MultimodalGasData: Multimodal Dataset for Gas Detection and Classification
Abstract
:1. Introduction
- The dataset is logged using two modalities; images from the thermal camera and numerical values from gas sensors.
- The dataset is collected using two gas sources (smoke and perfume), which are used to generate data for four classes: smoke, perfume, mixture of smoke and perfume, and neutral environment.
- As per the authors’ knowledge, this is the only open-source multimodal dataset for gas detection purposes.
- Low-cost sensors are generally less sensitive and may not detect the gas emissions from longer distances. Hence, the use of multimodal data (thermal images along with sensors’ measurements) helps to detect the presence of gas from a long distance and even with less concentration.
- The dataset is of interest to the researchers and professionals working in the domain of gas detection and electronic nose. It is also useful for the system designers developing an e-nose for robotic and autonomous systems.
- The dataset can be used to train machine learning and deep learning models and then deploy the algorithms in real-time systems.
- The current version of the dataset also provides the basis for the further extension of the dataset where more gases and their mixtures can be taken into consideration.
2. Gas Detection Datasets
2.1. Gas Sensor Array Drift Dataset Dataset
2.2. Gas Sensor Array under Dynamic Gas Mixtures
2.3. Gas Sensors for Home Activity Monitoring Data Set
2.4. Gas Sensor Array Exposed to Turbulent Gas Mixtures Dataset
3. Multimodal Gas Detection Dataset
3.1. Setup for Dataset Collection
3.2. Gas Sensors
3.3. Thermal Camera
3.4. Process of Dataset Collection
3.5. Dataset Description
- 1
- Gas Sensors Measurements
- 2
- Thermal Camera Images
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adekitan, A.I.; Matthews, V.O.; Olasunkanmi, O. A microcontroller based gas leakage detection and evacuation system. IOP Conf. Ser. Mater. Sci. Eng. 2018, 413, 012008. [Google Scholar] [CrossRef]
- Kodali, R.K.; Greeshma, R.; Nimmanapalli, K.P.; Borra, Y.K.Y. IOT based industrial plant safety gas leakage detection system. In Proceedings of the 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 14–15 December 2018; pp. 1–5. [Google Scholar]
- Suma, V.; Shekar, R.R.; Akshay, K.A. Gas leakage detection based on IOT. In Proceedings of the 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 1312–1315. [Google Scholar]
- Evalina, N.; Azis, H. Implementation and design gas leakage detection system using ATMega8 microcontroller. IOP Conf. Ser. Mater. Sci. Eng. 2020, 821, 012049. [Google Scholar] [CrossRef]
- Fox, A.; Kozar, M.; Steinberg, P. CARBOHYDRATES|Gas Chromatography and Gas Chromatography—Mass Spectrometry. In Encyclopedia of Separation Science; Wilson, I.D., Ed.; Academic Press: Oxford, UK, 2000; pp. 2211–2223. [Google Scholar] [CrossRef]
- Stauffer, E.; Dolan, J.A.; Newman, R. Gas chromatography and gas chromatography—Mass spectrometry. In Fire Debris Analysis; Academic Press: Oxford, UK, 2007; pp. 235–293. [Google Scholar]
- Wang, T.; Wang, X.; Hong, M. Gas leak location detection based on data fusion with time difference of arrival and energy decay using an ultrasonic sensor array. Sensors 2018, 18, 2985. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, W.M.H. Electronic Nose System for Safety Monitoring at Refineries. J. Eng. Sustain. Dev. 2012, 16, 220–228. [Google Scholar]
- Yin, X.; Zhang, L.; Tian, F.; Zhang, D. Temperature modulated gas sensing E-nose system for low-cost and fast detection. IEEE Sensors J. 2015, 16, 464–474. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, X.; Ye, M.; Cheng, X.; Li, F. Gas recognition under sensor drift by using deep learning. Int. J. Intell. Syst. 2015, 30, 907–922. [Google Scholar] [CrossRef]
- Peng, P.; Zhao, X.; Pan, X.; Ye, W. Gas classification using deep convolutional neural networks. Sensors 2018, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhang, H.; Ye, W.; Bermak, A.; Zhao, X. A fast and robust gas recognition algorithm based on hybrid convolutional and recurrent neural network. IEEE Access 2019, 7, 100954–100963. [Google Scholar] [CrossRef]
- Bilgera, C.; Yamamoto, A.; Sawano, M.; Matsukura, H.; Ishida, H. Application of convolutional long short-term memory neural networks to signals collected from a sensor network for autonomous gas source localization in outdoor environments. Sensors 2018, 18, 4484. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; Charalambous, B. Leak Detection: Technology and Implementation; IWA Publishing: London, UK, 2013. [Google Scholar]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators Chem. 2012, 166, 320–329. [Google Scholar] [CrossRef]
- Fonollosa, J.; Sheik, S.; Huerta, R.; Marco, S. Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sens. Actuators Chem. 2015, 215, 618–629. [Google Scholar] [CrossRef]
- Huerta, R.; Mosqueiro, T.; Fonollosa, J.; Rulkov, N.F.; Rodriguez-Lujan, I. Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring. Chemom. Intell. Lab. Syst. 2016, 157, 169–176. [Google Scholar] [CrossRef]
- Fonollosa, J.; Rodríguez-Luján, I.; Trincavelli, M.; Vergara, A.; Huerta, R. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry. Sensors 2014, 14, 19336–19353. [Google Scholar] [CrossRef] [PubMed]
- Narkhede, P.; Walambe, R.; Mandaokar, S.; Chandel, P.; Kotecha, K.; Ghinea, G. Gas detection and identification using multimodal artificial intelligence based sensor fusion. Appl. Syst. Innov. 2021, 4, 3. [Google Scholar] [CrossRef]
- Han, L.; Yu, C.; Xiao, K.; Zhao, X. A new method of mixed gas identification based on a convolutional neural network for time series classification. Sensors 2019, 19, 1960. [Google Scholar] [CrossRef] [PubMed]
- Pashami, S.; Lilienthal, A.J.; Trincavelli, M. Detecting changes of a distant gas source with an array of MOX gas sensors. Sensors 2012, 12, 16404–16419. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.J.; Sharp, E.J. Thermal Imaging Techniques to Survey and Monitor Animals in The Wild: A Methodology; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Lin, T.C.; Krishnaswamy, G.; Chi, D.S. Incense smoke: Clinical, structural and molecular effects on airway disease. Clin. Mol. Allergy 2008, 6, 3. [Google Scholar] [CrossRef]
Sensor | Sensitive Gas |
---|---|
MQ2 | LPG, Butane, Methane, Smoke |
MQ3 | Smoke, Ethanol, Alcohol |
MQ5 | LPG, Natural Gas |
MQ6 | LPG, Butane |
MQ7 | Carbon Monoxide |
MQ8 | Hydrogen |
MQ135 | Air Quality (Smoke, Benzene) |
No Gas | Perfume | Smoke | Mixture | |
---|---|---|---|---|
Thermal Image | ||||
Gas Sensor Measurements | 725, 756, 529, 420, 428, 585, 641 | 739, 526, 488, 459, 662, 716, 502 | 523, 345, 375, 396, 574, 563, 292 | 505, 383, 356, 326, 396, 223, 336 |
Thermal Image | ||||
Gas Sensor Measurements | 771, 533, 423, 419, 550, 624, 487 | 809, 527, 533, 510, 696, 785, 583 | 539, 351, 331, 370, 572, 548, 278 | 545, 426, 382, 359, 487, 348, 418 |
Property | MQ2 | MQ3 | MQ5 | MQ6 | MQ7 | MQ8 | MQ135 |
---|---|---|---|---|---|---|---|
Count | 6400 | 6400 | 6400 | 6400 | 6400 | 6400 | 6400 |
Mean | 677.59 | 462.02 | 404.58 | 399.76 | 565.95 | 542.47 | 416.73 |
Standard | 92.91 | 70.28 | 55.67 | 45.09 | 83.13 | 151.02 | 76.68 |
Deviation | |||||||
Minimum | 502 | 337 | 291 | 311 | 361 | 220 | 275 |
25th Percentile | 591 | 405 | 366 | 366 | 524 | 447 | 354 |
50th Percentile | 701 | 486 | 400 | 393 | 576 | 576 | 437 |
75th Percentile | 756 | 529 | 443 | 426 | 629 | 642 | 473 |
Maximum | 824 | 543 | 596 | 524 | 796 | 794 | 589 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narkhede, P.; Walambe, R.; Chandel, P.; Mandaokar, S.; Kotecha, K. MultimodalGasData: Multimodal Dataset for Gas Detection and Classification. Data 2022, 7, 112. https://doi.org/10.3390/data7080112
Narkhede P, Walambe R, Chandel P, Mandaokar S, Kotecha K. MultimodalGasData: Multimodal Dataset for Gas Detection and Classification. Data. 2022; 7(8):112. https://doi.org/10.3390/data7080112
Chicago/Turabian StyleNarkhede, Parag, Rahee Walambe, Pulkit Chandel, Shruti Mandaokar, and Ketan Kotecha. 2022. "MultimodalGasData: Multimodal Dataset for Gas Detection and Classification" Data 7, no. 8: 112. https://doi.org/10.3390/data7080112
APA StyleNarkhede, P., Walambe, R., Chandel, P., Mandaokar, S., & Kotecha, K. (2022). MultimodalGasData: Multimodal Dataset for Gas Detection and Classification. Data, 7(8), 112. https://doi.org/10.3390/data7080112