An Inventory of Large-Scale Landslides in Baoji City, Shaanxi Province, China
Abstract
:1. Summary
2. Data Description
2.1. Source of Google Earth Imagery
2.2. How to Use the Landslide Inventory
3. Methods
- The rear wall of the landslide shows a lap-chair shape, an unusually curved ridgeline, arc-shaped tensile fissures, and steep ridges.
- Closed depressions develop in the middle and rear of the landslide body with a gentle slope. Compared with the non-slip area, the surface unit has obvious depressions. However, some traction landslides tend to exhibit stepped sliding walls on the slope and steep central terrain.
- Irregular echelon distribution is seen on the landslide body. These terrains are often transformed into farmland or residential areas.
- Fissures are distributed in the middle and front edge of the landslide body, showing abnormal colors and textures.
- The undulating terrain formed by the deposits on the leading edge of the landslide is often in a tongue-like shape.
- Dramatic slope changes are observed in the source and accumulation areas: both steep slopes and gentle slopes exist.
- The vegetation on the landslide body exhibits the pattern of “sabal” trees and “drunken” forests.
- There are gullies developed on both sides of the landslide body, showing the shape of “double ditch homology”.
- Accumulations on the front edge of the landslide leads to river diversion and even the formation of dammed lakes.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Peng, J.; Leng, Y.; Zhu, X.; Wu, D.; Tong, X. Development of a loess-mudstone landslide in a fault fracture zone. Environ. Earth Sci. 2016, 75, 658. [Google Scholar] [CrossRef]
- Peng, J.; Wang, S.; Wang, Q.; Zhuang, J.; Huang, W.; Zhu, X.; Leng, Y.; Ma, P. Distribution and genetic types of loess landslides in China. J. Southeast Asian Earth Sci. 2018, 170, 329–350. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.; Ngai, Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Stanley, T.; Kirschbaum, D.B. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 2017, 87, 145–164. [Google Scholar] [CrossRef]
- Guzzetti, F.; Malamud, B.D.; Turcotte, D.L.; Reichenbach, P. Power-law correlations of landslide areas in central Italy. Earth Planet. Sci. Lett. 2002, 195, 169–183. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 2012, 5, 468–473. [Google Scholar] [CrossRef]
- Xu, Y.; Allen, M.B.; Zhang, W.; Li, W.; He, H. Landslide characteristics in the Loess Plateau, northern China. Geomorphology 2020, 359, 107150. [Google Scholar] [CrossRef]
- Xu, L.; Dai, F.; Gong, Q.; Tham, L.G. Irrigation-induced loess flow failure in Heifangtai Platform, north-West China. Environ. Earth Sci. 2012, 66, 1707–1713. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Daniele, G.; Pizziolo, M. Historical geospatial database for landslide analysis: The Catalogue of Landslide Occurrences in the Emilia-Romagna Region (CLOCkER). Landslides 2018, 15, 811–822. [Google Scholar] [CrossRef]
- Constantine, J.A.; Dunne, T. Meander cutoff and the controls on the production of oxbow lakes. Geology 2008, 36, 23–26. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.W.; Shen, L.L.; Yao, Q.; Tan, X.B.; Kang, W.J.; Ma, S.Y.; Wu, X.Y.; Cai, J.T.; Gao, M.X.; et al. Optimized volume models of earthquake-triggered landslides. Sci. Rep. 2016, 6, 29797. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.P.; Harp, E.L. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 2009, 6, 153–159. [Google Scholar] [CrossRef]
- Li, W.L.; Huang, R.Q.; Pei, X.J.; Zhang, X.C. Historical Co-seismic Landslides Inventory and Analysis Using Google Earth: A Case Study of 1920 M8.5 Haiyuan Earthquake, China. Eng. Geol. Soc. Territ. 2015, 2, 709–712. [Google Scholar]
- Li, L.; Xu, C.; Xu, X.W.; Zhang, Z.J.; Cheng, J. Inventory and Distribution Characteristics of Large-Scale Landslides in Baoji City, Shaanxi Province, China. ISPRS Int. J. Geo-Inf. 2022, 11, 10. [Google Scholar] [CrossRef]
- Fisher, G.B.; Amos, C.B.; Bookhagen, B.; Burbank, D.W.; Godard, V. Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes. Geol. Surv. Am. 2012, 492, 1–22. [Google Scholar]
- Crosby, C.J. Lidar and Google Earth: Simplifying access to high-resolution topography data. Spec. Pap. Geol. Soc. Am. 2012, 492, 37–47. [Google Scholar]
- Denys, B. Mass movement; the research frontier and beyond: A geomorphological approach. Geomorphology 1993, 7, 85–128. [Google Scholar]
- Thomas, M.L.; Ralph, W.K.; Jonathan, W.C. Remote Sensing and Image Interpretation, 7th ed.; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Shi, J.S.; Wu, L.Z.; Wu, S.R.; Li, B.; Wang, T.; Xin, P. Analysis of the causes of large-scale loess landslides in Baoji, China. Geomorphology 2016, 264, 109–117. [Google Scholar] [CrossRef]
- Xu, L.; Yan, D.; Zhao, T. Probabilistic evaluation of loess landslide impact using multivariate model. Landslides 2020, 18, 1011–1023. [Google Scholar] [CrossRef]
- Shi, J.S.; Xin, P.; Wu, S.R.; Zhang, C.S.; Wang, T.; Han, J.L.; Shi, L.; Yang, W.M.; Li, B.; Sun, W.F.; et al. Graphic Collection of Typical Landslide Hazards in Baoji; Geological Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
Type of Imagery | Resolution | Major Imagery Provider | More Information |
---|---|---|---|
Aerial Imagery (USA) | 0.5–2 m | U.S. Department of Agriculture; | eros.usgs.gov; |
U.S. Geological Survey; | www.fsa.usda.gov; | ||
Bluesky; | www.bluesky-world.com; | ||
Aerodata International Surveys; etc. | www.aerodata-surveys.com | ||
Worldview-1, Worldview-2, Quickbird. | 0.5–2.5 m | DigitalGlobe, Inc. | www.digitalglobe.com |
GeoEye-1, IKONOS | 0.5–3.2 m | GeoEye, Inc. | www.geoeye.com |
SPOT5, FORMOSAT-2, KOMPSAT-2, Pleiades | 0.5–8 m | Spot Image S.A. | www.spot.com |
Landsat 7 ETM+ | 30 m or 15 m pan-sharpened | Terra Metrics, Inc.; NASA | www.truearth.com; landsat.gsfc.nasa.gov |
Ocean and lake bathymetry | >100 m | NOAA; SIO; U.S. Navy; NGA; GEBCO. | earth.google.com/ocean |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Xu, C.; Yang, Z.; Zhang, Z.; Lv, M. An Inventory of Large-Scale Landslides in Baoji City, Shaanxi Province, China. Data 2022, 7, 114. https://doi.org/10.3390/data7080114
Li L, Xu C, Yang Z, Zhang Z, Lv M. An Inventory of Large-Scale Landslides in Baoji City, Shaanxi Province, China. Data. 2022; 7(8):114. https://doi.org/10.3390/data7080114
Chicago/Turabian StyleLi, Lei, Chong Xu, Zhiqiang Yang, Zhongjian Zhang, and Mingsheng Lv. 2022. "An Inventory of Large-Scale Landslides in Baoji City, Shaanxi Province, China" Data 7, no. 8: 114. https://doi.org/10.3390/data7080114
APA StyleLi, L., Xu, C., Yang, Z., Zhang, Z., & Lv, M. (2022). An Inventory of Large-Scale Landslides in Baoji City, Shaanxi Province, China. Data, 7(8), 114. https://doi.org/10.3390/data7080114