Selection Signatures in Italian Livestock Guardian and Herding Shepherd Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Genotyping
2.2. Quality Control
2.3. Genomic Analyses
3. Results
3.1. Population Structure
3.2. Genomic Regions Differentiating Livestock Guardian and Herding Shepherd Dogs
3.3. ROH Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huson, H.J. Genetic Aspects of Performance in Working Dogs. In The Genetics of the Dog; Ostrander, E., Ruvinsky, A., Eds.; CAB International: Croydon, UK, 2012; pp. 477–495. ISBN 9781845939403. [Google Scholar]
- Olsen, S.J. Origins of the Domestic Dog: The Fossil Record; University of Arizona Press: Tucson, AZ, USA, 1985. [Google Scholar]
- Coppinger, L.; Coppinger, R. Dogs for Herding and Guarding Livestock. In Livestock Handling and Transport; Grandin, T., Ed.; CAB International: Croydon, UK, 2007; ISBN 9781845932190. [Google Scholar]
- Rigg, R. Livestock Guarding Dogs: Their Current Use World Wide; Canid Specialist Group: Oxford, UK, 2001. [Google Scholar]
- Grandin, T.; Deesing, M.J. Genetics and the Behavior of Domestic Animals; Academic Press: Cambridge, MA, USA, 2013; ISBN 9780123945860. [Google Scholar]
- Urbigkit, C. Brave and Loyal; Skyhorse Publishing: New York, NY, USA, 2016; ISBN 978150709112. [Google Scholar]
- Serpell, J. The Domestic Dog, 2nd ed.; Cambridge University Press: New York, NY, USA, 2016; ISBN 9781107024144. [Google Scholar]
- Sechi, S.; Polli, M.; Marelli, S.P.; Talenti, A.; Crepaldi, P.; Fiore, F.; Spissu, N.; Dreger, D.L.; Zedda, M.; Dimauro, C.; et al. Fonni’s dog: Morphological and genetic characteristics for a breed standard definition. Ital. J. Anim. Sci. 2017, 16, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Talenti, A.; Dreger, D.L.; Frattini, S.; Polli, M.; Marelli, S.P.; Harris, A.C.; Liotta, L.; Cocco, R.; Hogan, A.N.; Bigi, D.; et al. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol. Evol. 2018, 8, 2911–2925. [Google Scholar] [CrossRef] [PubMed]
- Liotta, L.; Bionda, A.; Cortellari, M.; Negro, A. From phenotypical to genomic characterisation of the mannara dog: An italian shepherd canine resource. Ital. J. Anim. Sci. 2021, 20, 1431–1443. [Google Scholar] [CrossRef]
- Dreger, D.L.; Davis, B.W.; Cocco, R.; Sechi, S.; Di Cerbo, A.; Parker, H.G.; Polli, M.; Marelli, S.P.; Crepaldi, P.; Ostrander, E.A. Commonalities in development of pure breeds and population isolates revealed in the genome of the Sardinian Fonni’s dog. Genetics 2016, 204, 737–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigi, D.; Marelli, S.P.; Randi, E.; Polli, M. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers. Animal 2015, 9, 1921–1928. [Google Scholar] [CrossRef]
- Bigi, D.; Marelli, S.P.; Liotta, L.; Frattini, S.; Talenti, A.; Pagnacco, G.; Polli, M.; Crepaldi, P. Investigating the population structure and genetic differentiation of livestock guard dog breeds. Animal 2018, 12, 2009–2016. [Google Scholar] [CrossRef]
- Jones, P.; Chase, K.; Martin, A.; Davern, P.; Ostrander, E.A.; Lark, K.G. Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 2008, 179, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Chase, K.; Jones, P.; Martin, A.; Ostrander, E.A.; Lark, K.G. Genetic mapping of fixed phenotypes: Disease frequency as a breed characteristic. J. Hered. 2009, 100, S37–S41. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.G.; Shearin, A.L.; Ostrander, E.A. Man’s best friend becomes biology’s best in show: Genome analyses in the domestic dog. Annu. Rev. Genet. 2010, 44, 309–336. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef] [Green Version]
- Pemberton, T.J.; Absher, D.; Feldman, M.W.; Myers, R.M.; Rosenberg, N.A.; Li, J.Z. Genomic Patterns of Homozygosity in Worldwide Human Populations. Am. J. Hum. Genet. 2012, 91, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Szpiech, Z.A.; Hernandez, R.D. selscan: An Efficient Multithreaded Program to Perform EHH-Based Scans for Positive Selection. Mol. Biol. Evol. 2014, 31, 2824–2827. [Google Scholar] [CrossRef] [Green Version]
- Holsinger, K.E.; Weir, B.S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Vitti, J.J.; Grossman, S.R.; Sabeti, P.C. Detecting Natural Selection in Genomic Data. Annu. Rev. Genet. 2013, 47, 97–120. [Google Scholar] [CrossRef]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Bhushan, B.; Dutt, T.; Mishra, B.P. Selection signatures in livestock genome: A review of concepts, approaches and applications. Livest. Sci. 2020, 241, 104257. [Google Scholar] [CrossRef]
- Onzima, R.B.; Upadhyay, M.R.; Doekes, H.P.; Brito, L.F.; Bosse, M.; Kanis, E.; Groenen, M.A.M.; Crooijmans, R.P.M.A. Genome-Wide Characterization of Selection Signatures and Runs of Homozygosity in Ugandan Goat Breeds. Front. Genet. 2018, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Cortellari, M.; Barbato, M.; Talenti, A.; Bionda, A.; Carta, A.; Ciampolini, R.; Ciani, E.; Crisà, A.; Frattini, S.; Lasagna, E.; et al. The climatic and genetic heritage of Italian goat breeds with genomic SNP data. Sci. Rep. 2021, 11, 10986. [Google Scholar] [CrossRef]
- Ciani, E.; Crepaldi, P.; Nicoloso, L.; Lasagna, E.; Sarti, F.M.; Moioli, B.; Napolitano, F.; Carta, A.; Usai, G.; D’Andrea, M.; et al. Genome-wide analysis of Italian sheep diversity reveals a strong geographic pattern and cryptic relationships between breeds. Anim. Genet. 2014, 45, 256–266. [Google Scholar] [CrossRef]
- Kukekova, A.V.; Johnson, J.L.; Xiang, X.; Feng, S.; Liu, S.; Rando, H.M.; Kharlamova, A.V.; Herbeck, Y.; Serdyukova, N.A.; Xiong, Z.; et al. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat. Ecol. Evol. 2018, 2, 1479–1491. [Google Scholar] [CrossRef]
- Uchida, S.; Hara, K.; Kobayashi, A.; Fujimoto, M.; Otsuki, K.; Yamagata, H.; Hobara, T.; Abe, N.; Higuchi, F.; Shibata, T.; et al. Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc. Natl. Acad. Sci. USA 2011, 108, 1681–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrill, K.; Hekman, J.; Li, X.; McClure, J.; Logan, B.; Goodman, L.; Gao, M.; Dong, Y.; Alonso, M.; Carmichael, E.; et al. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022, 376, eabk0639. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Xu, F.; Brenig, B. Genome-Wide Association Studies Reveal Neurological Genes for Dog Herding, Predation, Temperament, and Trainability Traits. Front. Vet. Sci. 2021, 8, 693290. [Google Scholar] [CrossRef] [PubMed]
- Ostrander, E.A.; Wayne, R.K.; Freedman, A.H.; Davis, B.W. Demographic history, selection and functional diversity of the canine genome. Nat. Rev. Genet. 2017, 18, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Akkad, D.A.; Gerding, W.M.; Gasser, R.B.; Epplen, J.T. Homozygosity mapping and sequencing identify two genes that might contribute to pointing behavior in hunting dogs. Canine Genet. Epidemiol. 2015, 2, 5. [Google Scholar] [CrossRef]
- Gnanadesikan, G.E.; Hare, B.; Snyder-Mackler, N.; Call, J.; Kaminski, J.; Miklósi, Á.; MacLean, E.L. Breed Differences in Dog Cognition Associated with Brain-Expressed Genes and Neurological Functions. Integr. Comp. Biol. 2020, 60, 976–990. [Google Scholar] [CrossRef]
- Yoo, T.; Kim, S.-G.; Yang, S.H.; Kim, H.; Kim, E.; Kim, S.Y. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol. Autism 2020, 11, 19. [Google Scholar] [CrossRef]
- Dalla Vecchia, E.; Di Donato, V.; Young, A.M.J.; Del Bene, F.; Norton, W.H.J. Reelin Signaling Controls the Preference for Social Novelty in Zebrafish. Front. Behav. Neurosci. 2019, 13, 214. [Google Scholar] [CrossRef]
- Vorwald Dohner, J. Farm Dogs; Storey Puglishing: North Adams, MA, USA, 2016. [Google Scholar]
- Oikonomou, K.G.; Zachou, K.; Dalekos, G.N. Alpha-actinin: A multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun. Rev. 2011, 10, 389–396. [Google Scholar] [CrossRef]
- Lightfoot, J.T. Can You Be Born a Couch Potato? The Genomic Regulation of Physical Activity. In Exercise Genomics; Coleman, W.B., Tsongalis, G.J., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 45–72. [Google Scholar]
- Kim, J.; Williams, F.J.; Dreger, D.L.; Plassais, J.; Davis, B.W.; Parker, H.G.; Ostrander, E.A. Genetic selection of athletic success in sport-hunting dogs. Proc. Natl. Acad. Sci. USA 2018, 115, E7212–E7221. [Google Scholar] [CrossRef]
- Li, Y.; Wu, D.-D.; Boyko, A.R.; Wang, G.-D.; Wu, S.-F.; Irwin, D.M.; Zhang, Y.-P. Population Variation Revealed High-Altitude Adaptation of Tibetan Mastiffs. Mol. Biol. Evol. 2014, 31, 1200–1205. [Google Scholar] [CrossRef] [Green Version]
- Mosher, D.S.; Quignon, P.; Bustamante, C.D.; Sutter, N.B.; Mellersh, C.S.; Parker, H.G.; Ostrander, E.A. A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs. PLoS Genet. 2007, 3, e79. [Google Scholar] [CrossRef]
- vonHoldt, B.M.; Pollinger, J.P.; Lohmueller, K.E.; Han, E.; Parker, H.G.; Quignon, P.; Degenhardt, J.D.; Boyko, A.R.; Earl, D.A.; Auton, A.; et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 2010, 464, 898–902. [Google Scholar] [CrossRef] [Green Version]
- Guang-Xin, E.; Basang, W.-D.; Zhu, Y.-B. Whole-genome analysis identifying candidate genes of altitude adaptive ecological thresholds in yak populations. J. Anim. Breed. Genet. 2019, 136, 371–377. [Google Scholar] [CrossRef]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019, 10, 1489. [Google Scholar] [CrossRef] [Green Version]
- Vaysse, A.; Ratnakumar, A.; Derrien, T.; Axelsson, E.; Rosengren Pielberg, G.; Sigurdsson, S.; Fall, T.; Seppälä, E.H.; Hansen, M.S.T.; Lawley, C.T.; et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011, 7, e1002316. [Google Scholar] [CrossRef] [Green Version]
- Van Bommel, L.; Johnson, C.N. Where do livestock guardian dogs go? Movement patterns of free-ranging Maremma sheepdogs. PLoS ONE 2014, 9, e111444. [Google Scholar] [CrossRef] [Green Version]
- Trut, L.N.; Oskina, I.N.; Kharlamova, A. V Experimental Studies of Early Canid Domestication. In The Genetics of the Dog, 2nd ed.; Ostrander, E.A., Ruvinsky, A., Eds.; CPI Group (UK) Ltd.: Croydon, UK, 2012; pp. 12–37. ISBN 978-1-84593-940-3. [Google Scholar]
- Gustafson, K.; Duncan, J.; Biswas, P.; Soto-Hermida, A.; Matsui, H.; Jakubosky, D.; Suk, J.; Telenti, A.; Frazer, K.; Ayyagari, R. Whole Genome Sequencing Revealed Mutations in Two Independent Genes as the Underlying Cause of Retinal Degeneration in an Ashkenazi Jewish Pedigree. Genes 2017, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Coussa, R.G.; DeBenedictis, M.J.M.; Traboulsi, E.I. Retinal dystrophy associated with a Kizuna KIZ mutation and a predominantly macular phenotype. Ophthalmic Genet. 2019, 40, 455–460. [Google Scholar] [CrossRef]
- El Shamieh, S.; Neuillé, M.; Terray, A.; Orhan, E.; Condroyer, C.; Démontant, V.; Michiels, C.; Antonio, A.; Boyard, F.; Lancelot, M.-E.; et al. Whole-exome sequencing identifies KIZ as a ciliary gene associated with autosomal-recessive rod-cone dystrophy. Am. J. Hum. Genet. 2014, 94, 625–633. [Google Scholar] [CrossRef]
- Vig, A.; Poulter, J.A.; Ottaviani, D.; Tavares, E.; Toropova, K.; Tracewska, A.M.; Mollica, A.; Kang, J.; Kehelwathugoda, O.; Paton, T.; et al. DYNC2H1 hypomorphic or retina-predominant variants cause nonsyndromic retinal degeneration. Genet. Med. 2020, 22, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, W.; Li, J.-K.; Wang, Z.-S.; Bai, J.-Y.; Xu, L.; Xing, B.; Yang, W.; Wang, Z.-W.; Wang, L.-S.; et al. Genetic and clinical findings of panel-based targeted exome sequencing in a northeast Chinese cohort with retinitis pigmentosa. Mol. Genet. Genom. Med. 2020, 8, e1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murgiano, L.; Jagannathan, V.; Calderoni, V.; Joechler, M.; Gentile, A.; Drögemüller, C. Looking the Cow in the Eye: Deletion in the NID1 Gene Is Associated with Recessive Inherited Cataract in Romagnola Cattle. PLoS ONE 2014, 9, e110628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guandalini, A.; Di Girolamo, N.; Santillo, D.; Andreani, V.; Corvi, R.; Bandini, M.; Peruccio, C. Epidemiology of ocular disorders presumed to be inherited in three large Italian dog breeds in Italy. Vet. Ophthalmol. 2017, 20, 420–426. [Google Scholar] [CrossRef]
Gene Symbol | Gene Name | CFA | Start | End |
---|---|---|---|---|
SSBP2 | Single-stranded DNA binding protein 2 | 3 | 2,5616,824 | 25,900,501 |
ACTN2 | Actinin alpha 2 | 4 | 3,348,449 | 3,415,273 |
NID1 | Nidogen 1 | 4 | 3,935,223 | 4,017,300 |
TSNAX | Translin associated factor X | 4 | 7,937,820 | 7,967,889 |
CSF1R | Colony stimulating factor 1 receptor | 4 | 58,980,788 | 59,010,510 |
ARHGEF12 | Rho guanine nucleotide exchange factor 12 | 5 | 13,522,896 | 13,669,155 |
DYNC2H1 | Dynein cytoplasmic 2 heavy chain 1 | 5 | 28,388,664 | 28,727,334 |
NFIA | Nuclear factor I A | 5 | 48,496,773 | 49,064,848 |
RGL1 | Ral guanine nucleotide dissociation stimulator like 1 | 7 | 17,041,296 | 17,235,193 |
BAZ1A | Bromodomain adjacent to zinc finger domain 1A | 8 | 13,605,182 | 13,693,847 |
HELB | DNA helicase B | 10 | 8,765,617 | 8,798,092 |
MRPS18A | Mitochondrial ribosomal protein S18A | 12 | 12,096,568 | 12,122,997 |
GABRB1 | Gamma-aminobutyric acid type A receptor subunit beta1 | 13 | 42,992,569 | 43,349,923 |
CORIN | Corin, serine peptidase | 13 | 43,502,665 | 43,737,813 |
EXOC4 | Exocyst complex component 4 | 14 | 3,334,220 | 4,077,411 |
SND1 | Staphylococcal nuclease and tudor domain containing 1 | 14 | 8,265,358 | 8,731,453 |
CSMD2 | CUB and Sushi multiple domains 2 | 15 | 8,090,518 | 8,110,447 |
AGBL4 * | AGBL Carboxypeptidase 4 | 15 | 11,914,056 | 12,427,654 |
DYSF | Dysferlin | 17 | 51,011,197 | 51,228,876 |
RELN | reelin | 18 | 16,275,837 | 16,773,875 |
DLG2 | Discs large MAGUK scaffold protein 2 | 21 | 13,822,304 | 15,771,954 |
KIZ | Kizuna centrosomal protein | 24 | 2,174,905 | 2,305,811 |
EPB41L1 | Erythrocyte membrane protein band 4.1 like 1 | 24 | 24,925,629 | 25,0467,76 |
XPO4 | Exportin 4 | 25 | 17,230,031 | 17,348,031 |
ASUN or INTS13 | Asunder, spermatogenesis regulator | 27 | 20,479,932 | 20,507,538 |
MAP2K5 | Mitogen-activated protein kinase kinase 5 | 30 | 31,664,564 | 31,920,751 |
PEAK1 | Pseudopodium enriched atypical kinase 1 | 30 | 39,134,948 | 39,207,226 |
CCSER1 | Coiled-coil serine rich protein 1 | 32 | 13,355,503 | 14,697,519 |
HGD | Homogentisate 1,2-dioxygenase | 33 | 24,066,306 | 24,151,354 |
CFA | Livestock Guardians | Herding Shepherd Dogs |
---|---|---|
1 | 60,722,335–61,921,241 | 60,722,335–62,055,218 |
4 | 2,377,011–3,426,340 | |
5 | 839,609–3,736,188 | |
6 | 3,107,405–4,085,655 | |
9 | 1,136,406–3,839,981 | |
10 | 38,721,563–38,882,735 39,511,335–41,893,259 | 17,278,956–8,658,395 |
13 | 1,062,829–1,142,946 3,448,621–4,079,768 37,422,915–38,507,976 | 1,291,574–2,692,593 3,220,205–3,300,233 3,777,508–4,326,026 |
14 | 3,316,099–4,084,355 | |
17 | 2,578,048–2,795,460 | 48,593,680–53,104,598 |
20 | 25,341,988–26,396,630 33,453,310–34,736,398 | |
21 | 3,247,548–5,676,897 6,926,694–7,041,300 | |
22 | 179,292–5,456,059 | 707,849–4,454,533 |
25 | 2,091,732–4,265,859 | 2,284,963–4,149,337 |
27 | 9,013,573–10,148,761 | |
30 | 972,855–2,026,353 29,506,940–29,957,952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bionda, A.; Cortellari, M.; Bigi, D.; Chiofalo, V.; Liotta, L.; Crepaldi, P. Selection Signatures in Italian Livestock Guardian and Herding Shepherd Dogs. Vet. Sci. 2023, 10, 3. https://doi.org/10.3390/vetsci10010003
Bionda A, Cortellari M, Bigi D, Chiofalo V, Liotta L, Crepaldi P. Selection Signatures in Italian Livestock Guardian and Herding Shepherd Dogs. Veterinary Sciences. 2023; 10(1):3. https://doi.org/10.3390/vetsci10010003
Chicago/Turabian StyleBionda, Arianna, Matteo Cortellari, Daniele Bigi, Vincenzo Chiofalo, Luigi Liotta, and Paola Crepaldi. 2023. "Selection Signatures in Italian Livestock Guardian and Herding Shepherd Dogs" Veterinary Sciences 10, no. 1: 3. https://doi.org/10.3390/vetsci10010003
APA StyleBionda, A., Cortellari, M., Bigi, D., Chiofalo, V., Liotta, L., & Crepaldi, P. (2023). Selection Signatures in Italian Livestock Guardian and Herding Shepherd Dogs. Veterinary Sciences, 10(1), 3. https://doi.org/10.3390/vetsci10010003