Climate Data to Support the Adaptation of Buildings to Climate Change in Canada
Abstract
:1. Introduction
2. Locations Considered for Data Generation
3. Methodology
3.1. Preparation of Database of Observations and Climate Model Simulations
3.2. Bias Correction of Climate Model Simulations
3.3. Estimation of Direct and Diffused Components of Global Solar Radiation
- Hourly clearness index () was calculated as the ratio of hourly GHI and extra-terrestrial solar radiation, which was calculated using equations provided in [48].
- The values of were used to calculate the diffused fraction using Equation (4) [49].
- The DHI was calculated using Equation (5).
- The values of DNI were calculated using Equation (6).
3.4. Extraction of Reference Years from Long-Term Time-Series Data
3.4.1. Moisture Reference Year (MRY) for Hygrothermal Applications
3.4.2. Typical Meteorological Year (TMY) for Building Energy Applications
3.4.3. Temperature Reference Years (TRYs) to Capture Climate Uncertainty
4. Results and Discussion
4.1. Efficiency of Bias-Correction
4.2. Future Projected Changes in Climate
4.3. Reference Year Data
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bindoff, N.L. Detection and Attribution of Climate Change: From Global to Regional. Climate Change 2013—The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Collins, M. Long-Term Climate Change: Projections, Commitments and Irreversibility Climate Change 2013—The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Zhang, X.; Flato, G.; Kirchmeier-Young, M.; Vincent, L.; Wan, H.; Wang, X.; Kharin, V.V. Changes in Temperature and Precipitation across Canada; Lemmen, E.D.S., Ed.; Canada’s Changing Climate Report; Government of Canada: Ottawa, ON, Canada, 2019; Chapter 4 in Bush; pp. 112–193.
- Lacasse, M.; Gaur, A.; Moore, T. Durability and Climate Change—Implications for Service Life Prediction and the Maintainability of Buildings. Buildings 2020, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Nik, V.M.; Mundt-Petersen, S.; Kalagasidis, A.S.; Wilde, P. Future moisture loads for building facades in Sweden: Climate change and wind-driven rain. Build. Environ. 2015, 93, 362–375. [Google Scholar] [CrossRef]
- Huijbregts, Z.; Kramer, R.P.; Martens, M.H.J.; van Schijndel, A.W.M.; Schellen, H.L. A proposed method to assess the damage risk of future climate change to museum objects in historic buildings. Build. Environ. 2012, 55, 43–56. [Google Scholar] [CrossRef]
- Tian, W.; Wilde, P. Uncertainty and sensitivity analysis of building performance using probabilistic climate projections: A UK case study. Autom. Constr. 2011, 20, 1096–1109. [Google Scholar] [CrossRef]
- Huang, C.; Barnett, A.G.; Wang, X.; Vaneckova, P.; FitzGerald, G.; Tong, S. Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review. Environ. Health Perspect. 2011, 119, 1681–1690. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.; Arbuthnott, K.; Kovats, S.; Hajat, S.; Falloon, P. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review. PLoS ONE 2017, 12, e0180369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankester, P.; Brimblecombe, P. The impact of future climate on historic interiors. Sci. Total Environ. 2012, 417–418, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Wilde, P.; Tian, W. Predicting the performance of an office under climate change: A study of metrics, sensitivity and zonal resolution. Energy Build. 2010, 42, 1674–1684. [Google Scholar] [CrossRef]
- Hamdy, M.; Carlucci, S.; Hoes, P.-J.; Hensen, J.L.M. The impact of climate change on the overheating risk in dwellings: A Dutch case study. Build. Environ. 2017, 122, 307–323. [Google Scholar] [CrossRef]
- Nik, V.M. Application of typical and extreme weather data sets in the hygrothermal simulation of building components for future climate—A case study for a wooden frame wall. Energy Build. 2017, 154, 30–45. [Google Scholar] [CrossRef]
- Laouadi, A.; Gaur, A.; Lacasse, M.; Bartko, M.; Armstrong, M. Development of reference summer weather years for analysis of overheating risk in buildings. J. Build. Perform. Simul. 2020, 13, 301–319. [Google Scholar] [CrossRef]
- Shu, C.; Gaur, A.; Wang, L.; Bartko, M.; Laouadi, A.; Ji, L.; Lacasse, M. Added value of convection permitting climate modelling in urban overheating assessments. Build. Environ. 2021, 207A, 108415. [Google Scholar] [CrossRef]
- Herrera, M.; Natarajan, S.; Coley, D.; Kershaw, T.; Ramallo Gonzalez, A.P.; Eames, M.; Fosas, D.; Wood, M. A Review of Current and Future Weather Data for Building Simulation. Build. Serv. Eng. Res. Technol. 2017, 38, 602–627. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Lacasse, M.; Armstrong, M. Climate Data to Undertake Hygrothermal and Whole Building Simulations Under Projected Climate Change Influences for 11 Canadian Cities. Data 2019, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Defo, M.; Lacasse, M.A. Effects of Climate Change on the Moisture Performance of Tallwood Building Envelope. Buildings 2021, 11, 35. [Google Scholar] [CrossRef]
- Morris, R. Final Report—Updating CWEEDS Weather Files. Contractor’s Report to Environment Canada 2016, Contract #3000607888. Available online: https://drive.google.com/drive/folders/1JP7CfRbIJoAGX5fsZWpC0CU4x2QwtIfX (accessed on 9 January 2022).
- Hall, I.J.; Prairie, R.R.; Anderson, H.E.; Boes, E.C. Generation of a Typical Meteorological Year. In Proceedings of the Analysis for Solar Heating and Cooling; San Diego, CA, USA, 27 June 1978, Sandia Labs.: Albuquerque, NM, USA, 1978. [Google Scholar]
- ASHRAE. Weather Year for Energy Calculations; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 1985. [Google Scholar]
- AHSRAE. International Weather for Energy Calculations (IWEC Weather Files); User’s Manual; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2002. [Google Scholar]
- Marion, W.; Urban, K. Users Manual for Radiation Data Base TMY2s Derived from the 1961–1990 National Solar Radiation Database; National Renewable Energy Laboratory: Golden, CO, USA, 1995.
- Perera, A.T.D.; Nik, V.; Chen, D.; Scartezzini, J.-L.; Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Jentsch, M.F.; Eames, M.E.; Levermore, G.J. Generating near-extreme Summer Reference Years for building performance simulation. Build. Serv. Eng. Res. Technol. 2015, 36, 503–522. [Google Scholar] [CrossRef] [Green Version]
- Crawley, D.B.; Lawrey, L.K. Rethinking the TMY: Is the ‘Typical’ Meteorological Year Best for Building Performance Simulation? In Proceedings of the BS 2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015; pp. 2655–2662. [Google Scholar]
- Cornick, S.; Djebbar, R.; Dalgliesh, W.A. Selecting moisture reference years using a Moisture Index approach. Build. Environ. 2003, 38, 1367–1379. [Google Scholar] [CrossRef]
- Zhou, X.; Derome, D.; Carmeliet, J. Robust moisture reference year methodology for hygrothermal simulations. Build. Environ. 2016, 110, 23–35. [Google Scholar] [CrossRef]
- Nik, V.M. Making energy simulation easier for future climate—Synthesizing typical and extreme weather data sets out of regional climate models (RCMs). Appl. Energy 2016, 177, 204–226. [Google Scholar] [CrossRef]
- Moazami, A.; Nik, V.; Carlucci, S.; Geving, S. Impacts of future weather data typology on building energy performance—Investigating long-term patterns of climate change and extreme weather conditions. Appl. Energy 2019, 238, 696–720. [Google Scholar] [CrossRef]
- Melin, C.B.; Hagentoft, C.-E.; Holl, K.; Nik, V.M.; Kilian, R. Simulations of Moisture Gradients in Wood Subjected to Changes in Relative Humidity and Temperature Due to Climate Change. Geosciences 2018, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Belcher, S.; Hacker, J.; Powell, D. Constructing design weather data for future climates. Build. Serv. Eng. Res. Technol. 2005, 26, 49–61. [Google Scholar] [CrossRef]
- Chan, A. Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong. Energy Build. 2011, 43, 2860–2868. [Google Scholar] [CrossRef]
- Jentsch, M.F. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renew. Energy 2013, 55, 514–524. [Google Scholar] [CrossRef]
- Eames, M.; Kershaw, T.; Coley, D. A comparison of future weather created from morphed observed weather and created by a weather generator. Build. Environ. 2012, 56, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.A. Simple future weather files for estimating heating and cooling demand. Build. Environ. 2015, 83, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Arora, V.; Scinocca, J.; Boer, G.; Christian, J.; Denman, K.; Flato, G.; Kharin, V.; Lee, W.; Merryfield, W. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Fyfe, J.C.; Derksen, C.; Mudryk, L.; Flato, G.M.; Santer, B.D.; Swart, N.C.; Molotch, N.P.; Zhang, X.; Wan, H.; Arora, V.K.; et al. Large near-term projected snowpack loss over the western United States. Nat. Commun. 2017, 8, 14996. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Cannon. MBC: Multivariate Bias Correction of Climate Model Outputs. R Package Version 0.10-5. 2020. Available online: https://cran.r-project.org/web/packages/MBC/index.html (accessed on 30 January 2022).
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of simulated precipitation by quantile mapping: How well do methods preserve relative changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 30 January 2022).
- Kim, K.B.; Kwon, H.H.; Han, D. Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme. Hydrol. Earth Syst. Sci. 2016, 20, 2019–2034. [Google Scholar] [CrossRef] [Green Version]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Kirchmeier-Young, M.C.; Zwiers, F.W.; Gillett, N.P.; Cannon, A.J. Attributing extreme fire risk in Western Canada to human emissions. Clim. Chang. 2017, 144, 365–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchmeier-Young, M.C.; Zwiers, F.W.; Gillett, N.P.; Cannon, A.J. Attribution of the Influence of Human-Induced Climate Change on an Extreme Fire Season. Earth’s Future 2019, 7, 2–10. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 2nd ed; John Wiley & Sons: Hoboken, MJ, USA; Madison, WI, USA; New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Orgill, J.F.; Hollands, K.G.T. Correlation equation for hourly diffuse radiation on a horizontal surface. Sol. Energy 1977, 19, 357–359. [Google Scholar] [CrossRef]
- Zhang, C.; Kazanci, O.B.; Attia, S.; Levinson, R.; Lee, S.H.; Holzer, P.; Salvati, A.; Machard, A.; Pourabdollahtootkaboni, M.; Gaur, A.; et al. IEA EBC Annex 80—Dynamic Simulation Guideline for the Performance Testing of Resilient Cooling Strategies; DCE Technical Report No. 299; Aalborg University: Aalborg, Denmark, 2021. [Google Scholar]
- Remund, J.; Wald, L.; Lefèvre, M.; Ranchin, T.; Page, J. Worldwide Linke Turbidity Information. In Proceedings of the ISES Solar World Congress 2003, Göteborg, Sweden, 16–19 June 2003; p. 13. [Google Scholar]
- World Meteorological Organization (WMO). Technical Note No. 172; WMO-No. 557; WMO: Geneva, Switzerland, 1981; pp. 121–123.
- Kasten, F. The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. Sol. Energy 1996, 56, 239–244. [Google Scholar] [CrossRef]
- Defo, M.; Lacasse, M.; Laouadi, A. A comparison of hygrothermal simulation results derived from four simulation tools. J. Build. Physics. 2021, 45, 432–456. [Google Scholar] [CrossRef]
- Wang, L.; Defo, M.; Xiao, Z.; Ge, H.; Lacasse, M.A. Stochastic Simulation of Mould Growth Performance of Wood-Frame Building Envelopes under Climate Change: Risk Assessment and Error Estimation. Buildings 2021, 11, 333. [Google Scholar] [CrossRef]
- Aggarwal, C.; Ge, H.; Defo, M.; Defo, M.; Lacasse, M. Reliability of Moisture Reference Year (MRY) selection methods for hygrothermal performance analysis of wood-frame walls under historical and future climates. Build. Environ. 2022, 207A, 108513. [Google Scholar] [CrossRef]
- Vandemeulebroucke, I.; Defo, M.; Lacasse, M.; Caluwaerts, S.; Bossche, N.V.D. Canadian initial-condition climate ensemble: Hygrothermal simulation on wood-stud and retrofitted historical masonry. Build. Environ. 2021, 187, 107318. [Google Scholar] [CrossRef]
- National Research Council Canada. National Building Code of Canada 2015. Available online: http://www.nrc-cnrc.gc.ca (accessed on 30 January 2022).
- Lacasse, M.; Ge, H.; Hegel, M.; Robert, J.; Laouadi, A.; Gary, S.; Wells, J. Guideline on Design for Durability of Building Envelopes; Technical Report; National Research Council Canada: Ottawa, ON, Canada, 2018. [CrossRef]
- Cannon, A.J.; Jeong, D.I.; Zhang, X.; Zwiers, F.W. Climate-Resilient Buildings and Core Public Infrastructure: An Assessment of the Impact of Climate Change on Climatic Design Data in Canada; Government of Canada: Ottawa, ON, Canada, 2020; 106p.
S.No. | Climate Variable (Shortname, Units) | Method of Preparation | Bias Correction Method | Ratio (Yes/No) | Trace |
---|---|---|---|---|---|
1 | Global horizontal irradiance (GHI, kJ/m2/h) | Bias correction of CanRCM4-LE simulated downward shortwave radiative flux | QDM | Yes | 0.1 |
2 | Direct normal irradiance (DNI, kJ/m2/h) | Estimated from bias-corrected GHI | − | − | − |
3 | Diffuse horizontal irradiance (DHI, kJ/m2/h) | − | − | − | |
4 | Total cloud cover (TCC, %) | Bias correction of CanRCM4-LE simulated total cloud-cover | MBCn | Yes | 1 |
5 | Rainfall (RAIN, mm) | Bias correction of CanRCM4-LE simulated rainfall obtained from hourly precipitation and daily solid precipitation | Yes | 0.1 | |
6 | Wind direction (WDIR, ° from north) | Bias correction of CanRCM4-LE simulated wind speed and direction obtained from hourly u, v components of wind | Yes | 1 | |
7 | Wind speed (WSP, m/s) | Yes | 0.1 | ||
8 | Relative humidity (RHUM, %) | Bias correction of CanRCM4-LE simulated relative humidity | Yes | 1 | |
9 | Temperature (TEMP, °C) | Bias correction of CanRCM4-LE simulated dry bulb temperature | No | − | |
10 | Atmospheric pressure (PRES, Pa) | Bias correction of CanRCM4-LE simulated atmospheric pressure | Yes | 10 | |
11 | Snow cover (SNOWC, 0/1) | Bias correction of CanRCM4-LE simulated snow-depth | Yes | 1 |
S.No. | Climate Parameter | Weight (%) |
---|---|---|
1 | Maximum dry bulb temperature | 5 |
2 | Minimum dry bulb temperature | 5 |
3 | Mean dry bulb temperature | 30 |
4 | Maximum dew point temperature | 2.5 |
5 | Minimum dew point temperature | 2.5 |
6 | Mean dew point temperature | 5 |
7 | Maximum wind speed | 5 |
8 | Mean wind speed | 5 |
9 | Daily global solar irradiance | 40 |
Data | Mean GHI (kJ/m2) | Mean TCC (%) | Annual RAIN (mm) | Mean WSP (m/s) | Mean WDIR (° from North) | Mean RHUM (%) | Mean TEMP (°C) | Mean PRES (Pa) | Mean Annual Snow Days |
---|---|---|---|---|---|---|---|---|---|
Raw | 21 | −2 | 312.1 | 1 | 25.5 | 8 | 1 | −1107.7 | −14 |
Bias-corrected | 2 | 1.4 | 3.1 | 0 | 0.9 | −0.2 | −0.2 | −4.5 | −7 |
GW Level | Spatial Statistic | Mean GHI (kJ/m2) | Mean TCC (%) | Annual RAIN (mm) | Mean WSP (m/s) | Mean WDIR (° from north) | Mean RHUM (%) | Mean TEMP (°C) | Mean PRES (Pa) | Mean Annual Snow Days |
---|---|---|---|---|---|---|---|---|---|---|
0.5 | Min | −9 | −1 | −3 | 0 | −1 | 0 | 1 | −34 | −19 |
Mean | −1 | 0 | 13 | 0 | 0 | 0 | 1 | 7 | −2 | |
Max | 3 | 1 | 81 | 0 | 2 | 1 | 1 | 43 | 2 | |
1.0 | Min | −16 | −2 | −4 | 0 | −1 | −1 | 1 | −62 | −41 |
Mean | −2 | 0 | 22 | 0 | 0 | 0 | 1 | 15 | −4 | |
Max | 5 | 1 | 134 | 0 | 2 | 1 | 3 | 86 | 5 | |
1.5 | Min | −24 | −3 | −8 | 0 | −2 | −1 | 1 | −83 | −60 |
Mean | −3 | 0 | 32 | 0 | 0 | 0 | 2 | 20 | −6 | |
Max | 7 | 2 | 199 | 0 | 3 | 1 | 4 | 123 | 5 | |
2.0 | Min | −33 | −3 | −4 | 0 | −3 | −1 | 2 | −110 | −76 |
Mean | −5 | 0 | 42 | 0 | −1 | 1 | 3 | 30 | −9 | |
Max | 8 | 3 | 234 | 1 | 4 | 2 | 5 | 168 | 6 | |
2.5 | Min | −40 | −4 | −2 | 0 | −3 | −1 | 2 | −135 | −85 |
Mean | −6 | 0 | 51 | 0 | −1 | 0 | 3 | 36 | −11 | |
Max | 9 | 3 | 283 | 1 | 5 | 2 | 6 | 199 | 6 | |
3.0 | Min | −45 | −4 | 3 | 0 | −4 | −1 | 3 | −168 | −94 |
Mean | −7 | 0 | 60 | 0 | −1 | 1 | 4 | 48 | −15 | |
Max | 11 | 4 | 316 | 1 | 6 | 3 | 7 | 247 | 7 | |
3.5 | Min | −55 | −5 | 5 | 0 | −5 | −2 | 4 | −213 | −105 |
Mean | −10 | 0 | 73 | 0 | −1 | 1 | 5 | 64 | −22 | |
Max | 14 | 5 | 359 | 1 | 8 | 4 | 9 | 314 | 7 |
Time-Period | Data | Mean GHI (kJ/m2) | Mean TCC (%) | Annual RAIN (mm) | Mean WSP (m/s) | Mean WDIR (° from North) | Mean RHUM (%) | Mean TEMP (°C) | Mean PRES (Pa) | Mean Annual Snow Days |
---|---|---|---|---|---|---|---|---|---|---|
Hist. | Full | 496 | 70 | 478 | 4 | 183 | 75 | 2 | 97,299 | 136 |
TMY | 495 | 70 | 484 | 4 | 183 | 75 | 2 | 97,289 | 135 | |
TDY | 496 | 69 | 493 | 4 | 183 | 75 | 2 | 97,281 | 138 | |
EWY | 531 | 65 | 398 | 4 | 177 | 70 | 9 | 97,381 | 91 | |
ECY | 479 | 74 | 449 | 4 | 185 | 78 | −5 | 97,342 | 186 | |
MRY-C | 495 | 70 | 471 | 4 | 182 | 75 | 2 | 97,300 | 137 | |
MRY-E | 474 | 72 | 720 | 4 | 182 | 77 | 2 | 97,270 | 140 | |
GW0.5 | Full | 496 | 70 | 491 | 4 | 182 | 75 | 3 | 97,306 | 134 |
TMY | 494 | 70 | 495 | 4 | 184 | 75 | 3 | 97,298 | 134 | |
TDY | 496 | 69 | 503 | 4 | 182 | 75 | 3 | 97,299 | 135 | |
EWY | 531 | 65 | 398 | 4 | 177 | 70 | 9 | 97,381 | 92 | |
ECY | 477 | 74 | 477 | 4 | 184 | 78 | −4 | 97,358 | 182 | |
MRY-C | 497 | 69 | 485 | 4 | 183 | 75 | 3 | 97,301 | 133 | |
MRY-E | 474 | 72 | 735 | 4 | 181 | 78 | 2 | 97,273 | 138 | |
GW1.0 | Full | 495 | 70 | 501 | 4 | 183 | 75 | 4 | 97,314 | 132 |
TMY | 493 | 70 | 504 | 4 | 183 | 75 | 4 | 97,307 | 133 | |
TDY | 494 | 70 | 501 | 4 | 183 | 75 | 4 | 97,307 | 133 | |
EWY | 530 | 65 | 410 | 4 | 177 | 70 | 10 | 97,383 | 92 | |
ECY | 475 | 74 | 481 | 4 | 184 | 78 | −3 | 97,381 | 178 | |
MRY-C | 494 | 70 | 497 | 4 | 182 | 75 | 4 | 97,315 | 132 | |
MRY-E | 470 | 73 | 754 | 4 | 181 | 78 | 3 | 97,289 | 135 | |
GW1.5 | Full | 493 | 70 | 510 | 4 | 182 | 75 | 5 | 97,319 | 130 |
TMY | 492 | 70 | 514 | 4 | 183 | 76 | 5 | 97,315 | 129 | |
TDY | 493 | 70 | 511 | 4 | 183 | 76 | 5 | 97,311 | 130 | |
EWY | 528 | 65 | 414 | 4 | 177 | 71 | 11 | 97,366 | 93 | |
ECY | 474 | 73 | 510 | 4 | 184 | 78 | −2 | 97,407 | 175 | |
MRY-C | 492 | 70 | 503 | 4 | 182 | 76 | 5 | 97,319 | 129 | |
MRY-E | 469 | 73 | 759 | 4 | 181 | 78 | 4 | 97,298 | 132 | |
GW2.0 | Full | 492 | 70 | 520 | 4 | 182 | 76 | 5 | 97,328 | 127 |
TMY | 490 | 70 | 521 | 4 | 182 | 76 | 5 | 97,328 | 127 | |
TDY | 492 | 70 | 524 | 4 | 182 | 76 | 5 | 97,322 | 128 | |
EWY | 527 | 66 | 413 | 4 | 177 | 71 | 11 | 97,346 | 92 | |
ECY | 473 | 73 | 522 | 4 | 184 | 77 | −1 | 97,379 | 172 | |
MRY-C | 492 | 70 | 513 | 4 | 182 | 76 | 5 | 97,334 | 127 | |
MRY-E | 467 | 73 | 771 | 4 | 181 | 78 | 4 | 97,313 | 131 | |
GW2.5 | Full | 491 | 70 | 529 | 4 | 182 | 76 | 6 | 97,335 | 124 |
TMY | 489 | 70 | 532 | 4 | 183 | 76 | 6 | 97,328 | 124 | |
TDY | 490 | 70 | 541 | 4 | 182 | 76 | 6 | 97,329 | 124 | |
EWY | 526 | 66 | 420 | 4 | 176 | 70 | 12 | 97,342 | 88 | |
ECY | 464 | 74 | 542 | 4 | 182 | 78 | −1 | 97,391 | 170 | |
MRY-C | 491 | 70 | 520 | 4 | 182 | 76 | 6 | 97,334 | 126 | |
MRY-E | 468 | 72 | 796 | 4 | 181 | 78 | 5 | 97,318 | 128 | |
GW3.0 | Full | 489 | 70 | 539 | 4 | 182 | 76 | 7 | 97,347 | 121 |
TMY | 488 | 70 | 535 | 4 | 182 | 76 | 7 | 97,339 | 122 | |
TDY | 489 | 70 | 541 | 4 | 182 | 76 | 7 | 97,345 | 121 | |
EWY | 527 | 66 | 424 | 4 | 176 | 71 | 12 | 97,362 | 85 | |
ECY | 465 | 74 | 546 | 4 | 184 | 78 | 0 | 97,405 | 165 | |
MRY-C | 489 | 70 | 525 | 4 | 182 | 76 | 7 | 97,350 | 121 | |
MRY-E | 466 | 72 | 813 | 4 | 180 | 79 | 6 | 97,328 | 124 | |
GW3.5 | Full | 487 | 70 | 551 | 4 | 182 | 76 | 8 | 97,362 | 114 |
TMY | 485 | 70 | 542 | 4 | 182 | 76 | 8 | 97,356 | 115 | |
TDY | 487 | 70 | 559 | 4 | 182 | 76 | 8 | 97,364 | 115 | |
EWY | 528 | 66 | 425 | 4 | 178 | 71 | 13 | 97,386 | 75 | |
ECY | 466 | 72 | 550 | 4 | 184 | 78 | 1 | 97,440 | 160 | |
MRY-C | 487 | 70 | 546 | 4 | 182 | 76 | 8 | 97,363 | 115 | |
MRY-E | 462 | 73 | 832 | 4 | 180 | 79 | 7 | 97,340 | 116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaur, A.; Lacasse, M. Climate Data to Support the Adaptation of Buildings to Climate Change in Canada. Data 2022, 7, 42. https://doi.org/10.3390/data7040042
Gaur A, Lacasse M. Climate Data to Support the Adaptation of Buildings to Climate Change in Canada. Data. 2022; 7(4):42. https://doi.org/10.3390/data7040042
Chicago/Turabian StyleGaur, Abhishek, and Michael Lacasse. 2022. "Climate Data to Support the Adaptation of Buildings to Climate Change in Canada" Data 7, no. 4: 42. https://doi.org/10.3390/data7040042
APA StyleGaur, A., & Lacasse, M. (2022). Climate Data to Support the Adaptation of Buildings to Climate Change in Canada. Data, 7(4), 42. https://doi.org/10.3390/data7040042