cellsize | 1.000 |
NODATA_value | −9999.000 |
2.4. Foredune Change
3. Methods
3.1. Topographic Data
3.1.1. ALS
3.1.2. MLS
3.1.3. UAV-Lidar
3.1.4. UAV-SfM
3.2. Supplementary Data
3.2.1. Environmental Forcing
3.2.2. Bathymetry
4. User Notes
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hesp, P.A. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Schwarz, C.; Brinkkemper, J.; Ruessink, G. Feedbacks between biotic and abiotic processes governing the development of foredune blowouts: A review. J. Mar. Sci. Eng. 2019, 7, 2. [Google Scholar] [CrossRef]
- Russell, P. Mechanisms for beach erosion during storm. Cont. Shelf Res. 1993, 13, 1243–1265. [Google Scholar] [CrossRef]
- De Bakker, A.T.M.; Brinkkemper, J.A.; van der Steen, F.; Tissier, M.F.S.; Ruessink, B.G. Cross-shore sand transport by infragravity waves as a function of beach steepness. J. Geophys. Res. Earth Surf. 2016, 121. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- McCall, R.T.; van Thiel de Vries, J.S.M.; Plant, N.G.; van Dongeren, A.R.; Roelvink, J.A.; Thompson, D.M.; Reniers, A.J.H.M. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast. Eng. 2010, 57, 668–683. [Google Scholar] [CrossRef]
- De Winter, R.C.; Gongriep, F.; Ruessink, B.G. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands. Coast. Eng. 2015, 99, 167–175. [Google Scholar] [CrossRef]
- Splinter, K.D.; Palmsten, M.L. Modeling dune response to an East Coast Low. Mar. Geol. 2012, 329–331, 46–57. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Boers, M.; van Geer, P.F.C.; de Bakker, A.T.M.; Pieterse, A.; Grasso, F.; de Winter, R.C. Towards a process-based model to predict dune erosion along the Dutch Wadden coast. Neth. J. Geosci. 2012, 91, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Short, A.D.; Hesp, P.A. Wave, beach and dune interactions in Southeastern Australia. Mar. Geol. 1982, 48, 259–284. [Google Scholar] [CrossRef]
- Psuty, N.P.; Allen, J.R.; Starcher, R. Spatial analysis of dune crest mobility, Fire Island National Seashore, New York. J. Coast. Res. 1988, 115–120. [Google Scholar]
- Morton, R.A.; Paine, J.G.; Gibeaut, J.C. Stages and durations of post-storm beach recovery, Southeastern Texas Coast, U.S.A. J. Coas. Res. 1994, 10, 884–908. [Google Scholar]
- Houser, C.; Wernette, P.; Rentschlar, E.; Jones, H.; Hammond, B.; Trimble, S. Post-storm beach and dune recovery: Implications for barrier island resilience. Geomorphology 2015, 234, 54–63. [Google Scholar] [CrossRef]
- Castelle, B.; Bujan, S.; Ferreira, S.; Dodet, G. Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol. 2017, 385, 41–55. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I. Meso-scale modelling of aeolian sediment input to coastal dunes. Geomorphology 2011, 130, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Hoonhout, B.M.; De Vries, S. A process-based model for aeolian sediment transport and spatiotemporal varying sediment availability. J. Geophys. Res. Earth Surf. 2016, 121, 1555–1575. [Google Scholar] [CrossRef]
- Cohn, N.; Hoonhout, B.M.; Goldstein, E.B.; De Vries, S.; Moore, L.J.; Durán Vinent, O.; Ruggiero, P. Exploring marine and aeolian controls on coastal foredune growth using a coupled numerical model. J. Mar. Sci. Eng. 2019, 7, 13. [Google Scholar] [CrossRef]
- Roelvink, D.; Costas, S. Coupling nearshore and aeolain processes: XBeach and Duna process-based models. Environ. Model. Softw. 2019, 115, 98–112. [Google Scholar] [CrossRef]
- Durán, O.; Moore, L. Vegetation controls on the maximum size of coastal dunes. Proc. Natl. Acad. Sci. USA 2013, 110, 17217–17222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallenger, A.H. Storm impact scale for barrier islands. J. Coas. Res. 2000, 16, 890–895. [Google Scholar]
- Houser, C.; Hapke, C.; Hamilton, S. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. Geomorphology 2008, 100, 223–240. [Google Scholar] [CrossRef]
- Priestas, A.M.; Fagherazzi, S. Morphological barrier island changes and recovery of dunes after Hurricane Dennis, St. George Island, Florida. Geomorphology 2010, 114, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Long, J.W.; de Bakker, A.T.M.; Plant, N.G. Scaling coastal dune elevation changes across storm-impact regimes. Geophys. Res. Lett. 2014, 41, 2899–2906. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.W.G.; Stone, G.W. Mechanisms associated with the erosion of sand dune cliffs, Magilligan, Northern Ireland. Earth Surf. Proc. Landf. 1989, 14, 1–10. [Google Scholar] [CrossRef]
- Christiansen, M.T.; Davidson-Arnott, R. Rates of landward sand transport over the foredune at Skallingen, Denmark and the role of dune ramps. Dan. J. Geogr. 2004, 104, 31–43. [Google Scholar] [CrossRef]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 2015, 135–148. [Google Scholar] [CrossRef]
- Ollerhead, J.; Davidson-Arnott, R.; Walker, I.J.; Mathew, S. Annual to decadal morphodynamics of the foredune system at Greenwich Dunes, Prince Edward Island, Canada. Earth Surf. Proc. Landf. 2013, 38, 284–298. [Google Scholar] [CrossRef]
- Donker, J.; van Maarseveen, M.C.G.; Ruessink, G. Spatio-temporal variations in foredune dynamics determined with mobile laser scanning. J. Mar. Sci. Eng. 2018, 6, 126. [Google Scholar] [CrossRef]
- Suanez, S.; Cariolet, J.M.; Cancouët, R.; Ardhuin, F.; Delacourt, C. Dune recovery after storm erosion on a high-energy beach: Vouget Beach, Brittany (France). Geomorphology 2012, 139–140, 16–33. [Google Scholar] [CrossRef]
- Wijnberg, K.M. Environmental controls on the decadal morphologic behaviour of the Holland coast. Mar. Geol. 2002, 189, 227–247. [Google Scholar] [CrossRef]
- Aagaard, T.; Kroon, A.; Andersen, S.; Sorensen, R.M.; Quartel, S.; Vinther, N. Intertidal beach change during storm conditions; Egmond, The Netherlands. Mar. Geol. 2005, 218, 65–80. [Google Scholar] [CrossRef]
- Van Enckevort, I.M.J.; Ruessink, B.G. Effects of hydrodynamics and bathymetry on video estimates of nearshore sandbar position. J. Geophys. Res. 2001, 106, 16969–16979. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Bell, P.S.; Van Enckevort, I.M.J.; Aarninkhof, S.G.J. Nearshore bar crest location quantified from time-averaged X-band radar images. Coast. Eng. 2002, 45, 19–32. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Arens, S.M.; Kuipers, M.; Donker, J.J.A. Coastal dune dynamics in response to excavated foredune notches. Aeol. Res. 2018, 31, 3–17. [Google Scholar] [CrossRef]
- Van Son, S.T.J.; Lindenbergh, R.C.; de Schipper, M.A.; de Vries, S.; Duijnmayer, K. Monitroing bathymetric changes at storm Decadal-scale. PositionIT 2010, 59–65. [Google Scholar]
- De Schipper, M.A.; De Vries, S.; Ruessink, G.; De Zeeuw, R.C.; Rutten, J.; Van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 2016, 111, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Wijnberg, K.M.; Terwindt, J.H.J. Extracting decadal morphological behaviour from high-resolution long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Mar. Geol. 1995, 126, 301–330. [Google Scholar] [CrossRef]
- Spencer, T.; Brooks, S.M.; Evans, B.R.; Tempest, J.A.; Möller, I. Southern North Sea storm surge event of 5 December 2013: Water levels, waves and coastal impacts. Earth-Sci. Rev. 2015, 46, 120–145. [Google Scholar] [CrossRef]
- Rijkswaterstaat. Stormvloedrapport van 5 t/m 7 December 2013—Sint-Nicolaasvloed 2013; Technical Report SR91; Watermanagementcentrum: The Hague, The Netherlands, 2014; p. 48. (In Dutch) [Google Scholar]
- Rijkswaterstaat. Stormvloedrapport van 21 en 22 oktober 2014; Technical Report SR92; Watermanagementcentrum: The Hague, The Netherlands, 2015; p. 41. (In Dutch) [Google Scholar]
- Bochev-van der Burgh, L.M.; Wijnberg, K.M.; Hulscher, S.J.M.H. Decadal-scale morphologic variability of managed coastal dunes. Coast. Eng. 2011, 58, 927–936. [Google Scholar] [CrossRef]
- De Vries, S.; Southgate, H.N.; Kanning, W.; Ranasinghe, R. Dune behavior and aeolian transport on decadal timescales. Coast. Eng. 2012, 67, 41–53. [Google Scholar] [CrossRef]
- D’Errico, J. Inpaint_nans (Release: 2). Matlab Central File Exchange. 2004. Available online: https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans (accessed on 21 May 2019).
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surface and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Proc. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- De Haas, T.; Ventra, D.; Carbonneau, P.E.; Kleinhans, M.G. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology 2014, 217, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Lane, S.N.; James, T.D.; Crowell, M.D. Application of digital photogrammetry to complex topography for geomorphological research. Photogramm. Rec. 2000, 16, 793–821. [Google Scholar] [CrossRef]
- Westaway, R.M.; Lane, S.N.; Hicks, D.M. Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis. Int. J. Remote Sens. 2003, 4, 795–815. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Tolman, H.L. A mosaic approach to wind wave modeling. Ocean Model. 2008, 25, 35–47. [Google Scholar] [CrossRef]
- Cohn, N.; Ruggiero, P.; De Vries, S.; Kaminsky, G.M. New insights on coastal foredune growth: The relative contributions of marine and aeolian processes. Geophys. Res. Lett. 2018, 45, 4965–4973. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H., Jr. Empirical parameterization of setup, swash and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
# | Date | Type | Photo | Bathymetry |
---|---|---|---|---|
1 | 2013-01-14 | ALS | T | |
2 | 2013-04-29 | UAV-SfM | X | |
3 | 2013-10-04 | UAV-SfM | X | |
4 | 2013-12-10 | MLS | X | |
5 | 2014-01-18 | ALS | ||
6 | 2014-03-17 | MLS | X | T |
7 | 2014-10-10 | MLS | X | |
8 | 2015-01-16 | MLS | ||
9 | 2015-03-15 | ALS | ||
10 | 2015-04-17 | MLS | X | T |
11 | 2015-06-29 | MLS | ||
12 | 2015-09-29 | MLS | D | |
13 | 2015-10-09 | MLS | X | |
14 | 2015-10-29 | MLS | ||
15 | 2015-12-14 | MLS | ||
16 | 2016-01-25 | MLS | ||
17 | 2016-02-16 | ALS | ||
18 | 2016-02-29 | MLS | T | |
19 | 2016-04-18 | MLS | X | |
20 | 2016-06-09 | MLS | ||
21 | 2016-07-07 | MLS | ||
22 | 2016-10-07 | MLS | ||
23 | 2016-11-28 | MLS | X | |
24 | 2017-01-26 | MLS | ||
25 | 2017-01-27 | ALS | ||
26 | 2017-03-03 | MLS | ||
27 | 2017-05-09 | MLS | X | T |
28 | 2017-09-23 | UAV-Lidar | D | |
29 | 2017-10-09 | MLS | ||
30 | 2017-10-16 | UAV-SfM | X | |
31 | 2017-11-03 | UAV-Lidar | D | |
32 | 2017-12-20 | MLS | ||
33 | 2018-01-23 | MLS | ||
34 | 2018-02-13 | ALS | ||
35 | 2018-03-21 | MLS | T | |
36 | 2018-07-10 | MLS | ||
37 | 2018-09-27 | MLS | ||
38 | 2018-11-22 | MLS | D | |
39 | 2019-01-07 | MLS |
Date | #Images | #GCPs | #Tie Points | (m) | (m) | (m) | Total (m) |
---|---|---|---|---|---|---|---|
2013-04-29 | 636 | 22 | 0.114 | 0.103 | 0.078 | 0.172 | |
2013-10-04 | 391 | 12 | 0.069 | 0.061 | 0.058 | 0.109 | |
2013-12-10 | 368 | 24 | 0.112 | 0.155 | 0.081 | 0.208 | |
2014-03-17 | 428 | 40 | 0.010 | 0.012 | 0.021 | 0.026 | |
2014-10-10 | 840 | 26 | 0.093 | 0.118 | 0.046 | 0.157 | |
2015-04-17 | 1112 | 40 | 0.023 | 0.023 | 0.034 | 0.047 | |
2015-10-09 | 386 | 37 | 0.041 | 0.022 | 0.028 | 0.055 | |
2016-04-18 | 833 | 37 | 0.018 | 0.026 | 0.025 | 0.041 | |
2016-11-28 | 1045 | 38 | 0.021 | 0.024 | 0.041 | 0.053 | |
2017-05-09 | 1179 | 35 | 0.035 | 0.041 | 0.042 | 0.069 | |
2017-10-16 | 774 | 22 | 0.048 | 0.060 | 0.030 | 0.083 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruessink, G.; Schwarz, C.S.; Price, T.D.; Donker, J.J.A. A Multi-Year Data Set of Beach-Foredune Topography and Environmental Forcing Conditions at Egmond aan Zee, The Netherlands. Data 2019, 4, 73. https://doi.org/10.3390/data4020073
Ruessink G, Schwarz CS, Price TD, Donker JJA. A Multi-Year Data Set of Beach-Foredune Topography and Environmental Forcing Conditions at Egmond aan Zee, The Netherlands. Data. 2019; 4(2):73. https://doi.org/10.3390/data4020073
Chicago/Turabian StyleRuessink, Gerben, Christian S. Schwarz, Timothy D. Price, and Jasper J. A. Donker. 2019. "A Multi-Year Data Set of Beach-Foredune Topography and Environmental Forcing Conditions at Egmond aan Zee, The Netherlands" Data 4, no. 2: 73. https://doi.org/10.3390/data4020073
APA StyleRuessink, G., Schwarz, C. S., Price, T. D., & Donker, J. J. A. (2019). A Multi-Year Data Set of Beach-Foredune Topography and Environmental Forcing Conditions at Egmond aan Zee, The Netherlands. Data, 4(2), 73. https://doi.org/10.3390/data4020073