Dataset of Specific Total Embodied Energy and Specific Total Weight of 40 Buildings from the Last Four Decades in the Andean Region of Ecuador
Abstract
:1. Summary
- The specific embodied energy of 25 materials widely used in Andean regions;
- The Bill of Materials (BoM) of ten buildings from every decade, with different construction systems such as brick walls, concrete, metal or wood;
- The STEE and STW value of the Structure, Envelope and Finishes component.
- Due to the lack of embodied energy information on construction materials in Latin American countries [22], a variety of projects can come out of the primary dataset presented in this study;
- The energy impact of different construction systems and their respective components such as Structure, Envelope and Finishes are presented;
- The Total Specific Weight of each material and component included in this article can be used in other analyses, not only those focused on the embodied energy, but also on operational energy.
2. Data Description
2.1. Samples Description
2.2. Database 01: Specific Embodied Energy (SEE) and Specific Weight (SW) of 25 Materials of Andean Construction Systems
- Materials (column A);
- Specific Embodied Energy_SEE (Column B);
- SEE source (column C);
- SEE country (column D);
- SEE boundary condition (column E);
- Specific Weight_SW (column F);
- Weight source (column G).
2.3. Database 02: BoM, STEE and STW Calculations of the Ten Buildings of P1, P2, P3 and P4 + P4*
- Period/House (column A);
- Component (column B);
- Element (column C);
- Description system (column D);
- Unit (column E);
- Quantity (column F);
- Materials (column G);
- Unit (column H);
- Quantity (column I);
- Specific Weight (column J);
- TW (obtained by the multiplication of I × J_ column K);
- Specific Embodied Energy by material (column L);
- TEE by material (obtained by the multiplication of K × L_ column M);
- TEE by element (sum of all the TEE values of all the materials that make up the element_ column N);
- TEE by component (sum of all the TEE values of all the materials that make up the component_ column O);
- STEE (obtained by the division of O/R_ column P);
- STW (obtained by the division of K/R_ column Q).
2.4. Database 03: STEE and STW Organized by Material, Element and Component
- Period (column A);
- Components (column B);
- Element (Column C);
- Materials (Column D);
- TEE by material (Columns E, H, K, N, Q, T, W, Z, AC and AF);
- STEE by material (obtained by the division of TEE/total floor area_ Columns F, I, L, O, R, U, X, AA, AD and AG);
- Percentage by material (obtained by the division of STEE by material/STEE of entire component_ Columns G, J, M, P, S, V, Y, AB, AE and AH);
- Average STEE by material (obtained by the average of the 10 buildings’ STEE_ Column AI);
- TW by material (Columns AJ, AM, AP, AS, AV, AY, BB, BE, BH and BK);
- STW by material (obtained by the division of TW/total floor area_ Columns AK, AN, AQ, AT, AW, AZ, BC, BF, BI and BL);
- Percentage by material (obtained by the division of STEE by material/STEE of entire component_ Columns AL, AO, AR, AU, AX, BA, BD, BG, BJ and BM);
- Average STW by material (obtained by the average of the 10 buildings’ STW_ Column BN).
2.5. Database 04: STEE and STW Results of the Entire Building
- Period_House (Column A);
- Floor Area (Column B);
- Year of construction (Column C);
- STEE of Structure component (Column D);
- STEE of Envelope component (Column E);
- STEE of Finishes component (Column F);
- STTE of Entire Building (Column G);
- STW of Structure component (Column H);
- STW of Envelope component (Column I);
- STW of Finishes component (Column J);
- STW of entire building (Column K).
3. Methods
4. Graphical Representation: Total Results and Correlations
4.1. Year of Construction and STEE Correlation
4.2. Year of Construction and STW Correlation
4.3. STEE and STW Correlation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Yang, S.; Zhang, X.; Jordan, N.D.; Huang, J. Embodied energy and carbon emissions of building materials in China. Build. Environ. 2022, 207, 108434. [Google Scholar] [CrossRef]
- Kumar, P.P.; Venkatraj, V.; Dixit, M.K. Energy & Buildings Evaluating the temporal representativeness of embodied energy data: A case study of higher education buildings. Energy Build. 2022, 254, 111596. [Google Scholar] [CrossRef]
- Torres-Quezada, J.E. Energetic Characterization of Building Evolution; Springer Nature: Cham, Switzerland, 2023; ISBN 9783031215971. [Google Scholar]
- United Nations Environment Programme. 2022 Global Status Report for Buildings and Construction: Towards a Zero Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2022. [Google Scholar]
- Gauch, H.L.; Dunant, C.F.; Hawkins, W.; Cabrera Serrenho, A. What really matters in multi-storey building design? A simultaneous sensitivity study of embodied carbon, construction cost, and operational energy. Appl. Energy 2023, 333, 120585. [Google Scholar] [CrossRef]
- Praseeda, K.I.; Reddy, B.V.V.; Mani, M. Embodied and operational energy of urban residential buildings in India. Energy Build. 2016, 110, 211–219. [Google Scholar] [CrossRef]
- Manzini, L. Las viviendas del siglo XIX en Santiago de Chile y la región de Cuyo en Argentina. Universum 2011, 26, 165–186. Available online: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-23762011000200009&lng=en&nrm=iso&tlng=en (accessed on 12 December 2021). [CrossRef]
- Lützkendorf, T.; Foliente, G.; Balouktsi, M.; Wiberg, A.H. Net-zero buildings: Incorporating embodied impacts. Build. Res. Inf. 2015, 43, 62–81. [Google Scholar] [CrossRef]
- Jaramillo-Benavides, A.; Patricio-Karnopp, Z. Durabilidad de Los Materiales Naturales de Construcción: Percepciones de Proyectistas Constructores Y Usuarios en Florianópolis Brasil. Rev. Arquit. 2019, 21, 89–100. Available online: https://revistadearquitectura.ucatolica.edu.co/article/view/1825 (accessed on 12 December 2021). [CrossRef]
- Cristian, C. Hacia una nueva epistemología de la teoría urbana y arquitectónica. ESTOA 2016, 5, 91–97. [Google Scholar] [CrossRef]
- Aguirre Ullauri, M.C.; Castillo Carchipulla, E.; López León, D.M. Diagnóstico de materiales y lesiones en las fachadas del centro histórico de Cuenca (Ecuador). Ge-Conservacion 2020, 17, 47–63. [Google Scholar] [CrossRef]
- Hammond, G.; Jones, C. Inventory of Carbon & Energy (ICE); University of Bath: Bath, UK, 2008. [Google Scholar]
- Gonzalez Stumpf, M.A.; Kulakowski, M.P.; Breitenbach, L.G.; Kirch, F. A case study about embodied energy in concrete and structural masonry buildings. Rev. Constr. 2014, 13, 9–14. [Google Scholar] [CrossRef]
- Koezjakov, A.; Urge-Vorsatz, D.; Crijns-Graus, W.; van den Broek, M. The relationship between operational energy demand and embodied energy in Dutch residential buildings. Energy Build. 2018, 165, 233–245. [Google Scholar] [CrossRef]
- Lukić, I.; Premrov, M.; Passer, A.; Žegarac Leskovar, V. Embodied energy and GHG emissions of residential multi-storey timber buildings by height—A case with structural connectors and mechanical fasteners. Energy Build. 2021, 252, 111387. [Google Scholar] [CrossRef]
- Su, X.; Zhang, X. A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China. Energy Build. 2016, 119, 323–330. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Wu, H.; Yang, D.; Ma, Z. Reusing recycled powder as eco-friendly binder for sustainable GGBS-based geopolymer considering the effects of recycled powder type and replacement rate. J. Clean. Prod. 2022, 364, 132656. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, R.; Yao, P.; Wang, C. Utilizing heat-mechanical synergistic treatment for separating concrete waste into high-quality recycled aggregate, active recycled powder and new concrete. J. Build. Eng. 2023, 68, 106161. [Google Scholar] [CrossRef]
- Hafner, A.; Schäfer, S. Comparative LCA study of different timber and mineral buildings and calculation method for substitution factors on building level. J. Clean. Prod. 2017, 167, 630–642. [Google Scholar] [CrossRef]
- Duan, Z.; Huang, Q.; Sun, Q.; Zhang, Q. Comparative life cycle assessment of a reinforced concrete residential building with equivalent cross laminated timber alternatives in China. J. Build. Eng. 2022, 62, 105357. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Li, C. Hysteresis and damping properties of steel and polypropylene fiber reinforced recycled aggregate concrete under uniaxial low-cycle loadings. Constr. Build. Mater. 2022, 319, 126191. [Google Scholar] [CrossRef]
- Cárdenas, J.P.; Muñoz, E.; Riquelme, C.; Hidalgo, F. Simplified life cycle assessment applied to structural insulated panels homes. Rev. Ing. Constr. 2015, 30, 33–38. [Google Scholar] [CrossRef]
- Vázquez-Calle, K.; Guillén-Mena, V.; Quesada-Molina, F. Analysis of the Embodied Energy and CO2 Emissions of Ready-Mixed Concrete: A Case Study in Cuenca, Ecuador. Materials 2022, 1514, 4896. [Google Scholar] [CrossRef]
- Torres-Quezada, J.; Torres Avilés, A.; Isalgue, A.; Pages-Ramon, A. The evolution of embodied energy in andean residential buildings. Methodology applied to Cuenca-Ecuador. Energy Build. 2022, 259, 111858. [Google Scholar] [CrossRef]
- HOLCIM. Morpla Mezcla Lista Para una Variedad de usos y Aplicaciones. 2021. Available online: www.holcim.com.ec (accessed on 1 December 2021).
- Urgilés, D.; Guillén, V. Inventario del ciclo de vida para la determinación de la energía incorporada y las emisiones de CO2 en el proceso de elaboración del bloque en una fábrica de cuenca—Ecuador. Artículo. Univ. Cuenca Cuenca Ecuad. 2017, 4, 9–15. [Google Scholar]
- Alvear, P.; Palomeque, R. Análisis Del Inventario Del Ciclo de Vida Del Ladrillo Utilizado en la Ciudad de Cuenca: Aspectos Energéticos, Medio Ambientales, Sociales, Económicos y Culturales. Bachelor´s Thesis, Universidad de Cuenca, Cuenca, Ecuador, 2017. [Google Scholar]
- Carrilo, F. Eficiencia Energética en Ladrilleras Artesanales Del Cantón Cuenca. Periodo 2010–2012. Bachelor’s Thesis, University of Azuay, Cuenca, Ecuador, 2013. [Google Scholar]
- Maza, M. Producción Más Limpia Para Ladrilleras en la Parroquia Sinincay. Bachelor’s Thesis, University of Azuay, Cuenca, Ecuador, 2011. [Google Scholar]
- Ecuacerámica. Reseña Histórica Ecuacerámica. 2022. Available online: https://ecuaceramica.com/quienes-somos (accessed on 1 December 2021).
- Novacero. Memoria de Sostenibilidad 2020–2021. 2021. Available online: https://www.novacero.com/memoria-sostenibilidad/wp-content/themes/divi-child/pdf/MEMORIA-DE-SOSTENIBILIDAD-2020-2021.pdf (accessed on 1 December 2021).
- Dismetal. Dismetal—AceroInoxidable. 2020. Available online: https://dismetal.ec/productos/planchas/acero-inoxidable (accessed on 1 December 2021).
- Dismetal. Dismetal—Galvanizadas. 2021. Available online: https://dismetal.ec/productos/planchas/galvanizadas (accessed on 1 December 2021).
- Fairis. Procesos—Fairis. 2020. Available online: https://fairis.com/procesos/ (accessed on 1 December 2021).
- Eternit. Cubiertas Eureka. 2021. Available online: https://www.eternit.com.ec/soluciones-integrales/soluciones-para-cubiertas/eureka-p7-92 (accessed on 1 December 2021).
- SIKA. Ficha de Datos de Seguridad Empaste Listo Interior SIKA. 2019. Available online: https://ecu.sika.com/dms/getdocument.get/fe2ea086-a856-3840-b321-389b6e390ed9/Empaste_ListoSika_MSDS.pdf (accessed on 1 December 2021).
- Constru Gypsum. Productos—Constru Gypsum. 2020. Available online: https://construgypsum.com/ (accessed on 1 December 2021).
- Pintuco. Koraza® Sol Y Lluvia/Anti Hongos. 2020. Available online: https://pintuco.com.ec/productos/pintura-koraza-sol-y-lluvia-antihongos/ (accessed on 1 December 2021).
- Coba, G. Cuatro Factores Impulsan Las Exportaciones de Los Aglomerados de Madera. Primicias. 2021. Available online: https://www.primicias.ec/noticias/economia/factores-impulso-exportaciones-aglomerados-madera/ (accessed on 1 December 2021).
- Indumad. Indumad—Industria Maderera. 2020. Available online: http://www.indumad.com/index.php/web/facilities (accessed on 1 December 2021).
- Torres-Quezada, J.; Coch, H.; Isalgue, A.; López, J. The Roof Impact on the Heat Balance of Low Height Buildings at Low Latitudes. In Proceedings of the Plea 2018 Hong Kong Smart and Healthy within the 2-Degree Limit, Hong Kong, China, 10–12 December 2018; Volume 3, pp. 937–938. [Google Scholar]
- AlcaldíaCuenca. Geoportal Web. 2021. Available online: http://ide.cuenca.gob.ec/geoportal-web/viewer.jsf (accessed on 1 December 2021).
- Macias, J.; Iturburu, L.; Rodriguez, C.; Agdas, D.; Boero, A.; Soriano, G. Embodied and operational energy assessment of different construction methods employed on social interest dwellings in Ecuador. Energy Build. 2017, 151, 107–120. [Google Scholar] [CrossRef]
- Hammond, G.; Jones, C. Embodied Carbon: The Inventory of Carbon & Energy (ICE); University of Bath: Bath, UK, 2011. [Google Scholar]
- Berge, B. The Ecology of Building Materials; Routledge: London, UK, 2013; Volume 53. [Google Scholar]
- Lenzen, M.; Treolar, G. Embodied Energy in buildings: Wood versus concrete-reply to Börjesson and Gustavsson. Energy Policy 2002, 30, 249–255. [Google Scholar] [CrossRef]
- FALCO. Ficha Técnica Ladrillo Panelón. 2021. Available online: https://www.f-falco.com/panel%C3%B3n-7x13x26cm (accessed on 1 November 2021).
- Solìs, J. Evaluación de la Huella Ecológica del Sector Edificación (uso Residencial) en la Comunidad Andaluza Departamento de Construcciones Arquitectónicas II. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 2010. [Google Scholar]
- Novopan. Quienes Somos. 2019. Available online: http://www.novopan.com.ec/ (accessed on 14 November 2021).
- INCOA. Calculadora Peso Vidrio. 2021. Available online: https://incoa.com.ec/calculadora-de-vidrio (accessed on 1 November 2021).
- Ecuacerámica. Home & Projects Catálogo. 2021. Available online: https://ecuaceramica.com/index.php?controller=catalogpdf (accessed on 2 December 2021).
- EDGE. EDGE Materials Embodied Energy. 2016. Available online: https://edgebuildings.com/edge-embodied-energy-in-materials-methodology/?lang=es (accessed on 2 December 2021).
- Wang, C.; Xiao, J.; Liu, W.; Ma, Z. Unloading and reloading stress-strain relationship of recycled aggregate concrete reinforced with steel/polypropylene fibers under uniaxial low-cycle loadings. Cem. Concr. Compos. 2022, 131, 104597. [Google Scholar] [CrossRef]
- Selyutina, N.; Smirnov, I. Dynamic fractures of concrete made of recycled aggregate or reinforced with fibres. Mech. Mater. 2023, 179, 104613. [Google Scholar] [CrossRef]
- Zhang, S.; He, P.; Niu, L. Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick. J. Clean. Prod. 2020, 268, 121690. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.Y.; Luo, Z. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete. Compos. Part B Eng. 2020, 185, 107776. [Google Scholar] [CrossRef]
- Koushkbaghi, M.; Alipour, P.; Tahmouresi, B.; Mohseni, E.; Saradar, A.; Sarker, P.K. Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr. Build. Mater. 2019, 205, 519–528. [Google Scholar] [CrossRef]
Type of data | Four databases in spreadsheet format (json format)01_EE_W_index 02_BoM_STEE_STW_calculations 03_STEE_STW_materialscomponents 04_STEE_STW_entire_building |
Data source location | The field work was carried out in 40 residential buildings located in Cuenca, Azuay, Ecuador (Andean region). |
Specific subject area | The research addresses the area of architecture design from the perspective of the life cycle of materials, with a specific focus on their embodied energy. |
Climate | Annual average temperature: 15.50 °C Annual oscillation: 2 °C Daily oscillation: 10 °C |
Related research article | The evolution of embodied energy in Andean residential buildings. Methodology applied to Cuenca, Ecuador. Energy and Buildings, 2022 [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Quezada, J.; Sánchez-Quezada, T. Dataset of Specific Total Embodied Energy and Specific Total Weight of 40 Buildings from the Last Four Decades in the Andean Region of Ecuador. Data 2023, 8, 77. https://doi.org/10.3390/data8050077
Torres-Quezada J, Sánchez-Quezada T. Dataset of Specific Total Embodied Energy and Specific Total Weight of 40 Buildings from the Last Four Decades in the Andean Region of Ecuador. Data. 2023; 8(5):77. https://doi.org/10.3390/data8050077
Chicago/Turabian StyleTorres-Quezada, Jefferson, and Tatiana Sánchez-Quezada. 2023. "Dataset of Specific Total Embodied Energy and Specific Total Weight of 40 Buildings from the Last Four Decades in the Andean Region of Ecuador" Data 8, no. 5: 77. https://doi.org/10.3390/data8050077
APA StyleTorres-Quezada, J., & Sánchez-Quezada, T. (2023). Dataset of Specific Total Embodied Energy and Specific Total Weight of 40 Buildings from the Last Four Decades in the Andean Region of Ecuador. Data, 8(5), 77. https://doi.org/10.3390/data8050077