Towards the Fulfillment of a Knowledge Gap: Wood Densities for Species of the Subtropical Atlantic Forest
Abstract
:1. Introduction
2. Data Description
3. Methods
3.1. Study Area
3.2. Data Collection for Determining Wood Basic Densities
3.3. Wood Basic Density Determination
3.4. Forest Community Data Collected by the IFFSC
3.5. Calculating the Mean for the IFFSC Sample Plots
4. User Notes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Data from: Towards a Worldwide Wood Economics Spectrum. Dryad Digital Repository. Available online: https://doi.org/10.5061/dryad.234 (accessed on 17 May 2019).
- Henry, M.; Bombelli, A.; Trotta, C.; Alessandrini, A.; Birigazzi, L.; Sola, G.; Vieilledent, G.; Santenoise, P.; Longuetaud, F.; Valentini, R.; et al. GlobAllomeTree: International platform for tree allometric equations to support volume, biomass and carbon assessment. iForest 2013, 6, 326–330. [Google Scholar] [CrossRef]
- Kattge, J.; Diaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Bönisch, G.; Garmier, E.; Westoby, P.; Reich, B.; Wright, J.H.C.; et al. TRY—A global database of plant traits. Glob. Chang. Biol. 2011, 17, 2905–2935. [Google Scholar] [CrossRef]
- Baker, T.R.; Phillips, O.L.; Malhi, Y.; Almeida, S.; Arroyo, L.; Di Fiore, A.; Erwin, T.; Killeen, T.J.; Laurance, S.G.; Laurance, W.F.; et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 2004, 10, 545–562. [Google Scholar] [CrossRef]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Ser. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Lloyd, J.; Lewis, S.L.; Brienen, R.J.W.; Gloor, M.; Mendoza, A.M.; Lopez-Gonzalez, G.; Banin, L.; Salim, K.A.; Affum-Baffoe, K.; et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 2012, 9, 3381–3403. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delliti, W.D.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Basuki, T.M.; Van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Huy, B.; Poudel, K.P.; Temesgen, H. Aboveground biomass equation for evergreen broadleaf forests in South Central Coastal ecoregion of Vietnam: Selection of eco-regional or pantropical models. For. Ecol. Manag. 2016, 376, 276–283. [Google Scholar] [CrossRef]
- Uller, H.F.; Oliveira, L.Z.; Vibrans, A.C.; Klitzke, A.R.; Eleotério, J.R. Aboveground biomass quantification and tree-level prediction models for the Brazilian subtropical Atlantic Forest. South. For. 2019. [Google Scholar] [CrossRef]
- Poorter, L.; McDonald, I.; Alarcón, A.; Fichtler, E.; Licona, J.C.; Peña-Claros, M.; Sterck, F.; Villegas, Z.; Sass-Klaassen, U. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 2010, 185, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Rozendaal, D.M.; Bongers, F.; Almeida-Cortez, J.S.; Zambrano, A.M.A.; Álvarez, F.S.; Andrade, J.L.; Villa, L.F.A.; Balvanera, P.; Becknell, J.M.; et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 2019, 3, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Padilha, D.L.; Marco Júnior, P. A gap in the woods: Wood density knowledge as impediment to develop sustainable use in Atlantic Forest. For. Ecol. Manag. 2018, 424, 448–457. [Google Scholar] [CrossRef]
- Chave, J.; Muller-Landau, H.C.; Baker, T.R.; Easdale, T.A.; Steege, H.T.; Weeb, C.O. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 2006, 6, 2356–2367. [Google Scholar] [CrossRef]
- Slik, J.W.F. Estimating species-specific wood density from the genus average in Indonesian trees. J. Trop. Ecol. 2006, 22, 481–482. [Google Scholar] [CrossRef]
- Baker, D.J.; Richards, G.; Grainger, A.; Gonzalez, P.; Brown, S.; DeFries, R.; Held, A.; Kellndorfer, J.; Ndunda, P.; Ojima, D.; et al. Achieving forest carbon information with higher certainty: A five-part plan. Environ. Sci. Policy 2010, 13, 249–260. [Google Scholar] [CrossRef]
- Meyer, L.; Vibrans, A.C.; Gasper, A.L.; Lingner, D.V.; Sampaio, D.K. Espécies exóticas encontradas nas florestas de Santa Catarina. In Inventário Florístico Florestal de Santa Catarina: Diversidade e Conservação dos Remanescentes Florestais; Vibrans, A.C., Sevegnani, L., Gasper, A.L., Lingner, D.V., Eds.; Edifurb: Blumenau, Brazil, 2013; pp. 193–215. [Google Scholar]
- Nunes, A.S.; Higuchi, P.; Silva, A.C.; Kilca, R.V.; Silva, M.A.F.; Larsen, J.G. Ligustrum Lucidum Opportunist Invasive Species Araucaria For. South Brazil. Rodriguésia 2018, 69, 351–362. [Google Scholar] [CrossRef]
- Flora do Brasil 2020. Available online: Http://floradobrasil.jbrj.gov.br/ (accessed on 17 May 2019).
- APG IV—Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley: New York, NY, USA, 1977; p. 134. [Google Scholar]
- Vibrans, A.C.; McRoberts, R.E.; Moser, P.; Nicoletti, A.L. Using satellite image-based maps and ground inventory data to estimate the remaining Brazilian Atlantic forest in Santa Catarina. Remote Sens. Environ. 2013, 130, 87–95. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.T.; Budke, J.C.; Jarenkow, J.A.; Eisenlohr, P.V.; Neves, D.R.M. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J. Plant Ecol. 2015, 8, 242–260. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Pandolfo, C.; Braga, H.J.; Silva, V.P.; Massignan, A.M.; Pereira, E.S.; Thomé, V.M.R. Atlas Climatológico do Estado de Santa Catarina; Epagri: Florianópolis, Brazil, 2002. [Google Scholar]
- Nicolini, É.; Caraglio, Y.; Pélissier, R.; Leroy, C.; Roggy, J.C. Epicormic branches: A growth indicator for the tropical forest tree, Dicorynia Guianensis Amshoff (Caesalpiniaceae). Ann. Bot. 2003, 92, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Associação Brasileira de Normas Técnicas—ABNT. NBR 16048: Madeira—Determinação da Densidade báSica; ABNT: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Gasper, A.L.; Vibrans, A.C.; Funez, L.A.; Rigon Junior, M.J.; Bittencourt, F.; Vieira, C. Dr. Roberto Miguel Klein Herbarium (FURB), Blumenau, Southern Brazil. PhytoKeys 2014, 42, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G. flora: Tools for Interacting with the Brazilian Flora 2020. R Package Version 0.3.0. Available online: Https://CRAN.R-project.org/package=flora (accessed on 17 May 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: Https://www.R-project.org/ (accessed on 30 April 2019).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. R Package Version 0.8.0.1. Available online: Https://CRAN.R-project.org/package=dplyr (accessed on 16 May 2019).
- VanDerWal, J.; Falconi, L.; Januchowski, S.; Shoo, L.; Storlie, C. SDMTools: Species Distribution Modelling Tools: Tools for Processing Data Associated with Species Distribution Modelling Exercises. R Package Version 1.1-221.1. Available online: Https://CRAN.R-project.org/package=SDMTools (accessed on 16 May 2019).
- Vieira, S.A.; Alves, L.F.; Aidar, M.; Araújo, L.S.; Baker, T.; Batista, J.L.F.; Campos, M.C.R.; Camargo, P.B.; Chave, J.; Delitti, W.B.; et al. Estimation of biomass and carbon stocks: The case of the Atlantic Forest. Biota Neotrop. 2008, 8, 21–29. [Google Scholar] [CrossRef]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.; Joly, C.A.; Martinelli, L.A. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For. Ecol. Manag. 2008, 260, 679–691. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Chen, Q.; Domke, G.M.; Ståhl, G.; Saarela, S.; Westfall, J.A. Hybrid estimators for mean aboveground carbon per unit area. For. Ecol. Manag. 2016, 378, 44–56. [Google Scholar] [CrossRef]
- Patiño, S.; Lloyd, J.; Paiva, R.; Baker, T.R.; Quesada, C.A.; Mercado, L.M.; Schmerler, J.; Schwarz, M.; Santos, A.J.B.; Aguilar, A.; et al. Branch xylem density variations across the Amazon Basin. Biogeosciences 2009, 6, 545–568. [Google Scholar] [CrossRef] [Green Version]
Header | Description | Unit |
---|---|---|
Species | Species’ scientific name validated by [21] | - |
Genus | Species’ genus | - |
Family | Species’ botanical family following [22] | - |
For. type (SC) | Forest type within the state of Santa Catarina in which the species was sampled | Evergreen rainforest Araucaria forest Semi-deciduous forest |
No. of trees | Number of sampled individual trees | - |
No. of discs | Number of discs used to determine the species’ mean | - |
Tree compart | Tree compartment from each the discs were taken | stem or large branch (⌀ ≥ 5 cm) |
Mean (kg m−3) | Mean wood basic density (determined according to Equation (1)) over the discs | kg m−3 |
SD (kg m−3) | Standard deviation of among individual trees | kg m−3 |
CV% | Coefficient of variation of among individual trees | % |
Forest Type | No. of Species | No. of Trees | No. of Discs | Mean (kg m−3) | Standard Deviation 1 (kg m−3) | Minimum (kg m−3) | Maximum (kg m−3) |
---|---|---|---|---|---|---|---|
ERF | 83 | 270 | 759 | 524.9a | 124.9 | 256.5 | 769.6 |
AF | 46 | 79 | 236 | 550.8a | 118.1 | 303.6 | 790.9 |
SF | 42 | 72 | 214 | 547.5a | 124.3 | 281.4 | 765.3 |
All | 153 | 421 | 1209 | 538.6 | 120.5 | 256.5 | 790.9 |
Header | Description | Unit |
---|---|---|
Species | Species’ scientific name validated by [21] | - |
Genus | Species’ genus | - |
Family | Species’ botanical family following [22] | - |
(kg m−3) | Wood basic density | kg m−3 |
Header | Description | Unit |
---|---|---|
Sample plot | IFFSC sample plot ID | - |
For. type | Forest type wherein the sample plot was located | Evergreen rainforest Araucaria forest Semi-deciduous forest |
Long | Sample plot’s longitude | Decimal degrees |
Lat | Sample plot’s latitude | Decimal degrees |
Mean (kg m−3) | Arithmetic mean wood basic density over the species within the sample plot | kg m−3 |
SD (kg m−3) | Standard deviation of over the species within the sample plot | kg m−3 |
W. mean (kg m−3) | Weighted mean based on the species’ basal area in the sample plot | kg m−3 |
SDw (kg m−3) | Weighted standard deviation of based on the species’ basal area in the sample plot | kg m−3 |
Forest Type | Weight | No. of Sample Plots | Mean 1 (kg m−3) | Standard Error (kg m−3) | Mean 2 (kg m−3) | Standard Error (kg m−3) |
---|---|---|---|---|---|---|
ERF | 0.4796 | 206 | 532.7a | 1.7 | 524.9a | 3.0 |
AF | 0.4677 | 181 | 523.3b | 1.7 | 517.9a | 3.1 |
SF | 0.0475 | 90 | 521.0b | 2.4 | 489.9b | 5.0 |
All | 1.0000 | 477 | 525.0 | 1.8 | 517.3 | 3.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimermann Oliveira, L.; Felippe Uller, H.; Renata Klitzke, A.; Roberto Eleotério, J.; Christian Vibrans, A. Towards the Fulfillment of a Knowledge Gap: Wood Densities for Species of the Subtropical Atlantic Forest. Data 2019, 4, 104. https://doi.org/10.3390/data4030104
Zimermann Oliveira L, Felippe Uller H, Renata Klitzke A, Roberto Eleotério J, Christian Vibrans A. Towards the Fulfillment of a Knowledge Gap: Wood Densities for Species of the Subtropical Atlantic Forest. Data. 2019; 4(3):104. https://doi.org/10.3390/data4030104
Chicago/Turabian StyleZimermann Oliveira, Laio, Heitor Felippe Uller, Aline Renata Klitzke, Jackson Roberto Eleotério, and Alexander Christian Vibrans. 2019. "Towards the Fulfillment of a Knowledge Gap: Wood Densities for Species of the Subtropical Atlantic Forest" Data 4, no. 3: 104. https://doi.org/10.3390/data4030104
APA StyleZimermann Oliveira, L., Felippe Uller, H., Renata Klitzke, A., Roberto Eleotério, J., & Christian Vibrans, A. (2019). Towards the Fulfillment of a Knowledge Gap: Wood Densities for Species of the Subtropical Atlantic Forest. Data, 4(3), 104. https://doi.org/10.3390/data4030104