An Analysis by State on The Effect of Movement Control Order (MCO) 3.0 Due to COVID-19 on Malaysians’ Mental Health: Evidence from Google Trends
Abstract
:1. Introduction
2. Method
2.1. Sample Selection
2.2. Difference-in-Differences Estimators of Lockdown Effects
2.3. Google Trends Data
2.4. Scaling Procedure
3. Results
3.1. Difference-in-Differences Estimation Results
3.2. Graphical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nie, X.-D.; Wang, Q.; Wang, M.-N.; Zhao, S.; Liu, L.; Zhu, Y.-L.; Chen, H. Anxiety and depression and its correlates in patients with coronavirus disease 2019 in Wuhan. Int. J. Psychiatry Clin. Pract. 2021, 25, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Talevi, D.; Socci, V.; Carai, M.; Carnaghi, G.; Faleri, S.; Trebbi, E.; di Bernardo, A.; Capelli, F.; Pacitti, F. Mental health outcomes of the CoViD-19 pandemic. Riv. Psichiatr. 2020, 55, 137–144. [Google Scholar] [PubMed]
- Ping, N.P.T.; Kamu, A.; Kassim, M.A.M.; Mun, H.C. Analyses of the effectiveness of Movement Control Order (MCO) in reducing the COVID-19 confirmed cases in Malaysia. J. Health Transl. Med. 2020, 24, 16–27. [Google Scholar] [CrossRef]
- Pang, N.T.P.; Kamu, A.; Kassim, M.A.M.; Ho, C.M. Monitoring the impact of Movement Control Order (MCO) in flattening the cummulative daily cases curve of COVID-19 in Malaysia: A generalized logistic growth modeling approach. Infect. Dis. Model. 2021, 6, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Woon, L.S.-C.; Sidi, H.; Nik Jaafar, N.R.; Leong Bin Abdullah, M.F.I. Mental health status of university healthcare workers during the COVID-19 pandemic: A post–movement lockdown assessment. Int. J. Environ. Res. Public Health 2020, 17, 9155. [Google Scholar] [CrossRef]
- Wan Mohd Yunus, W.M.A.; Badri, S.K.Z.; Panatik, S.A.; Mukhtar, F. The unprecedented movement control order (lockdown) and factors associated with the negative emotional symptoms, happiness, and work-life balance of Malaysian University students during the coronavirus disease (COVID-19) pandemic. Front. Psychiatry 2021, 11, 566221. [Google Scholar] [CrossRef]
- Dubey, S.; Biswas, P.; Ghosh, R.; Chatterjee, S.; Dubey, M.J.; Chatterjee, S.; Lahiri, D.; Lavie, C.J. Psychosocial impact of COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 779–788. [Google Scholar] [CrossRef]
- Sher, L. The impact of the COVID-19 pandemic on suicide rates. QJM Int. J. Med. 2020, 113, 707–712. [Google Scholar] [CrossRef]
- Brodeur, A.; Clark, A.E.; Fleche, S.; Powdthavee, N. COVID-19, lockdowns and well-being: Evidence from Google Trends. J. Public Econ. 2021, 193, 104346. [Google Scholar] [CrossRef]
- Kang, M.; Zhong, H.; He, J.; Rutherford, S.; Yang, F. Using google trends for influenza surveillance in South China. PLoS ONE 2013, 8, e55205. [Google Scholar] [CrossRef]
- Cho, S.; Sohn, C.H.; Jo, M.W.; Shin, S.-Y.; Lee, J.H.; Ryoo, S.M.; Kim, W.Y.; Seo, D.-W. Correlation between national influenza surveillance data and google trends in South Korea. PLoS ONE 2013, 8, e81422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Bambrick, H.; Mengersen, K.; Tong, S.; Hu, W. Using Google Trends and ambient temperature to predict seasonal influenza outbreaks. Environ. Int. 2018, 117, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Ciaffi, J.; Meliconi, R.; Landini, M.P.; Ursini, F. Google trends and COVID-19 in Italy: Could we brace for impact? Intern. Emerg. Med. 2020, 15, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
- Daw, J.R.; Hatfield, L.A. Matching and regression to the mean in difference-in-differences analysis. Health Serv. Res. 2018, 53, 4138–4156. [Google Scholar] [CrossRef] [PubMed]
- Dimick, J.B.; Ryan, A.M. Methods for evaluating changes in health care policy: The difference-in-differences approach. JAMA 2014, 312, 2401–2402. [Google Scholar] [CrossRef]
- Pang, N.T.P.; Nold Imon, G.; Johoniki, E.; Mohd Kassim, M.A.; Omar, A.; Syed Abdul Rahim, S.S.; Hayati, F.; Jeffree, M.S.; Ng, J.R. Fear of COVID-19 and COVID-19 stress and association with sociodemographic and psychological process factors in cases under surveillance in a frontline worker population in Borneo. Int. J. Environ. Res. Public Health 2021, 18, 7210. [Google Scholar] [CrossRef]
- Salvaraji, L.; Rahim, S.S.S.A.; Jeffree, M.S.; Omar, A.; Pang, N.T.P.; Ahmedy, F.; Hayati, F.; Yeap, B.T.; Giloi, N.; Saupin, S. The importance of high index of suspicion and immediate containment of suspected COVID-19 cases in institute of higher education Sabah, Malaysia Borneo. Malays. J. Public Health Med. 2020, 20, 74–83. [Google Scholar] [CrossRef]
- Timoneda, J.C.; Wibbels, E. Spikes and variance: Using Google Trends to detect and forecast protests. Political Anal. 2022, 30, 1–18. [Google Scholar] [CrossRef]
- Krystal, A.D. Psychiatric disorders and sleep. Neurol. Clin. 2012, 30, 1389–1413. [Google Scholar] [CrossRef] [Green Version]
- Kotera, Y.; Dosedlova, J.; Andrzejewski, D.; Kaluzeviciute, G.; Sakai, M. From stress to psychopathology: Relationship with self-reassurance and self-criticism in Czech university students. Int. J. Ment. Health Addict. 2022, 20, 2321–2332. [Google Scholar] [CrossRef]
- Merrill, R.M. Mental Health Conditions according to Stress and Sleep Disorders. Int. J. Environ. Res. Public Health 2022, 19, 7957. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, C.; Tufik, S.; Andersen, M.L. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 2015, 8, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernama. Almost 500,000 Msians Depressed; Nearly 500 Suicide Attempts This Year. Available online: https://www.nst.com.my/news/nation/2020/10/631154/almost-500000-msians-depressed-nearly-500-suicide-attempts-year (accessed on 13 September 2022).
- Woon, L.S.-C.; Mansor, N.S.; Mohamad, M.A.; Teoh, S.H.; Leong Bin Abdullah, M.F.I. Quality of life and its predictive factors among healthcare workers after the end of a movement lockdown: The salient roles of COVID-19 stressors, psychological experience, and social support. Front. Psychol. 2021, 12, 652326. [Google Scholar] [CrossRef]
- Rahman, S. Borderland without Business: The Economic Impact of COVID-19 on Peninsular Malaysia’s Southernmost State of Johor; ISEAS—Yusof Ishak Institute: Singapore, 2021. [Google Scholar]
- Ping, N.P.T.; Shoesmith, W.D.; James, S.; Hadi, N.M.N.; Yau, E.K.B.; Lin, L.J. Ultra brief psychological interventions for COVID-19 pandemic: Introduction of a locally-adapted brief intervention for mental health and psychosocial support service. Malays. J. Med. Sci. MJMS 2020, 27, 51. [Google Scholar]
- Subhas, N.; Pang, N.T.-P.; Chua, W.-C.; Kamu, A.; Ho, C.-M.; David, I.S.; Goh, W.W.-L.; Gunasegaran, Y.I.; Tan, K.-A. The Cross-Sectional Relations of COVID-19 Fear and Stress to Psychological Distress among Frontline Healthcare Workers in Selangor, Malaysia. Int. J. Environ. Res. Public Health 2021, 18, 10182. [Google Scholar] [CrossRef] [PubMed]
- Sycińska-Dziarnowska, M.; Szyszka-Sommerfeld, L.; Kłoda, K.; Simeone, M.; Woźniak, K.; Spagnuolo, G. Mental Health Interest and Its Prediction during the COVID-19 Pandemic Using Google Trends. Int. J. Environ. Res. Public Health 2021, 18, 12369. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.M.; Melia, R.; Francis, K.; Bogue, J.; O’Sullivan, M.; Young, K.; Bernert, R.A.; Rebholz-Schuhmann, D.; Duggan, J. The validity of Google Trends search volumes for behavioral forecasting of national suicide rates in Ireland. Int. J. Environ. Res. Public Health 2019, 16, 3201. [Google Scholar] [CrossRef] [Green Version]
- Ohlheiser, A. Google Examines How Different Generations Handle Misinformation. Available online: https://www.technologyreview.com/2022/08/11/1057552/gen-z-misinformation/ (accessed on 13 September 2022).
- Pang, N.; Lee, G.; Tseu, M.; Joss, J.I.; Honey, H.A.; Shoesmith, W.; James, S.; Loo, J.L.; Lasimbang, H. Validation of the alcohol use disorders identification test (AUDIT)–Dusun version in alcohol users in Sabahan Borneo. Arch. Psychiatry Res. Int. J. Psychiatry Relat. Sci. 2020, 56, 129–142. [Google Scholar] [CrossRef]
- Arora, V.S.; McKee, M.; Stuckler, D. Google Trends: Opportunities and limitations in health and health policy research. Health Policy 2019, 123, 338–341. [Google Scholar] [CrossRef] [Green Version]
- Wider, W.; Suki, N.M.; Lott, M.L.; Nelson, L.J.; Low, S.K.; Cosmas, G. Examining Criteria for Adulthood among Young People in Sabah (East Malaysia). J. Adult Dev. 2021, 28, 194–206. [Google Scholar] [CrossRef]
State | ||||
---|---|---|---|---|
Sleep | ‘Tidur’ | Stress | ‘Tekanan’ | |
B (t Value) | B (t Value) | B (t Value) | B (t Value) | |
Johor | 10.564 (1.139) | 16.512 (2.278) * | 9.012 (1.162) | −5.780 (−0.685) |
Kedah | 12.186 (1.205) | −8.802 (−0.963) | −3.476 (−0.404) | 5.890 (1.610) |
Kelantan | N/I | N/I | N/I | N/I |
Kuala Lumpur | N/I | N/I | N/I | N/I |
Labuan | N/A | N/A | 0.597 (0.123) | N/A |
Malacca | 2.084 (0.276) | 12.587 (1.423) | 4.740 (0.653) | 3.174 (0.533) |
Negeri Sembilan | −4.550 (−0.562) | 11.621 (1.420) | 9.169 (0.954) | 7.510 (1.155) |
Pahang | 2.392 (0.303) | −7.968 (−1.087) | 13.335 (1.649) | −1.307 (−0.163) |
Penang | −2.272 (−0.244) | 13.128 (1.346) | −3.636 (−0.380) | 17.065 (2.222) * |
Perak | N/A | 11.556 (1.501) | 11.735 (1.191) | 16.357 (1.461) |
Perlis | 6.018 (0.698) | −4.033 (−0.536) | N/A | 3.087 (0.499) |
Putrajaya | −6.632 (−1.016) | 4.935 (0.777) | 4.797 (1.028) | 9.516 (0.492) |
Sabah | 3.743 (0.485) | 9.808 (1.635) | −4.916 (−0.655) | −2.598 (−0.383) |
Sarawak | 0.359 (0.047) | 16.891 (1.913) | 0.172 (0.022) | 15.203 (2.447) * |
Selangor | 0.129 (0.018) | 5.108 (0.787) | 6.862 (0.950) | −3.295 (−.343) |
Terengganu | 1.813 (0.204) | 8.039 (0.843) | 7.348 (0.974) | 9.585 (1.076) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, N.T.P.; Kamu, A.; Ho, C.M.; Wider, W.; Tseu, M.W.L. An Analysis by State on The Effect of Movement Control Order (MCO) 3.0 Due to COVID-19 on Malaysians’ Mental Health: Evidence from Google Trends. Data 2022, 7, 163. https://doi.org/10.3390/data7110163
Pang NTP, Kamu A, Ho CM, Wider W, Tseu MWL. An Analysis by State on The Effect of Movement Control Order (MCO) 3.0 Due to COVID-19 on Malaysians’ Mental Health: Evidence from Google Trends. Data. 2022; 7(11):163. https://doi.org/10.3390/data7110163
Chicago/Turabian StylePang, Nicholas Tze Ping, Assis Kamu, Chong Mun Ho, Walton Wider, and Mathias Wen Leh Tseu. 2022. "An Analysis by State on The Effect of Movement Control Order (MCO) 3.0 Due to COVID-19 on Malaysians’ Mental Health: Evidence from Google Trends" Data 7, no. 11: 163. https://doi.org/10.3390/data7110163
APA StylePang, N. T. P., Kamu, A., Ho, C. M., Wider, W., & Tseu, M. W. L. (2022). An Analysis by State on The Effect of Movement Control Order (MCO) 3.0 Due to COVID-19 on Malaysians’ Mental Health: Evidence from Google Trends. Data, 7(11), 163. https://doi.org/10.3390/data7110163