Dual Transcriptome of Post-Germinating Mutant Lines of Arabidopsis thaliana Infected by Alternaria brassicicola
Abstract
:1. Summary
2. Data Description
2.1. Identification of Dual Transcriptome
2.2. Differentially Expressed Genes from Infected and Healthy Arabidopsis Mutant Seeds at 3 and 6 DAS
2.3. Comparative Analysis of Gene Expression Changes in Alternaria-Infected Seeds of Arabidopsis Mutants and Wild-Type at 3 and 6 Days After Sowing
2.4. Gene Expression Changes in cyp79B2/B3 Arabidopsis Mutant at 10 DAS in Both Plant and Fungi Transcriptomes
3. Methods
3.1. Plant Material and Treatments
3.2. RNA Extraction and Sequencing
3.3. Data Analysis
4. User Notes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kliebenstein, D.J. Secondary Metabolites and Plant/Environment Interactions: A View through Arabidopsis thaliana Tinged Glasses. Plant Cell Environ. 2004, 27, 675–684. [Google Scholar] [CrossRef]
- Evivie, E.R.; Ogwu, M.C.; Cang, W.; Xu, R.; Li, J. Progress and Prospects of Glucosinolate Pathogen Resistance in Some Brassica Plants. J. Appl. Nat. Sci. 2019, 11, 556–567. [Google Scholar] [CrossRef]
- Kosaka, A.; Pastorczyk, M.; Piślewska-Bednarek, M.; Nishiuchi, T.; Ono, E.; Suemoto, H.; Ishikawa, A.; Frerigmann, H.; Kaido, M.; Mise, K.; et al. Tryptophan-Derived Metabolites and BAK1 Separately Contribute to Arabidopsis Postinvasive Immunity against Alternaria brassicicola. Sci. Rep. 2021, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Clay, N.K.; Adio, A.M.; Denoux, C.; Jander, G.; Ausubel, F.M. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response. Science 2009, 323, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Dharmendra, K.; Neelam, M.; Yashwant, K.B.; Ajay, K.; Kamlesh, K.; Kalpana, S.; Gireesh, C.; Chanda, K.; Sushil, K.S.; Raj, K.M.; et al. Alternaria Blight of Oilseed Brassicas: A Comprehensive Review. Afr. J. Microbiol. Res. 2014, 8, 2816–2829. [Google Scholar] [CrossRef]
- Pochon, S.; Terrasson, E.; Guillemette, T.; Iacomi-Vasilescu, B.; Georgeault, S.; Juchaux, M.; Berruyer, R.; Debeaujon, I.; Simoneau, P.; Campion, C. The Arabidopsis thaliana-Alternaria brassicicola Pathosystem: A Model Interaction for Investigating Seed Transmission of Necrotrophic Fungi. Plant Methods 2012, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Sellam, A.; Iacomi-Vasilescu, B.; Hudhomme, P.; Simoneau, P. In Vitro Antifungal Activity of Brassinin, Camalexin and Two Isothiocyanates against the Crucifer Pathogens Alternaria brassicicola and Alternaria brassicae. Plant Pathol. 2007, 56, 296–301. [Google Scholar] [CrossRef]
- Ortega-Cuadros, M.; De Souza, T.L.; Berruyer, R.; Aligon, S.; Pelletier, S.; Renou, J.-P.; Arias, T.; Campion, C.; Guillemette, T.; Verdier, J.; et al. Seed Transmission of Pathogens: Non-Canonical Immune Response in Arabidopsis Germinating Seeds Compared to Early Seedlings against the Necrotrophic Fungus Alternaria brassicicola. Plants 2022, 11, 1708. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Cuadros, M.; Chir, L.; Aligon, S.; Arias, T.; Verdier, J.; Grappin, P. Dual-Transcriptomic Datasets Evaluating the Effect of the Necrotrophic Fungus Alternaria brassicicola on Arabidopsis Germinating Seeds. Data Brief 2022, 44, 108530. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hull, A.K.; Gupta, N.R.; Goss, K.A.; Alonso, J.; Ecker, J.R.; Normanly, J.; Chory, J.; Celenza, J.L. Trp-Dependent Auxin Biosynthesis in Arabidopsis: Involvement of Cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 2002, 16, 3100–3112. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Y.; Sønderby, I.E.; Halkier, B.A.; Jander, G.; de Vos, M. Non-Volatile Intact Indole Glucosinolates Are Host Recognition Cues for Ovipositing Plutella xylostella. J. Chem. Ecol. 2009, 35, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J.; Ausubel, F.M. Isolation of Phytoalexin-Deficient Mutants of Arabidopsis thaliana and Characterization of Their Interactions with Bacterial Pathogens. Proc. Natl. Acad. Sci. USA 1994, 91, 8955–8959. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 22 March 2022).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Krishnakumar, V.; Chan, A.P.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A Complete Reannotation of the Arabidopsis thaliana Reference Genome. Plant J. 2017, 89, 789–804. [Google Scholar] [CrossRef]
- Belmas, E.; Briand, M.; Kwasiborski, A.; Colou, J.; N’Guyen, G.; Iacomi, B.; Grappin, P.; Campion, C.; Simoneau, P.; Barret, M.; et al. Genome Sequence of the Necrotrophic Plant Pathogen Alternaria brassicicola Abra43. Genome Announc. 2018, 6, e01559-17. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- TAIR The Arabidopsis Information Resource (TAIR). Available online: https://www.arabidopsis.org (accessed on 25 August 2024).
- Oliveros, J.C.; Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams 2007–2015. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 3 April 2024).
- van Wees, S.C.M.; Chang, H.-S.; Zhu, T.; Glazebrook, J. Characterization of the Early Response of Arabidopsis to Alternaria brassicicola Infection Using Expression Profiling. Plant Physiol. 2003, 132, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Narusaka, Y.; Narusaka, M.; Seki, M.; Ishida, J.; Nakashima, M.; Kamiya, A.; Enju, A.; Sakurai, T.; Satoh, M.; Kobayashi, M.; et al. The CDNA Microarray Analysis Using an Arabidopsis Pad3 Mutant Reveals the Expression Profiles and Classification of Genes Induced by Alternaria brassicicola Attack. Plant Cell Physiol. 2003, 44, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
Sample Name | M Seqs | Mapped Reads Percentages to Arabidopsis Genome | Mapped Reads Percentages to Alternaria Genome | ||
---|---|---|---|---|---|
% Aligned | M Aligned | % Aligned | M Aligned | ||
cyp_inoc_3d_REP1 | 25.2 | 95.1% | 24.0 | 1.0% | 0.3 |
cyp_inoc_3d_REP2 | 50.9 | 85.5% | 43.5 | 8.2% | 4.2 |
cyp_inoc_3d_REP3 | 51.2 | 89.8% | 46.0 | 4.9% | 2.5 |
cyp_inoc_6d_REP1 | 51.0 | 72.7% | 37.1 | 17.4% | 8.9 |
cyp_inoc_6d_REP2 | 52.5 | 44.7% | 23.5 | 37.6% | 19.7 |
cyp_inoc_6d_REP3 | 50.2 | 62.8% | 31.5 | 24.5% | 12.3 |
cyp_inoc_10d_REP1 | 50.8 | 46.4% | 23.6 | 35.8% | 18.2 |
cyp_inoc_10d_REP2 | 51.8 | 45.5% | 23.6 | 36.2% | 18.8 |
cyp_inoc_10d_REP3 | 51.9 | 27.2% | 14.1 | 48.4% | 25.1 |
qko_inoc_3d_REP1 | 52.1 | 30.7% | 16.0 | 47.5% | 24.8 |
qko_inoc_3d_REP2 | 51.9 | 38.5% | 20.0 | 41.2% | 21.4 |
qko_inoc_3d_REP3 | 51.9 | 24.4% | 12.7 | 52.2% | 27.1 |
qko_inoc_6d_REP1 | 52.1 | 16.9% | 8.8 | 55.6% | 29.0 |
qko_inoc_6d_REP2 | 52.3 | 28.4% | 14.9 | 48.0% | 25.1 |
qko_inoc_6d_REP3 | 52.1 | 9.1% | 4.7 | 58.7% | 30.6 |
pad3_inoc_3d_REP1 | 50.9 | 65.6% | 33.3 | 20.3% | 10.3 |
pad3_inoc_3d_REP2 | 50.7 | 34.1% | 17.3 | 40.4% | 20.5 |
pad3_inoc_3d_REP3 | 51.0 | 76.0% | 38.7 | 13.3% | 6.8 |
pad3_inoc_6d_REP1 | 50.4 | 83.3% | 41.9 | 9.0% | 4.5 |
pad3_inoc_6d_REP2 | 50.1 | 41.1% | 20.6 | 38.3% | 19.2 |
pad3_inoc_6d_REP3 | 51.3 | 65.6% | 33.6 | 20.8% | 10.7 |
cyp_water_3d_REP1 | 25.2 | 96.4% | 24.3 | 0.0% | 0.0 |
cyp_water_3d_REP2 | 25.2 | 95.4% | 24.1 | 0.0% | 0.0 |
cyp_water_3d_REP3 | 25.2 | 96.7% | 24.4 | 0.0% | 0.0 |
cyp_water_6d_REP1 | 25.2 | 95.4% | 24.0 | 0.0% | 0.0 |
cyp_water_6d_REP2 | 25.2 | 95.0% | 23.9 | 0.0% | 0.0 |
cyp_water_6d_REP3 | 25.2 | 96.1% | 24.2 | 0.0% | 0.0 |
cyp_water_10d_REP1 | 25.3 | 96.2% | 24.3 | 0.0% | 0.0 |
cyp_water_10d_REP2 | 25.2 | 96.4% | 24.3 | 0.0% | 0.0 |
cyp_water_10d_REP3 | 25.3 | 96.2% | 24.3 | 0.0% | 0.0 |
qko_water_3d_REP1 | 25.2 | 96.4% | 24.3 | 0.0% | 0.0 |
qko_water_3d_REP2 | 25.2 | 96.5% | 24.3 | 0.0% | 0.0 |
qko_water_3d_REP3 | 26.4 | 96.7% | 25.6 | 0.0% | 0.0 |
qko_water_6d_REP1 | 25.8 | 94.2% | 24.3 | 0.0% | 0.0 |
qko_water_6d_REP2 | 26.5 | 95.8% | 25.4 | 0.0% | 0.0 |
qko_water_6d_REP3 | 26.5 | 95.3% | 25.2 | 0.0% | 0.0 |
pad3_water_3d_REP1 | 26.0 | 94.8% | 24.7 | 0.0% | 0.0 |
pad3_water_3d_REP2 | 25.9 | 94.2% | 24.4 | 0.0% | 0.0 |
pad3_water_3d_REP3 | 26.0 | 95.7% | 24.9 | 0.0% | 0.0 |
pad3_water_6d_REP1 | 25.9 | 95.5% | 24.7 | 0.0% | 0.0 |
pad3_water_6d_REP2 | 26.0 | 95.8% | 24.9 | 0.0% | 0.0 |
pad3_water_6d_REP3 | 25.8 | 95.3% | 24.6 | 0.0% | 0.0 |
Mutant Lines | DEGs | 3 DAS | 6 DAS |
---|---|---|---|
cyp79B2/B3 | Upregulated | 237 | 3362 |
Downregulated | 19 | 1983 | |
qko | Upregulated | 1817 | 2092 |
Downregulated | 1137 | 1857 | |
pad3 | Upregulated | 797 | 3703 |
Downregulated | 1145 | 3065 |
Defense Pathways and Metabolites | No. of Genes at 3DAS | No. of Genes at 6DAS | ||
---|---|---|---|---|
WT | pad3 | WT | pad3 | |
JA | 1 | 1 | 22 | 15 |
ET | 41 | 22 | 118 | 104 |
SA | 92 | 71 | 273 | 252 |
ROS | 21 | 13 | 61 | 55 |
Indol | 57 | 48 | 113 | 99 |
Phytoalexin | 11 | 11 | 20 | 19 |
GSL | 11 | 5 | 21 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Cuadros, M.; Chir, L.; Aligon, S.; Velasquez, N.; Arias, T.; Verdier, J.; Grappin, P. Dual Transcriptome of Post-Germinating Mutant Lines of Arabidopsis thaliana Infected by Alternaria brassicicola. Data 2024, 9, 137. https://doi.org/10.3390/data9110137
Ortega-Cuadros M, Chir L, Aligon S, Velasquez N, Arias T, Verdier J, Grappin P. Dual Transcriptome of Post-Germinating Mutant Lines of Arabidopsis thaliana Infected by Alternaria brassicicola. Data. 2024; 9(11):137. https://doi.org/10.3390/data9110137
Chicago/Turabian StyleOrtega-Cuadros, Mailen, Laurine Chir, Sophie Aligon, Nubia Velasquez, Tatiana Arias, Jerome Verdier, and Philippe Grappin. 2024. "Dual Transcriptome of Post-Germinating Mutant Lines of Arabidopsis thaliana Infected by Alternaria brassicicola" Data 9, no. 11: 137. https://doi.org/10.3390/data9110137
APA StyleOrtega-Cuadros, M., Chir, L., Aligon, S., Velasquez, N., Arias, T., Verdier, J., & Grappin, P. (2024). Dual Transcriptome of Post-Germinating Mutant Lines of Arabidopsis thaliana Infected by Alternaria brassicicola. Data, 9(11), 137. https://doi.org/10.3390/data9110137