Assessing the In Vitro and In Vivo Effect of Supplementation with a Garlic (Allium sativum) and Oregano (Origanum vulgare) Essential Oil Mixture on Digestibility in West African Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location and Animal Care
2.2. In Vitro Digestibility and Dose Selection
2.3. Gas Chromatography–Mass Spectrometry Analysis of Secondary EO Compounds
2.4. Animals and Diet for In Vivo Experiment
2.5. Treatments and Experimental Periods
2.6. Blood Parameters
2.7. Statistical Analysis
3. Results
3.1. In Vitro Digestibility
3.2. Blood Parameters
4. Discussion
4.1. In Vitro Digestibility
4.2. In Vivo Experiment
4.3. Blood Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; De Vries, W.; Weiss, F.; et al. Impacts of European Livestock Production: Nitrogen, Sulphur, Phosphorus and Greenhouse Gas Emissions, Land-Use, Water Eutrophication and Biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Eckard, R.J.; Grainger, C.; de Klein, C.A.M. Options for the Abatement of Methane and Nitrous Oxide from Ruminant Production: A Review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Russell, J.B.; Strobel, H.J. Effect of Ionophores on Ruminal Fermentation. Appl. Environ. Microbiol. 1989, 55, 1–6. [Google Scholar] [CrossRef] [PubMed]
- McGuffey, R.K. A 100-Year Review: Metabolic Modifiers in Dairy Cattle Nutrition. J. Dairy Sci. 2017, 100, 10113–10142. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Van Den Bogaard, A.E.; Stobberingh, E.E. Epidemiology of Resistance to Antibiotics: Links between Animals and Humans. Int. J. Antimicrob. Agents 2000, 14, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic Resistance: A Rundown of a Global Crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global Antibiotic Consumption 2000 to 2010: An Analysis of National Pharmaceutical Sales Data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- Walker, P.; Rhubart-Berg, P.; McKenzie, S.; Kelling, K.; Lawrence, R.S. Public Health Implications of Meat Production and Consumption. Public Health Nutr. 2005, 8, 348–356. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Olafadehan, O.A. Essential Oils and Phytogenic Feed Additives in Ruminant Diet: Chemistry, Ruminal Microbiota and Fermentation, Feed Utilization and Productive Performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A Review of Plant-Derived Essential Oils in Ruminant Nutrition and Production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Wallace, R.J. Antimicrobial Properties of Plant Secondary Metabolites. Proc. Nutr. Soc. 2004, 63, 621–629. [Google Scholar] [CrossRef]
- Jouany, J.P.; Morgavi, D.P. Use of “natural” Products as Alternatives to Antibiotic Feed Additives in Ruminant Production. Animal 2007, 1, 1443–1466. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Denys, P.; Kowalczyk, E. Antibacterial and Antifungal Properties of Essential Oils. Int. Rev. Allergol. Clin. Immunol. 2011, 17, 36–40. [Google Scholar] [CrossRef]
- Tomkins, N.W.; Denman, S.E.; Pilajun, R.; Wanapat, M.; McSweeney, C.S.; Elliott, R. Manipulating Rumen Fermentation and Methanogenesis Using an Essential Oil and Monensin in Beef Cattle Fed a Tropical Grass Hay. Anim. Feed. Sci. Technol. 2015, 200, 25–34. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed Additives as a Strategic Approach to Reduce Enteric Methane Production in Cattle: Modes of Action, Effectiveness and Safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G. The Effects of Dietary Consumption of Plants Secondary Compounds on Small Ruminants’ Products Quality. Small Rumin. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Shankar, S.; Royon, F.; Salmieri, S.; Lacroix, M. Essential Oils as Natural Antimicrobials Applied in Meat and Meat Products—A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Al-Suwaiegh, S.B.; Morshedy, S.A.; Mansour, A.T.; Ahmed, M.H.; Zahran, S.M.; Alnemr, T.M.; Sallam, S.M.A. Effect of an Essential Oil Blend on Dairy Cow Performance during Treatment and Post-Treatment Periods. Sustainability 2020, 12, 9123. [Google Scholar] [CrossRef]
- Navarro, M.C.; Montilla, M.P.; Cabo, M.M.; Galisteo, M.; Cáceres, A.; Morales, C.; Berger, I. Antibacterial, Antiprotozoal and Antioxidant Activity of Five Plants Used in Izabal for Infectious Diseases. Phytother. Res. 2003, 17, 325–329. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Deligeorgis, S.G.; Bizelis, J.A.; Dardamani, A.; Theodosiou, I.; Fegeros, K. Effect of Dietary Oregano Oil Supplementation on Lamb Meat Characteristics. Meat Sci. 2008, 79, 217–223. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A. Effect of Essential Oil Active Compounds on Rumen Microbial Fermentation and Nutrient Flow in In Vitro Systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Cobellis, G.; Petrozzi, A.; Forte, C.; Acuti, G.; Orrù, M.; Marcotullio, M.C.; Aquino, A.; Nicolini, A.; Mazza, V.; Trabalza-Marinucci, M.; et al. Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on In Vitro Rumen Fermentation Systems. Sustainability 2015, 7, 12856–12869. [Google Scholar] [CrossRef]
- Klop, G.; Dijkstra, J.; Dieho, K.; Hendriks, W.H.; Bannink, A. Enteric Methane Production in Lactating Dairy Cows with Continuous Feeding of Essential Oils or Rotational Feeding of Essential Oils and Lauric Acid. J. Dairy Sci. 2017, 100, 3563–3575. [Google Scholar] [CrossRef]
- Serrano, R.D.C.; Cruz, O.T.B.; Coneglian, S.M.; Branco, A.F. Use of Cashew and Castor Essential Oils to Improve Fibre Digestibility in High Forage Diets: Digestibility, Ruminal Fermentation and Microbial Protein Synthesis. Semin. Agrar. 2020, 41, 3429–3440. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef]
- Yang, W.Z.; Benchaar, C.; Ametaj, B.N.; Chaves, A.V.; He, M.L.; McAllister, T.A. Effects of Garlic and Juniper Berry Essential Oils on Ruminal Fermentation and on the Site and Extent of Digestion in Lactating Cows. J. Dairy Sci. 2007, 90, 5671–5681. [Google Scholar] [CrossRef] [PubMed]
- Jiao, T.; Wu, J.; Casper, D.P.; Davis, D.I.; Brown, M.A.; Zhao, S.; Liang, J.; Lei, Z.; Holloway, B. Feeding Sheep Cobalt and Oregano Essential Oil Alone or in Combination on Ruminal Nutrient Digestibility, Fermentation, and Fiber Digestion Combined with Scanning Electron Microscopy. Front. Vet. Sci. 2021, 8, 639432. [Google Scholar] [CrossRef] [PubMed]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of Rumen Fermentation and Methane Production with Plant Secondary Metabolites. Anim. Feed. Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, J.; Zhang, L.; Liu, L.; Casper, D.P.; Jiao, T.; Liu, T.; Wang, J.; Lang, X.; Song, S.; et al. Effects of Oregano Essential Oil on the Ruminal PH and Microbial Population of Sheep. PLoS ONE 2019, 14, e0217054. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of Natural Plant Extracts on Ruminal Protein Degradation and Fermentation Profiles in Continuous Culture. J. Anim. Sci. 2004, 82, 3230–3236. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Lu, Y.; Salem, A.Z.M.; Wang, J.H.; Liang, Q.; Liu, J.X. Effects of Essential Oil Combinations on Sheep Ruminal Fermentation and Digestibility of a Diet with Fumarate Included. Anim. Feed Sci. Technol. 2013, 184, 24–32. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; Martínez-Fernández, G.; Abecia, L.; Martin-García, A.I.; Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Garlic Derived Compounds Modify Ruminal Fatty Acid Biohydrogenation and Induce Shifts in the Butyrivibrio Community in Continuous-Culture Fermenters. Anim. Feed Sci. Technol. 2013, 184, 38–48. [Google Scholar] [CrossRef]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M.F. Chemical Composition, Antimicrobial and Antibiotic Potentiating Activity of Essential Oils from 10 Tropical Medicinal Plants from Mauritius. J. Herb. Med. 2016, 6, 88–95. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In Vitro Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations against Four Food-Related Microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Da Silva, C.S.; de Souza, E.J.O.; Pereira, G.F.C.; Cavalcante, E.O.; de Lima, E.I.M.; Torres, T.R.; da Silva, J.R.C.; da Silva, D.C. Plant Extracts as Phytogenic Additives Considering Intake, Digestibility, and Feeding Behavior of Sheep. Trop. Anim. Health Prod. 2017, 49, 353–359. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Grevsen, K.; Haveman, L.S.; Chowdhury, M.R.; Løvendahl, P.; Weisbjerg, M.R.; Noel, S.J.; Højberg, O.; Wiking, L.; et al. Effect of Dried Oregano (Origanum vulgare L.) Plant Material in Feed on Methane Production, Rumen Fermentation, Nutrient Digestibility, and Milk Fatty Acid Composition in Dairy Cows. J. Dairy Sci. 2019, 102, 9902–9918. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Petit, H.V. Dose-Response to Eugenol Supplementation to Dairy Cow Diets: Methane Production, N Excretion, Ruminal Fermentation, Nutrient Digestibility, Milk Production, and Milk Fatty Acid Profile. Anim. Feed Sci. Technol. 2015, 209, 51–59. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Essential Oils Affect Populations of Some Rumen Bacteria In Vitro as Revealed by Microarray (RumenBactArray) Analysis. Front. Microbiol. 2015, 6, 297. [Google Scholar] [CrossRef] [PubMed]
- Wencelová, M.; Váradyová, Z.; Mihaliková, K.; Čobanová, K.; Plachá, I.; Pristaš, P.; Jalč, D.; Kišidayová, S. Rumen Fermentation Pattern, Lipid Metabolism and the Microbial Community of Sheep Fed a High-Concentrate Diet Supplemented with a Mix of Medicinal Plants. Small Rumin. Res. 2015, 125, 64–72. [Google Scholar] [CrossRef]
- Newbold, C.J.; McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J. Effects of a Specific Blend of Essential Oil Compounds on Rumen Fermentation. Anim. Feed Sci. Technol. 2004, 114, 105–112. [Google Scholar] [CrossRef]
- Mallet, A.C.T.; Cardoso, M.; Souza, P.E.; Machado, S.M.F.; Andrade, M.A.; Nelson, D.L.; Piccoli, R.H.; Pereira, C. Chemical Characterization of the Allium Sativum and Origanum Vulgare Essential Oils and Their Inhibition Effect on the Growth of Some Food Pathogens. Rev. Bras. Plantas Med. 2014, 16, 804–811. [Google Scholar] [CrossRef]
- García, V.; Catalá-Gregori, P.; Madrid, J.; Hernández, F.; Megías, M.D.; Andrade-Montemayor, H.M. Potential of Carvacrol to Modify In Vitro Rumen Fermentation as Compared with Monensin. Animal 2007, 1, 675–680. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, J.; Lang, X.; Liu, L.; Casper, D.P.; Wang, C.; Zhang, L.; Wei, S. Effects of Oregano Essential Oil on In Vitro Ruminal Fermentation, Methane Production, and Ruminal Microbial Community. J. Dairy Sci. 2020, 103, 2303–2314. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullio, M.C.; Yu, Z. Evaluation of Different Essential Oils in Modulating Methane and Ammonia Production, Rumen Fermentation, and Rumen Bacteria In Vitro. Anim. Feed Sci. Technol. 2016, 215, 25–36. [Google Scholar] [CrossRef]
- Makkar, H.P.; Siddhuraju, P.; Becker, K. Plant Secondary Metabolites, 1st ed.; Humana: Totowa, NJ, USA, 2007; ISBN 978-1-59745-425-4. [Google Scholar]
- Makkar, H.P.S.; Becker, K. Chemical Composition of Rumen Microbial Fraction and Fermentation Parameters as Affected by Tannins and Saponins Using an In Vitro Rumen Fermentation System. Can. J. Anim. Sci. 2011, 91, 433–448. [Google Scholar] [CrossRef]
- Chekki, R.Z.; Snoussi, A.; Hamrouni, I.; Bouzouita, N. Chemical Composition, Antibacterial and Antioxidant Activities of Tunisian Garlic (Allium Sativum) Essential Oil and Ethanol Extract. Mediterr. J. Chem. 2014, 3, 947–956. [Google Scholar] [CrossRef]
- Klevenhusen, F.; Zeitz, J.O.; Duval, S.; Kreuzer, M.; Soliva, C.R. Garlic Oil and Its Principal Component Diallyl Disulfide Fail to Mitigate Methane, but Improve Digestibility in Sheep. Anim. Feed Sci. Technol. 2011, 166–167, 356–363. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galicia, I.A.; Arras-Acosta, J.A.; Huerta-Jimenez, M.; Rentería-Monterrubio, A.L.; Loya-Olguin, J.L.; Carrillo-Lopez, L.M.; Tirado-Gallegos, J.M.; Alarcon-Rojo, A.D. Natural Oregano Essential Oil May Replace Antibiotics in Lamb Diets: Effects on Meat Quality. Antibiotics 2020, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.N.S.; Moura, D.C.; Ghedini, C.P.; Ezequiel, J.M.B.; Almeida, M.T.C. Meta-Analysis of the Effects of Essential Oils on Ruminal Fermentation and Performance of Sheep. Small Rumin. Res. 2020, 189, 106148. [Google Scholar] [CrossRef]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The Bioactivity and Toxicological Actions of Carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Gholami-Ahangaran, M.; Ahmadi-Dastgerdi, A.; Azizi, S.; Basiratpour, A.; Zokaei, M.; Derakhshan, M. Thymol and Carvacrol Supplementation in Poultry Health and Performance. Vet. Med. Sci. 2022, 8, 267–288. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of Plant Extracts to Meat and Meat Products to Extend Shelf-Life and Health-Promoting Attributes: An Overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Salah, A.S.; Mahmoud, M.A. The Role of Oregano Herb and Its Derivatives as Immunomodulators in Fish. Rev. Aquac. 2020, 12, 2481–2492. [Google Scholar] [CrossRef]
- Cattani, M.; Maccarana, L.; Rossi, G.; Tagliapietra, F.; Schiavon, S.; Bailoni, L. Dose-Response and Inclusion Effects of Pure Natural Extracts and Synthetic Compounds on In Vitro Methane Production. Anim. Feed Sci. Technol. 2016, 218, 100–109. [Google Scholar] [CrossRef]
- Akbarian-Tefaghi, M.; Ghasemi, E.; Khorvash, M. Performance, Rumen Fermentation and Blood Metabolites of Dairy Calves Fed Starter Mixtures Supplemented with Herbal Plants, Essential Oils or Monensin. J. Anim. Physiol. Anim. Nutr. 2018, 102, 630–638. [Google Scholar] [CrossRef]
- Kohn, R.A.; Dinneen, M.M.; Russek-Cohen, E. Using Blood Urea Nitrogen to Predict Nitrogen Excretion and Efficiency of Nitrogen Utilization in Cattle, Sheep, Goats, Horses, Pigs, and Rats. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.T.; Liu, L.; Long, S.F.; Pan, L.; Piao, X.S. Effect of Organic Acids and Essential Oils on Performance, Intestinal Health and Digestive Enzyme Activities of Weaned Pigs. Anim. Feed Sci. Technol. 2018, 235, 110–119. [Google Scholar] [CrossRef]
- Marjuki, M.; Andri, F.; Huda, A.N. The Use of Essential Oils as a Growth Promoter for Small Ruminants: A Systematic Review and Meta-Analysis. F1000Research 2020, 9, 486. [Google Scholar] [CrossRef]
- Vakili, A.R.; Khorrami, B.; Mesgaran, M.D.; Parand, E. The Effects of Thyme and Cinnamon Essential Oils on Performance, Rumen Fermentation and Blood Metabolites in Holstein Calves Consuming High Concentrate Diet. Asian-Australas. J. Anim. Sci. 2013, 26, 935–944. [Google Scholar] [CrossRef]
- Cruz, O.T.B.; Valero, M.V.; Zawadzki, F.; Rivaroli, D.C.; do Prado, R.M.; Lima, B.S.; do Prado, I.N. Effect of Glycerine and Essential Oils (Anacardium occidentale and Ricinus communis) on Animal Performance, Feed Efficiency and Carcass Characteristics of Crossbred Bulls Finished in a Feedlot System. Ital. J. Anim. Sci. 2014, 13, 790–797. [Google Scholar] [CrossRef]
- Silvestre, T.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Martins, L.F.; Wall, E.; Hristov, A.N. Effects of a Combination of Capsicum Oleoresin and Clove Essential Oil on Metabolic Status, Lactational Performance, and Enteric Methane Emissions in Dairy Cows. J. Dairy Sci. 2022, 105, 9610–9622. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Schären, M.; Drong, C.; Kiri, K.; Riede, S.; Gardener, M.; Meyer, U.; Hummel, J.; Urich, T.; Breves, G.; Dänicke, S. Differential Effects of Monensin and a Blend of Essential Oils on Rumen Microbiota Composition of Transition Dairy Cows. J. Dairy Sci. 2017, 100, 2765–2783. [Google Scholar] [CrossRef]
- National Research Council (US). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press, Ed.; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-47323-1. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; George Latimer, J., Ed.; AOAC: Rockville, MD, USA, 2016; ISBN 0-935584-87-0. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Sniffen, C.J.; O’connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: I. Ruminal Fermentation. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic Determination of Total Serum Cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Minitab, LCC. Getting Started with Minitab 17; Minitab, LCC: State College, PA, USA, 2014; p. 73. [Google Scholar]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of Dose and Adaptation Time of a Specific Blend of Essential Oil Compounds on Rumen Fermentation. Anim. Feed Sci. Technol. 2007, 132, 186–201. [Google Scholar] [CrossRef]
- Benchaar, C. Feeding Oregano Oil and Its Main Component Carvacrol Does Not Affect Ruminal Fermentation, Nutrient Utilization, Methane Emissions, Milk Production, or Milk Fatty Acid Composition of Dairy Cows. J. Dairy Sci. 2020, 103, 1516–1527. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Kassab, A.Y.; Azzaz, H.H.; Matloup, O.H.; Hamdon, H.A.; Olafadehan, O.A.; Morsy, T.A. Essential Oils Blend with a Newly Developed Enzyme Cocktail Works Synergistically to Enhance Feed Utilization and Milk Production of Farafra Ewes in the Subtropics. Small Rumin. Res. 2018, 161, 43–50. [Google Scholar] [CrossRef]
- Yu, Z.; Morrison, M. Improved Extraction of PCR-Quality Community DNA from Digesta and Fecal Samples. Biotechniques 2004, 3, 808–812. [Google Scholar] [CrossRef]
- Pawar, M.M.; Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Effects of Essential Oils on In Vitro Methanogenesis and Feed Fermentation with Buffalo Rumen Liquor. Agric. Res. 2014, 3, 67–74. [Google Scholar] [CrossRef]
- Benchaar, C.; Greathead, H. Essential Oils and Opportunities to Mitigate Enteric Methane Emissions from Ruminants. Anim. Feed Sci. Technol. 2011, 166–167, 338–355. [Google Scholar] [CrossRef]
- Faleiro, M.L. The Mode of Antibacterial Action of Essential Oils. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 3, 1143–1156. [Google Scholar]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J.E. A Study of the Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Ajileye, O.O.; Obuotor, E.M.; Akinkunmi, E.O.; Aderogba, M.A. Isolation and Characterization of Antioxidant and Antimicrobial Compounds from Anacardium occidentale L. (Anacardiaceae) Leaf Extract. J. King Saud Univ.-Sci. 2015, 27, 244–252. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yusoff, K.; Lim, S.H.E.; Chong, C.M.; Lai, K.S. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Encapsulation Strategies to Enhance the Antibacterial Properties of Essential Oils in Food System. Food Control 2021, 123, 107856. [Google Scholar] [CrossRef]
- Mertens, D.R. Forage Quality, Evaluation, and Utilization. In Agricultural Research Service; Fahey, G.C., Jr., Ed.; Wiley: Madison, WI, USA, 1994; pp. 494–532. ISBN 9780891185796. [Google Scholar]
- Michailoff, A.A.; Silveira, M.F.; Maeda, E.M.; Sordi, A.C.B.; Francisco, L.F.; Farenzena, R. Effect of Including Functional Oils in Ovine Diets on Ruminal Fermentation and Performance. Small Rumin. Res. 2020, 185, 106084. [Google Scholar] [CrossRef]
- Calsamiglia, S. Nuevas Bases Para La Utilización de La Fibra En Dietas de Rumiantes. In Proceedings of the XIII Curso de Especialización FEDN, Madrid, Spain, 6–7 November 1997; pp. 1–16. [Google Scholar]
- Mcintosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Newbold, C.J.; Beever, D.A. Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism. Appl. Environ. Microbiol. 2003, 69, 5011–5014. [Google Scholar] [CrossRef]
- Nanon, A.; Suksombat, W.; Yang, W.Z. Effects of Essential Oils Supplementation on In Vitro and In Situ Feed Digestion in Beef Cattle. Anim. Feed Sci. Technol. 2014, 196, 50–59. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Kamel, C. Plant Extracts Affect In Vitro Rumen Microbial Fermentation. J. Dairy Sci. 2006, 89, 761–771. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Carroll, M.D.; Kamel, C. Effect of Garlic Oil and Four of Its Compounds on Rumen Microbial Fermentation. J. Dairy Sci. 2005, 88, 4393–4404. [Google Scholar] [CrossRef]
- De Souza, K.A.; Monteschio, J.d.O.; Mottin, C.; Ramos, T.R.; Pinto, L.A.d.M.; Eiras, C.E.; Guerrero, A.; do Prado, I.N. Effects of Diet Supplementation with Clove and Rosemary Essential Oils and Protected Oils (Eugenol, Thymol and Vanillin) on Animal Performance, Carcass Characteristics, Digestibility, and Ingestive Behavior Activities for Nellore Heifers Finished in Feedl. Livest. Sci. 2019, 220, 190–195. [Google Scholar] [CrossRef]
- Braun, H.S.; Schrapers, K.T.; Mahlkow-Nerge, K.; Stumpff, F.; Rosendahl, J. Dietary Supplementation of Essential Oils in Dairy Cows: Evidence for Stimulatory Effects on Nutrient Absorption. Animal 2019, 13, 518–523. [Google Scholar] [CrossRef]
- Brockman, R.P.; Laarveld, B. Hormonal Regulation of Metabolism in Ruminants: A Review. Livest. Prod. Sci. 1986, 14, 313–334. [Google Scholar] [CrossRef]
- Oke, O.E.; Uyanga, V.A.; Iyasere, O.S.; Oke, F.O.; Majekodunmi, B.C.; Logunleko, M.O.; Abiona, J.A.; Nwosu, E.U.; Abioja, M.O.; Daramola, J.O.; et al. Environmental Stress and Livestock Productivity in Hot-Humid Tropics: Alleviation and Future Perspectives. J. Therm. Biol. 2021, 100, 103077. [Google Scholar] [CrossRef] [PubMed]
- Maza, L.A.; Cardona, J.A.; Vergara, O.G. Analysis of Metabolic Profile in Pregnant Creole Sheep in Extensive Grazing Conditions. Rev. Cient. 2011, 21, 335–339. [Google Scholar]
- Santos dos, R.; Campos, A.G.S.S.; Afonso, J.A.B.; Soares, P.C.; de Mendonça, C.L. Efeito Da Administração de Propileno Glicol e Cobalto Associado à Vitamina B12 Sobre o Perfil Metabólico e a Atividade Enzimática de Ovelhas Da Raça Santa Inês No Periparto. Pesqui. Vet. Bras. 2012, 32, 60–66. [Google Scholar] [CrossRef]
Retention Time, min (tR) | Compound Identification | Relative Amount, % |
---|---|---|
7.56 | Allyl methyl sulfide | 0.50 |
9.03 | dimethyl disulfide | 0.20 |
13.75 | diallyl monosulfide | 7.30 |
16.3S | sharp methyl disulfide | 3.30 |
18.79 | dimethyl trisulfide | 0.60 |
23.57 | diallyl disulfide | 22.70 |
24.08 | cis-propenyl-propyl disulfide | 0.10 |
25.99 | Methyl allyl trisulfide | 9.70 |
26.8 | 4-Methyl-1,2,3-trithiolane | 2.70 |
29.05 | dimethyl tetrasulfide | 0.70 |
29.29 | * Compound NI m/z (%): 162 (4), 121 (23), 89 (55), 75 (100), 59 (12), 41(88) | 0.70 |
31.49 | 3-Ethyl-2,4,5-trithiahexane | 0.70 |
32.21 | diallyl trisulfide | 25.00 |
35.16 | 5-Methyl-1,2,3,4-tetrathian | 2.00 |
35.36 | * Compound NI m/z (%): 184 (10), 158 (15), 143 (1), 120 (34), 94 (4), 79 (45), 64 (41), 41 (100) | 0.80 |
36.9 | 1-Methyl-2-(1-(prop-1-en-1-ylthio)propyl)disulfane | 0.30 |
37.49 | 1-(1-{Methylthio)propyl)-2-propyl-disulfane | 2.40 |
39.57 | 4-Ethyl-2,3,5,6-tetrathiaheptane | 0.30 |
40.75 | diallyl tetrasulfide | 6.70 |
41.85 | 1-Methyl-2-(2-propenylthio)ethyl-2-propenyl disulfide | 1.00 |
42.13 | 1-propenyl 1-(1-propenylthio)propyl disulfide | 2.70 |
44.01 | * Compound NI m/z(o/o): 202 (11), 170 (28), 138 (52), 106 (17), 96 (15), 64 (71), 41(100) | 1.90 |
44.4 | * Compound NI m/z(o/o): 202 (1), 170 (13), 138 (9), 121 (69), 106 (7), 89 (34), 73 (67), 41 (100) | 0.90 |
46.5 | * Compound NI m/z(o/o): 192 (1), 177 (3), 145 (4), 113 (100), 99 (14), 85 (36), 79 (68), 64 (21), 41 (72) | 2.20 |
47.11 | 1,5-Dithiaspiro[5.6]dodecan-7-ol | 0.90 |
47.84 | 8-Methyl-4,5,6, 9-tetrathia-1, 11-dodecadiene | 3.70 |
Retention Time, min (tR) | Compound Identification | Relative Amount, % |
---|---|---|
19.52 | β-Myrcene | 0.30 |
20.26 | ρ-Mint-1(7),8-diene | <0.1 |
20.81 | α-Terpinene | 0.20 |
21.17 | ρ-Cymene | 4.00 |
21.36 | Limonene | 1.00 |
22.55 | γ-Terpinene | 0.60 |
24.2 | Linalool | 1.60 |
25.41 | (1R,2S,3S)-3-Isopropenyl-1,2-dimethylcyclopentanol | <0.1 |
31.45 | Thymol | 6.90 |
32.11 | Carvacrol | 79.40 |
35.04 | α-Copaene | 0.10 |
36.75 | trans-β-Caryophyllene | 2.10 |
37.96 | α-Humulene | 0.20 |
39.82 | δ-Cadinene | <0.1 |
41.95 | caryophyllene oxide | 1.90 |
42.38 | Humulene epoxide I | <0.1 |
42.71 | humulene epoxide II | 0.10 |
44.22 | (1R,7S,E)-7-isopropyl-4,10-dimethylene-cyclodec-5-enol | 0.20 |
50.39 | 5-(6-Methylhepta-1,5-dien-2yl)1-1-(4-methylpent-3-en-1-yl)cyclohex-1-ene (m-Camphorene) | 0.10 |
51.14 | 4-(6-Methylhepta-1,5-dien-2-yl)-1-(4methylpent-3-en-1-yl)cyclohex-1-ene (ρ-Camphorene) | <0.1 |
51.89 | * Compound NI m/z (%): 150 (53), 135 (100), 121 (13), 107 (14), 93 (30), 79 (16), 65 (8) | 0.30 |
52.41 | * Compound NI m/z (%): 150 (72), 135 (100), 121 (12), 107 (11), 93 (23), 79 (15), 65 (8) | 0.10 |
53.8 | 4a,6a-Dimethyl-4,4a,6,6a,8,9,9a,9b,10,11-decahydrocyclopenta[7,8] phenanthro[4β,5-β]oxirene-2,7(3H,5ah)-diona | <0.1 |
54.01 | * Compound NI m/z (%): 302 (60), 284 (6), 259 (34), 241 (84), 201 (100), 173 (20), 159 (71), 145 (14), 131 (9), 115 (17), 91 (18), 58 (20) | 0.20 |
54.49 | (Z)-2Methyl-6-(4-methyl-5-(3-methylbut-2-enoyl)cyclohex-3-en-1-yl)hepta-2,5-dien-4-one | 0.20 |
54.66 | Androsta-1,4,7-triene-3,17-dione | <0.1 |
63.25 | * Compound NI m/z (%): 370 (18), 355 (1), 221 (5), 203 (32), 175 (8), 150 (100), 135 (92), 121 (21), 107 (29), 93 (25), 79 (28) | 0.30 |
Ingredients and Chemical Composition of the Diets | |
---|---|
% of DM | |
Ingredient | |
Maize silage | 60.00 |
Corn grain, ground | 21.00 |
Soybean meal | 17.00 |
Molasses | 1.10 |
Bicalcium phosphate | 0.01 |
Mineral mixture 1 | 0.89 |
Chemical composition | |
Crude protein (CP) | 11.55 |
Neutral detergent fiber (NDF) | 40.63 |
Ether extract (EE) | 3.45 |
Total digestible nutrients (TDN) | 68.00 |
+ EO Inclusion mL/day | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0 | 0.5 | 0.75 | 1.0 | SEM 1 | L 2 | Q 3 | C 4 |
Dry matter | 587.79 c | 756.27 b | 912.87 a | 889.94 a | 14.06 | 0.070 | 0.033 | 0.394 |
Crude Protein | 74.60 c | 94.83 b | 107.11 a | 93.53 b | 2.20 | 0.063 | 0.002 | 0.427 |
Non-Fiber Carbohydrates | 332.73 | 315.54 | 331.84 | 320.37 | 6.29 | 0.825 | 0.891 | 0.514 |
Neutral Detergent Fiber | 217.00 c | 306.44 b | 350.65 a | 325.16 ab | 12.74 | 0.062 | 0.001 | 0.738 |
Ether Extract | 30.05 ab | 29.21 b | 29.86 ab | 30.77 a | 0.53 | 0.743 | 0.650 | 0.887 |
Dry matter | 691.4 b | 737.5 a | 727.5 a | 731.4 a | 0.97 | 0.046 | 0.085 | 0.200 |
Crude Protein | 671.7 | 629.6 | 666.4 | 616.8 | 1.66 | 0.105 | 0.831 | 0.038 |
Non-Fiber Carbohydrates | 901.3 | 906.0 | 887.5 | 896.0 | 1.24 | 0.534 | 0.897 | 0.365 |
Neutral detergent fiber | 536.8 b | 560.5 b | 649.7 a | 592.9 b | 2.15 | 0.076 | 0.062 | 0.012 |
Ether extract | 787.1 bc | 821.1 ab | 785.1 c | 823.6 a | 1.18 | 0.473 | 0.922 | 0.162 |
TDN 5 | 698.5 | 707.3 | 737.5 | 702.9 | 1.10 | 0.391 | 0.059 | 0.092 |
+ EO Inclusions mL/day | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0 | 0.5 | 0.75 | 1.0 | SEM 1 | L 2 | Q 3 | C 4 |
Glucose, mg/dL | 98.92 | 101.67 | 105.67 | 102.83 | 2.611 | 0.227 | 0.336 | 0.532 |
BUN, mg/dL | 20.78 | 18.68 | 18.78 | 19.06 | 1.026 | 0.298 | 0.276 | 0.674 |
β-hydroxybutyrate, mmol/L | 0.42 | 0.37 | 0.37 | 0.37 | 0.036 | 0.523 | 0.634 | 0.831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreto-Cruz, O.T.; Henao Zambrano, J.C.; Castañeda-Serrano, R.D.; Peñuela Sierra, L.M. Assessing the In Vitro and In Vivo Effect of Supplementation with a Garlic (Allium sativum) and Oregano (Origanum vulgare) Essential Oil Mixture on Digestibility in West African Sheep. Vet. Sci. 2023, 10, 695. https://doi.org/10.3390/vetsci10120695
Barreto-Cruz OT, Henao Zambrano JC, Castañeda-Serrano RD, Peñuela Sierra LM. Assessing the In Vitro and In Vivo Effect of Supplementation with a Garlic (Allium sativum) and Oregano (Origanum vulgare) Essential Oil Mixture on Digestibility in West African Sheep. Veterinary Sciences. 2023; 10(12):695. https://doi.org/10.3390/vetsci10120695
Chicago/Turabian StyleBarreto-Cruz, Olga Teresa, Juan Carlos Henao Zambrano, Roman David Castañeda-Serrano, and Lina Maria Peñuela Sierra. 2023. "Assessing the In Vitro and In Vivo Effect of Supplementation with a Garlic (Allium sativum) and Oregano (Origanum vulgare) Essential Oil Mixture on Digestibility in West African Sheep" Veterinary Sciences 10, no. 12: 695. https://doi.org/10.3390/vetsci10120695
APA StyleBarreto-Cruz, O. T., Henao Zambrano, J. C., Castañeda-Serrano, R. D., & Peñuela Sierra, L. M. (2023). Assessing the In Vitro and In Vivo Effect of Supplementation with a Garlic (Allium sativum) and Oregano (Origanum vulgare) Essential Oil Mixture on Digestibility in West African Sheep. Veterinary Sciences, 10(12), 695. https://doi.org/10.3390/vetsci10120695