The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Surveillance of Livestock Diseases
2.1. Surveillance of Cattle Carcass and Organs Condemnation
Cause of Condemnation | Rate (%) | Country | Reference |
---|---|---|---|
Bovine tuberculosis | 44.00 | Tanzania | [57] |
0.60 | Tanzania | [58] | |
85.00 | Ethiopia | [59] | |
1.32 | Turkey | [40] | |
Bruising | 50.00 | Namibia | [51] |
Cysticercus bovis | 16.00 | Tanzania | [57] |
5.10 | Tanzania | [58] | |
2.70 | Zambia | [50] | |
Emaciation/Cachexia | 12.08 | Italy | [54] |
28.00 | Tanzania | [57] | |
3.30 | Tanzania | [58] | |
Jaundice | 1.20 | Tanzania | [58] |
Malignant lymphoma | 39.60 | United States | [47] |
22.30 | United States | [62] | |
Multiple abcessess | 2.00 | Tanzania | [57] |
0.50 | Tanzania | [58] | |
33.30 | Namibia | [51] | |
Oedema | 11.42 | Ethiopia | [59] |
Peritonitis | 20.13 | Italy | [54] |
7.85 | United States | [62] | |
Pneumonia | 37.60 | United States | [47] |
10.84 | United States | [62] | |
Septicaemia | 37.60 | United States | [47] |
20.81 | Italy | [54] | |
9.00 | Tanzania | [57] | |
10.39 | United States | [62] | |
Tumours | 2.85 | Ethiopia | [59] |
9.15 * | United States | [62] |
Organ | Prev (%) | Cause | Country | Reference |
---|---|---|---|---|
Liver | 17.58 | Calcification (0.13%) | Ethiopia | [69] |
Cirrhosis (2.01%) | ||||
Cysticercus bovis (2.55%) | ||||
Hydatic cyst (3.62%) | ||||
Fasciolosis (9.26%) | ||||
31.2 | Abcesses (23.2%) | Italy | [54] | |
Distomatosis (23.7%) | ||||
Hidatidosis (6.80%) | ||||
Other causes (35.63%) | ||||
Perihepatitis (10.17%) | ||||
34.32 | Abcess (6.20%) | Ethiopia | [70] | |
Calcificartion (7.89%) | ||||
Cirrhosis (15.41%) | ||||
Faciolosis (48.5%) | ||||
Hepatitis (4.70%) | ||||
Hydatidosis 17.92%) | ||||
43.00 | Calcified cyst (18.00%) | |||
Cirrhosis (5.00%) | ||||
Fasciolosis (70.00%) | Tanzania | [57] | ||
Hydatidosis (3.00%) | ||||
Peritonitis (4.00%) | ||||
Liver | 61.64 | Abscess (0.46%) | Ethiopia | [71] |
Calcification (4.16%) | ||||
Cirrhosis (10.4%) | ||||
Fasciolosis (7.4%) | ||||
Hepatitris 2.08%) | ||||
Hydatid cyst (17.1%) | ||||
7.20 | Abcessess (2.08%) | Tanzania | [60] | |
Calcified cyst (16.86%) | ||||
Fasciolosis (74.78%) | ||||
Hydatidosis (3.27%) | ||||
Peritonitis (2.98%) | ||||
73.75 | Abcess (3.16%) | Ethiopia | [72] | |
Calcification (20.78%) | ||||
C. bovis (3.16%) | ||||
Cirrhosis (1.82%) | ||||
Fasciola (40.70%) | ||||
Hematoma (2.19%) | ||||
Hepatization (2.67%) | ||||
Hydatic cyst (25.03%) | ||||
3.60 | Abscess (7.40%) | Sudan | [73] | |
Adhesion (0.20%) | ||||
Calcification (3.10%) | ||||
Cirrhosis (0.10%) | ||||
Congestion (0.30%) | ||||
Cysticercus bovis (13.50%) | ||||
Fasciola (51.60%) | ||||
Fatty change (2.40%) | ||||
Fibrosis (1.70%) | ||||
Hemorrhage (0.70%) | ||||
Hydatic cyst (0.30%) | ||||
Necrosis (18.60%) | ||||
Tuberculosis (0.10%) | ||||
18.63 | Abscess (6.50%) | Tanzania | [58] | |
Calcified cyst (10.63%) | ||||
Fasciolosis (48.81%) | ||||
Hydatidosis (18.26%) | ||||
Others 1 (15.78%) | ||||
25.7 | Abcess (2.33%) | Ethiopia | [74] | |
Adhesion (1.90%) | ||||
Calcification (27.54%) | ||||
Cirrhosis (5.61%) | ||||
Fasciolosis (37.50%) | ||||
Hydatidosis (25.10%) | ||||
18.75 | Abcess (16.67%) | Ethiopia | [75] | |
Calcification (16.67%) | ||||
Cirrhosis (20.83%) | ||||
Fasciolosis (33.33%) | ||||
Hydatic cyst (12.50%) | ||||
38.00 | Abscess (4.38%) | Ethiopia | [76] | |
Calcification (12.28%) | ||||
Cirrhosis (17.54%) | ||||
Fasciolosis (43.85%) | ||||
Hydatid cyst (21.92%) | ||||
Liver | 44.5 | Abcess (3.50%) | Ethiopia | [77] |
Calcification (8.80%) | ||||
Cirrhosis (16.40%) | ||||
Fasciolosis (47.40%) | ||||
Hydatodosis (21.00%) | ||||
Necrosis (2.90%) | ||||
53.3 | Abcesses (6.82%) | Ethiopia | [78] | |
Calcification (19.02%) | ||||
Cirrhosis (5.83%) | ||||
Fasciolosis (42.92%) | ||||
Hydatodosis (22.43%) | ||||
34.25 | Abscess | Ethiopia | [79] | |
Cirrhosis | ||||
Fasciolosis | ||||
Fibrosis | ||||
Hydatidosis | ||||
50.3 | Fasciolosis (51.01%) | Ethiopia | [59] | |
Hepatitis (26.91%) | ||||
Echinoccocosis (7.37%) | ||||
C. bovis (6.83%) | ||||
Abcess (5.97%) | ||||
Tuberculosis (0,51%) | ||||
Calcification (0.33%) | ||||
Haemorraghe and hematomas (0.13%) | ||||
Tumour (0.11%) | ||||
Lungs | 64.86 | Bronchopneumonia (14.62%) | Italy | [54] |
Pleurisy (51.20%) | ||||
Pneumonia (19.74%) | ||||
8.19 | Abcessess (0.40%) | Ethiopia | [69] | |
Emphysema (1.61%) | ||||
Hydatic cyst (5.1%) | ||||
Pneumonia (1.07%) | ||||
19.68 | Abcess (19.34%) | Ethiopia | [70] | |
Hydatic cyst (68.20%) | ||||
Pneumonia (12.45%) | ||||
19.00 | Cryptosporidium bovis (2.00%) | Ethiopia | [57] | |
Emphysema (22.00%) | ||||
Hydatodosis (6.00%) | ||||
Pleurisy (14.00%) | ||||
Pneumonia (52.00%) | ||||
Tuberculosis (4.00%) | ||||
26.29% | Abscess (3.00%) | Ethiopia | [71] | |
Emphysema (10.40%) | ||||
Fibrosis (7.50%) | ||||
Hepatisation (16.40%) | ||||
Hydatic cist (53.70%) | ||||
Pneumonia (9.00%) | ||||
Lungs | 10.52 | Abcessess (0.15%) | Tanzania | [60] |
Calcified cyst (2.75%) | ||||
Congestion (0.01%) | ||||
Emphysema (32.78%) | ||||
Haemorrhages (21.86%) | ||||
Hydatidosis (27.27%) | ||||
Pleurisy (6.60%) | ||||
Pneumonia (8.51%) | ||||
Tuberculosis (0.03%) | ||||
14.14 | Abcess (6.25%) | Ethiopia | [72] | |
Emphysema (5.63%) | ||||
Haemorrhage and hematoma (58.75%) | ||||
Hydatid cyst 12.50%) | ||||
Pneumonia (16.88%) | ||||
14.14 | Abcess (6.25%) | Ethiopia | [72] | |
Emphysema (5.63%) | ||||
Haemorrhage and hematoma (58.75%) | ||||
Hydatid cyst 12.50%) | ||||
Pneumonia (16.88%) | ||||
13.24 | Abcessess (8.19%) | [58] | ||
Antracosis (7.29%) | ||||
Calcified cyst (9.03%) | ||||
Emphysema (13.07%) | ||||
Hydatodisis (22.19%) | ||||
Melanosis (2.89%) | ||||
Pleurisy (6.44%) | ||||
Pneumonia (30.13%) | ||||
Tuberculosis (0.71%) | ||||
24.8 | Abccess (0.76%) | Ethiopia | [74] | |
Calcification (1.97%) | ||||
Cysticercus bovis (0.32%) | ||||
Distomatosis (1.42%) | ||||
Emphysema (0.87%) | ||||
Hydatodosis (86.60%) | ||||
Pneumonia (7.78%) | ||||
Lungs | 6.51 | Abscess (36.00%) | Ethiopia | [75] |
Emphysema (24.00%) | ||||
Hydatic cyst (16.00%) | ||||
Pneumonia (24.00%) | ||||
32.7 | Abscess (4.08%) | Ethiopia | [76] | |
Calcification (7.65%) | ||||
Congestions (9.18%) | ||||
Emphysema (11.22%) | ||||
Granulomatous lesion (1.53%) | ||||
Hydatic cyst (62.24%) | ||||
Pneumonia (4.08%) | ||||
Lungs | 35.7 | Abscess (4.40%) | Ethiopia | [77] |
Emphysema (28.50%) | ||||
Hepatisation (2.90%) | ||||
Hydatidosis (35.70%) | ||||
Pneumonia (28.50%) | ||||
55.5 | Abscess (3.25%) | Ethiopia | [78] | |
Calcification (15.96%) | ||||
Congestion (3.72%) | ||||
Emphysema (7.98%) | ||||
Haemmorrage (2.79%) | ||||
Hydatid cyst (64.31%) | ||||
Pneumonia (1.86%) | ||||
16.46 | Abscessation (5.68%) | Ethiopia | [79] | |
Emphysema (7.95%) | ||||
Fibrosis (3.40%) | ||||
Hydatidosis (73.86%) | ||||
35.6 | Abscess (2.60%) | Ethiopia | [59] | |
Echinoccocosis (26.97%) | ||||
Emphysema (26.00%) | ||||
Pneumonia (43.00%) | ||||
Tuberculosis (3.97%) | ||||
Tumor (0.06%) | ||||
Kidneys | 1.21 | Hydatic cyst (0.27%) | Ethiopia | [69] |
Hydronephosis (0.94%) | ||||
1.1 | Hydatidosis (29.40%) | Ethiopia | [70] | |
Hydronephitis (17.65%) | ||||
Infarcts (23.53%) | ||||
Pyonephitis (29.40%) | ||||
25.00 | Congestion (3.00%) | Tanzania | [57] | |
Cyst (7.00%) | ||||
Hydronephosis (17.00%) | ||||
Infarcts (58.00%) | ||||
Nephitis (15.00%) | ||||
8.74 | Hydatic cyst (40.00%) | Ethiopia | [71] | |
Hydronephrosis (60.00%) | ||||
Kidneys | 6.27 | Cysts (23.11%) | Tanzania | [58] |
Fatty change (11.55%) | ||||
Hydronephosis (29.60%) | ||||
Infarct (12.78%) | ||||
Melanosis (5.73%) | ||||
Nephritis (17.20%) | ||||
0.16 | Cysticercus bovis (60.00%) | Ethiopia | [74] | |
Hydatidosis (40.00%) | ||||
3.9 | Congenital cysts (52.99%) | Tanzania | [60] | |
Hydronephrosis (34.02%) | ||||
Infarcts (5.62%) | ||||
Renal calculi (7.31%) | ||||
1.25 | Abscess (42.86%) | Ethiopia | [72] | |
Atrophy (28.57%) | ||||
Nephritis (28.47%) | ||||
Kidneys | 6.5 | Haemorrahage (24.00%) | Ethiopia | [77] |
Infarcts (12.00%) | ||||
Nephritis (64.00%) | ||||
0.56 | Fibrosis (100%) | Ethiopia | [79] | |
4.39 | - | Italy | [54] | |
Heart | 0.27 | Cysticercus bovis (100%) | Ethiopia | [69] |
2.06 | Abscess (12.50%) | Ethiopia | [70] | |
Hydatidosis (9.40%) | ||||
Pericarditis (78.10%) | ||||
3.09 | Hydatic cyst (42.90%) | Ethiopia | [71] | |
Pericarditis (57.10%) | ||||
0.73 | Calcifued cyst (56.82%) | Tanzania | [60] | |
Pericarditis (38.73%) | ||||
Cysticercosis (4.48%) | ||||
10.66 | Abscess (4.20%) | Ethiopia | [72] | |
C. bovis (8.40%) | ||||
Hemorrhage and hematoma (22.69%) | ||||
Hydatic cyst (22.69%) | ||||
Pericarditis (4.20%) | ||||
7.00 | Calcified cyst (33.00%) | Tanzania | [57] | |
Cristosporidium bovis (17.00%) | ||||
Degenration (8.00%) | ||||
Emaciation (3.00%) | ||||
Flabby hearts (2.00%) | ||||
Pericarditis (37.00%) | ||||
Heart | 2.98 | Calcified cysts (29.44%) | Tanzania | [58] |
Cysticercus bovis (4.35%) | ||||
Haemorrhages (22.94%) | ||||
Hydatidosis (5.04%) | ||||
Melanosis (3.13%) | ||||
Pericarditis (35.07%) | ||||
2.7 | Cysticercus bovis (33.66%) | Ethiopia | [74] | |
Hidatidosis (8.92%) | ||||
Pericarditis (57.42%) | ||||
4.43 | Abscess (29.41%) | Etiopía | [75] | |
Edema (35.29%) | ||||
Hydatic cyst (35.29%) | ||||
4.7 | Cysticercus bovis (28.57%) | [76] | ||
Hydatid cyst (50.00%) | ||||
Pericarditis (21.42%) | ||||
6.8 | Edema (42.3%) | Ethiopia | [77] | |
Pericarditis (42.3%) | ||||
Petechial haemorrhage (15.4%) | ||||
1.67 | Cysticercus bovis (11,1%) | Ethiopia | [79] | |
Hydatidosis (88.2%) | ||||
3.70 | - | Italy | [54] | |
Tongue | 0.22 | Cysticercus bovis (100) | Ethiopia | [71] |
2.3 | Abscess (56.6%) | Ethiopia | [76] | |
C. bovis (0.56%) | ||||
Cysticercus bovis (44.4%) | ||||
0.56 | Ethiopia | [79] | ||
0.16 | - | Italy | [54] | |
Intestines | 7.31 | Abcessess (0.17%) | Tanzania | [60] |
Enteritis (20.63%) | ||||
Peritonitis (1.14%) | ||||
Pimply gut (78.04%) | ||||
2.18 | Enteritis (49.09%) | Tanzania | [58] | |
Pimply guts (50.91%) | ||||
Stomachs | 11.63 | Adherences (41.69%) | Italy | [54] |
Foreign body lesion (41.17) | ||||
Other causes (17.14%) | ||||
Spleen | 0.22 | Abcesses (4.03%) | Tanzania | [60] |
Peritonitis (4.02%) | ||||
Splenomegaly (91.95%) | ||||
2.05 | Abcess 30.46 | Tanzania | [58] | |
Haematoma 14.85 | ||||
Hydatidosis 31.81 | ||||
Splenomegaly 22.86 | ||||
1.8 | Hydatic cyst (72.70%) | [76] | ||
Splenomegaly (27.27%) | ||||
0.01 | Splenitis (69.40%) | Italy | [54] | |
Splenomegaly (30.60%) |
2.2. Surveillance of Small Ruminant Carcass and Organs Condemnation
Species | TC (%) | Cause of Condemnation (%) | Country | Reference | |
---|---|---|---|---|---|
Sheep | - | Abscess | 0.02 | Tanzania | [55] |
Arthritis | 0.03 | ||||
Bruising | 0.07 | ||||
Emaciation | 0.93 | ||||
Pneumonia | 0.07 | ||||
Pyaemia | 0.13 | ||||
Septicaemia | 0.13 | ||||
Tumours | 0.01 | ||||
S&G | 0.009 | Jaundice | 35.56 | Italy | [54] |
Other causes | 20.00 | ||||
Peritonitis | 44.44 | ||||
S&G | 0.02 | - | - | Iran | [56] |
Sheep | 6.35 | - | - | Ethiopia | [93] |
Sheep | 0.063 | Abscesses | 71.8 | Tanzania | [58] |
Emaciation | 17.9 | ||||
Jaundice | 10.3 | ||||
Goats | 0.106 | Abcesses | 43.6 | ||
Emaciation | 34.7 | ||||
Jaundice | 21.7 | ||||
Sheep | 6.42 | Abcess/pyemia | 7.8 | United States | [94] |
Arthritis | 3.3 | ||||
Carcinoma | 0.3 | ||||
Caseous lymphadenitis | 18.8 | ||||
Coccidiodal granuloma | 0.0 | ||||
Contamination | 0.5 | ||||
Cysticercosis | 11.6 | ||||
Emaciation | 6.8 | ||||
Eosinophilic myosistis | 3.0 | ||||
Gen. miscellaneous | 0.9 | ||||
Icterus | 9.9 | ||||
Injuries | 0.5 | ||||
Malignant lymphoma | 0.3 | ||||
Mastitis | 0.0 | ||||
Metritis | 0.1 | ||||
Misc. infectious dis. | 0.1 | ||||
Misc. inflame. Dis. | 0.3 | ||||
Sheep | 6.42 | Misc. Neoplasm | 0.4 | United States | [95] |
Misc. parasitism | 2.6 | ||||
Nephritis/pyelitis | 1.4 | ||||
Non ambulatory | 0.1 | ||||
Other reportable dis. | 2.5 | ||||
Pericarditis | 0.5 | ||||
Peritonitis | 1.7 | ||||
Pigmentary condition | 0.1 | ||||
Pneumonia | 9.2 | ||||
Residue | 0.2 | ||||
Sarcoma | 0.3 | ||||
septicemia | 5.2 | ||||
Toxaemia | 6.7 | ||||
Uremia | 3.2 | ||||
Sheep | 6.7 | - | Ethiopia | [96] | |
Goat | 7.2 | ||||
Sheep | 0.10 | - | Palestine | [52] |
Organ | Species (% a) | Cause of Condemnation (% b) | Country | Reference |
---|---|---|---|---|
Liver | Sheep (18.7) | Abcessess (5.7) | Tanzania | [58] |
Abcessess (8.58) | ||||
Calcified cyst (8.19) | ||||
Calcified cysts (6.3%) | ||||
Cisticercus tenuicolis (1.4) | ||||
Cysticercus tenuicolis (2.20) | ||||
Faciolosis (18.2) | ||||
Fasciolosis (17.09 | ||||
Hydaidosis (19.18) | ||||
Hydatidosis (20.4) | ||||
Other (0.4) * | ||||
Stilesiosis (44.72%) | ||||
Stilesiosis (47.6) | ||||
Sheep (77.15) | - | Italy | [54] | |
Sheep (61.23) | C. teniculosis (18.77) | Ethiopia | [96] | |
Calcification (49.78) | ||||
Cirrosis (7.65) | ||||
Fasciolosis (9.36) | ||||
Hepatitis (3.82) | ||||
Hidatic cyst (2.97) | ||||
S. hepatica (7.65) | ||||
Goat (42.19) | C. teniculosis (30.27) | Ethiopia | [96] | |
Calcification (45.67) | ||||
Cirrosis (5.55) | ||||
Fasciolosis (2.46) | ||||
Hepatitis (7.40) | ||||
Hydatic cyst (0.60) | ||||
S. hepatica (8.05) | ||||
Goats (17.91) | Abcessess (8.6) | Tanzania | [58] | |
Calcified cyst (10.3) | ||||
Cysticercus tenuicolis (1.5) | ||||
Fasciolosis (17.2) | ||||
Hydatidosis (21.3) | ||||
Stilesiosis (41.1) | ||||
Sheep (58.5) | Abscess (3.85) | Ethiopia | [95] | |
C. tenuicolis (9.05) | ||||
Calcifications (8.90) | ||||
Cirrhosis (5.34) | ||||
Fasciolosis (11.86) | ||||
Hepatitis (30.11) | ||||
Hydatid cyst (1.48) | ||||
Mechanical damage (10.58) | ||||
Other causes (2.81) | ||||
Stelesia hepatica (16.02) | ||||
Liver | Goat (43.8) | Abscess (5.64) | Ethiopia | [95] |
C. tenuicolis (18.87) | ||||
Calcifications (9.55) | ||||
Cirrhosis (5.20) | ||||
Fasciolosis (8.17) | ||||
Hepatitis (8.91) | ||||
Hydatid cyst (4.01) | ||||
Mechanical damage (9.80) | ||||
Other causes (2.22) | ||||
Stelesia hepatica (27.63) | ||||
Lungs | Sheep (7.85) | Abscesses (14.3) | Tanzania | [58] |
Calcified cyst (17.2) | ||||
Emphysema (17.9) | ||||
Hydatodosis (19.2) | ||||
Pneumonia (31.4) | ||||
Goats (8.43) | Abcesses (16.1) | Tanzania | [58] | |
Calcified cyst (15.3) | ||||
Emphysema (17.8) | ||||
Hydatodosis (17.2) | ||||
Pneumonia (33.6) | ||||
Sheep (3.80) | - | Italy | [56] | |
Sheep (44.5) | Abscess (5.06) | Ethiopia | [95] | |
Calcification (6.04) | ||||
Emphysema (15.39) | ||||
Hydatid cyst (7.44) | ||||
Others (3.11) | ||||
Pneumonia (62.96) | ||||
Goat (41.7) | Abscess (5.00) | Ethiopia | [95] | |
Calcification (5.63) | ||||
Emphysema (16.56) | ||||
Hydatid cyst (6.40) | ||||
Others (2.97) | ||||
Pneumonia (63,44) | ||||
Sheep (77.86) | Abscess (6.02) | Ethiopia | [96] | |
Calcification (1.00) | ||||
Emphysema (24.41) | ||||
Hydatid cyst (4.34) | ||||
Marbling (2.00) | ||||
Pneumonia (62.20) | ||||
Goats (78.39) | Abscess (1.66) | Ethiopia | [96] | |
Calcification (1.66) | ||||
Emphysema (18.27) | ||||
Hydatid cyst (0.66) | ||||
Marbling (5.98) | ||||
Pneumonia (71.76) | ||||
Spleen | Sheep (0.33) | Abcesses (47,5) | Tanzania | [58] |
Hydatidosis (52.5) | ||||
Goat (0.68) | Hydatidosis (70.3) | |||
Abcesses (29.7) | ||||
Heart | Sheep (8.6) | Abscess (3.03) | Ethiopia | [95] |
C. ovis (5.05) | ||||
Calcification (11.11) | ||||
Other (17.18) | ||||
Pericarditis (63.63) | ||||
Sheep (0.05) | - | Italy | [54] | |
Goat (7.5) | Abscess (5.24) | Ethiopia | [95] | |
C. ovis (6.08) | ||||
Calcification (13.91) | ||||
Other (11.30) | ||||
Pericarditis (63.47) | ||||
Sheep (9.92) | Calcification (28.94) | Ethiopia | [96] | |
Hydropericardium (7.89) | ||||
Pericarditis (63.15) | ||||
Goat (8.59) | Calcification (42.42) | Ethiopia | [96] | |
Pericarditis (48.48) | ||||
Hydropericardium (9.09) | ||||
Kidney | Sheep (14.32) | Abscess (16.36) | Ethiopia | [96] |
Nephrosis (14.54) | ||||
Nephritis (69.10) | ||||
Goat (14.32) | Abscess (5.34) | Ethiopia | [96] | |
Nephrosis (41.33) | ||||
Nephritis (53.33) | ||||
Sheep (0.05) | - | Italy | [54] |
2.3. Surveillance of Swine Carcass and Organs Condemnation
CR (%) | Cause of Condemnation (%) | Country | Reference |
---|---|---|---|
0.24 | Abscesses (8.42) | Portugal | [23] |
Bloody meat (0.26) | |||
Caquexia (1.79) | |||
Erysipela (0.77) | |||
Febrile meat (0.26) | |||
Generalised melanosis (1.79) | |||
Granulomatous lymphadenitis (22.70) | |||
Jaundice (0.26) | |||
Muscular necrosis (0.26) | |||
Osteomyelitis (38.52) | |||
Pale soft and exudative (PSE meat) (0.51) | |||
Peritonitis (2.55) | |||
Pleurisy/pneumonia (21.17) | |||
Purulent Metritis (0.51) | |||
Purulent nephritis (0.26) | |||
8.5 | Abcesses (55.80) | Spain | [98] |
Arthritis (7.40) | |||
Cachexia (28.90) | |||
Catarrhal bronchopneumonia (16.20) | |||
Erysipelas (1.20) | |||
Fibrous peritonitis (6.40) | |||
Fibrous pleuritis (6.40) | |||
Jaundice (3.50) | |||
Pleuropneumonia (5.50) | |||
Putrid meat (1.00) | |||
Tail lesions (2.90) | |||
Vertebral osteomyelitis (9.60) | |||
0.10 | Anaemia (10.66) | Spain | [97] |
Arthritis, osteomielitis (4.20) | |||
Ascaridiasis (0.15) | |||
Contamination (1.05) | |||
Cryptosporidiosis (0.15) | |||
Emaciation (16.82) | |||
Erisipelas (7.36) | |||
0.10 | Generalized (pyemias) (34.08) | Spain | [97] |
Haemorrhages, edemas (0.60) | |||
Insufficient bleeding (4.35) | |||
Jaundice (3.45) | |||
Melanomas (0.15) | |||
Metritis (0.15) | |||
Odour (0.15) | |||
PDNS (4.20) | |||
Pericarditis (0.60) | |||
Peritonitis (3.45) | |||
Pleuropneumonia (5.86) | |||
Ptyriasis rosea (0.15) | |||
Pyelonephritis (0.90) | |||
Sarcosporidiosis (0.30) | |||
Tuberculosis (1.20) | |||
0.03 | Abscesses (7.53) | Italy | [39] |
Cachexia (2.69) | |||
Disseminated hemorrhagic síndrome (0.54) | |||
Enteritis (5.38) | |||
Errors in the slaughtering process (1.34) | |||
Erysipelas (37.36) | |||
Generalized jaundice (26.07) | |||
Lipomatous pseudohypertrophy (9.95) | |||
Neoplasia (0.54) | |||
Perihepatitis (1.07) | |||
Peritonitis (3.70) | |||
Pleuritis (2.15) | |||
Polyserositis (0.54) | |||
PSE (0.27) | |||
Septicemia (0.27) | |||
Traumatic lesions (0.54) | |||
0.37 | Arthritis (8.31) | Canada | [102] |
Enteritis (2.86) | |||
Nephitis (6.94) | |||
Other (76.42) | |||
Pneumonia (5.46) | |||
1.40 | - | Brazil | [103] |
0.17 | - | Italy | [54] |
0.57 | Added deleterious substances (8.31) | Czech Republic | [105] |
Boar taint (4.33) | |||
Digestive infections (0.31) | |||
Miscellaneous infections (2.02) | |||
Non-infectious diseases (20.57) | |||
Parasitic diseases (0.05) | |||
Respiratory infections (6.03) | |||
Salmonella infection (0.03) | |||
Sensorial changes in meat (58.23) | |||
Tuberculosis infection (0.08) | |||
0.11 | - | Portugal | [106] |
10.20 | Abscess (0.580) | Brazil | [99] |
Adherences (3.72) | |||
Contamination by eviscerating leaking (1.79) | |||
Cryptorchidism (0.149) | |||
Excessive scalding (0.12) | |||
Lymphadenitis (0.29) | |||
Peritonitis (0.10) | |||
Pleurisy (0.85) | |||
Pneumonia (0.20) | |||
Scabies (0.14) | |||
Suppurated wounds (0.13) | |||
Traumatic lesion (1.57) | |||
0.3 | - | Finland | [107] |
3. Surveillance of Animal Welfare in the Slaughterhouse
3.1. Surveillance of Cattle Welfare at Slaughterhouse
3.2. Surveillance of Swine Welfare at Slaughterhouse
3.3. Surveillance of the Welfare of Small Ruminant in the Slaughterhouse
4. Surveillance of Antibiotic Resistance in the Slaughterhouse
5. Surveillance of Zoonotic Agents in the Slaughterhouse
Microorganism | CAM | CAM coli | CAM | CAM Jejuni | CPER Type a | CPER Type b | ARCO | ARCO | ECOL | ECOL STEC | ECOL | ECOL | ECOL O157 | LISTERIA mono | LISTERIA mono | LISTERIA mono | LISTERIA mono | SALMO | SALMO | SALMO | NAS | S.AUREU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | C | S | S | S | C | Sh | C | Sh | C | C | S | V | V | V | S | - | S | S | S | S | S | S | |
Prevalence (%) | 25.6 | - | 41.6 | 49.5 | 40 | 37.5 | 25 | 28.6 | 8.6 | - | 28.3 | 70 | 20.4 | 10.2 | 18.8 | 25.8 | - | 17.4 | - | - | - | 37.1 | |
Sample | C | F | C–F | C–F | C | C | F | F | F | C | C | C | C | C | C | SE | C | C–F | F | F | C | C | |
Antimicro Family | Antimicro Type | ||||||||||||||||||||||
Ansamy | Rifanpim | - | - | - | - | - | - | 100 | 100 | - | - | - | - | - | - | - | 56 | - | - | - | - | - | - |
Aminoglucosides | Amikacin | - | - | - | - | - | - | - | - | - | - | - | - | - | 18 | - | - | - | - | - | - | - | - |
Gentamicin | 2.6 | 38 | 25.9 | 11.1 | 7.9 | 16.2 | 14.2 | ||||||||||||||||
kanamycin | - | - | - | - | - | - | - | - | 26.3 | - | - | - | - | 18 | - | - | - | 15 | - | - | - | - | |
Neomicyn | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 12.5 | - | - | - | - | |
Spectino | 6.1 | ||||||||||||||||||||||
Strepto | 24.3 | 68.9 | 90 | 76.9 | - | - | - | - | - | 22.2 | - | - | 18 | 18 | - | - | - | 28.7 | - | 54.7 | - | - | |
Tobramycin | - | - | - | - | - | - | - | - | - | - | - | - | - | 30 | - | - | - | 15 | - | - | - | - | |
Amphenic | Chloramphe | - | - | - | - | - | - | 35 | 44 | - | - | 49.3 | - | - | - | - | - | - | 46.2 | - | 7.1 | 6.4 | 7.7 |
Florfenicol | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 37.5 | 12.2 | - | - | - | |
Beta lactams | Amox-Clav | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | 43 | - | - | 27.5 | - | - | - | - |
Ampicilin | - | - | - | 80.9 | - | - | - | - | 100 | - | - | 100 | 5 | - | - | - | 14.3 | 75 | 32.7 | 35.71 | - | - | |
Benzylpen | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | - | |
Cefepime | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | |
Cefotaxime | - | - | - | - | - | - | - | - | 100 | - | - | - | - | 100 | - | - | - | - | - | - | 29.8 | - | |
Cefoxitin | - | - | - | - | - | - | - | - | - | - | 18.8 | - | 10 | - | - | - | - | - | - | - | 8.5 | - | |
Ceftazidime | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 85.7 | - | - | - | - | - | |
Mezlocilin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 12,5 | - | - | - | - | |
Oxacillin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 92 | - | - | - | - | 83.0 | - | |
Penicillin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 34 | - | |
Carbapen | Imipenem | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | - |
Cephalos | Cefazolin | - | - | - | - | - | - | 95 | 100 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
cephalothin | - | - | - | - | - | - | 100 | 100 | - | - | - | - | 5 | 18 | - | - | - | - | - | - | - | - | |
cefpodoxime | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Ceftriaxone | - | - | - | - | - | - | 100 | 100 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Fusidane | Fusicid acid | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | 7.7 |
Glycopep | Vancomycin | - | - | - | - | - | - | 100 | 100 | - | - | 98.1 | - | - | - | - | - | 14.3 | - | - | - | - | - |
Lincosam | Clindamycin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | - | 100 |
Lincomycin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | - | - | |
Pirlimycin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - | - | - | - | - | |
Macrolides | Erythrom | 24.3 | 25.2 | 48 | 56.1 | - | - | - | - | 52.6 | - | - | - | - | 18 | - | - | 28.5 | - | - | - | 4.3 | 30.8 |
Polimixins | Colistin | - | - | - | 6.8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Quinolon | Ciprofloxa | 38.8 | 34.7 | 70 | 95 | - | - | - | - | - | - | 39.9 | 25 | - | - | - | 4 | 100 | 10 | 2.04 | - | 2.1 | 92.3 |
Enrofloxacin | - | - | - | - | - | - | - | - | 7.6 | - | - | - | - | - | - | - | - | 13.7 | - | - | - | - | |
Marbofloxa | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 14 | - | - | - | - | - | - | - | |
Nalidixic ac | 38.8 | 35.3 | 75 | 87.7 | - | - | 46.1 | 55.5 | - | - | - | - | 25 | 100 | - | - | - | - | 10.2 | - | - | - | |
Reference | [194] | [195] | [196] | [174] | [197] | [197] | [198] | [188] | [199] | [200] | [201] | [202] | [203] | [204] | [176] | [204] | [205] | [206] | [207] | [208] | [209] | [210] | |
Specie | C | S | S | S | C | Sh | C | Sh | C | C | S | V | V | V | S | - | S | S | S | S | S | S | |
Prevalence (%) | 25.6 | - | 41.6 | 49.5 | 40 | 37.5 | 25 | 28.6 | 8.6 | - | 28.3 | 70 | 20.4 | 10.2 | 18.8 | 25.8 | - | 17.4 | - | - | - | 48.6 | |
Sample | C | F | C–F | C–F | C | C | F | F | F | C | C | C | C | C | C | SE | C | C–F | F | F | C | C | |
Antimicro family | Antimicro type | ||||||||||||||||||||||
Sulfonam | Trime-sulfa | - | - | - | - | - | - | 100 | 100 | 73.7 | - | 68.8 | - | 18 | - | - | 48 | - | 30 | 10.2 | 4.76 | 4.3 | 100 |
Tetracyclin | Doxicicline | - | - | - | - | - | - | - | - | 10.5 | - | - | - | - | - | 79 | - | - | - | - | - | - | - |
Tetracicline | 20.9 | 64.9 | 90 | 97.2 | 45.8 | 92.3 | - | - | - | - | 90.7 | 62.5 | 5 | - | - | 44 | 100 | 81.2 | 89.8 | 66.6 | 21.3 | 100 | |
Reference | [194] | [195] | [196] | [174] | [197] | [197] | [198] | [188] | [199] | [200] | [201] | [202] | [203] | [204] | [176] | [204] | [205] | [206] | [207] | [208] | [209] | [210] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knight-Jones, T.J.D.; Mylrea, G.E.; Kahn, S. Animal production food safety: Priority pathogens for standard setting by the World Organisation for Animal Health. Rev. Sci. Tech. Off. Int. Epiz. 2010, 29, 523. [Google Scholar] [CrossRef] [PubMed]
- APHA—Animal and Plant Health Agency, United Kingdom; Condoleo, R.; Gale, P.; Adkin, A.; Roberts, H.; Simons, R. Livestock Health and Food Chain Risk Assessment. EFSA J. 2018, 16, e160812. [Google Scholar] [PubMed]
- Bessell, P.R.; Auty, H.K.; Roberts, H.; McKendrick, I.J.; Bronsvoort, B.M.D.C.; Boden, L.A. A tool for prioritizing livestock disease threats to Scotland. Front. Vet. Sci. 2020, 7, 223. [Google Scholar] [CrossRef]
- García-Díez, J.; Gonçalves, C.; Grispoldi, L.; Cenci-Goga, B.; Saraiva, C. Determining food stability to achieve food security. Sustainability 2021, 13, 7222. [Google Scholar] [CrossRef]
- Grace, D.; Little, P. Informal trade in livestock and livestock products. Rev. Sci. Tech. Off. Int. Epiz. 2020, 39, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, R.; Rich, K.M.; Adasme, M.; Kamp, A.; Singer, R.S.; Atlagich, M.; Estrada, C.; Jacob, R.; Zimin-Veselkoff, E.-D.; Mardones, F.O. Animal production, animal health and food safety: Gaps and challenges in the chilean industry. Food Microbiol. 2018, 75, 114–118. [Google Scholar] [CrossRef]
- Mehrabi, Z.; Gill, M.; van Wijk, M.; Herrero, M.; Ramankutty, N. Livestock policy for sustainable development. Nature Food 2020, 1, 160–165. [Google Scholar] [CrossRef]
- Robertson, I.D. Disease control, prevention and on-farm biosecurity: The role of veterinary epidemiology. Engineering 2020, 6, 20–25. [Google Scholar] [CrossRef]
- Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying down Procedures in Matters of Food Safety. Available online: http://data.europa.eu/eli/reg/2002/178/oj (accessed on 5 February 2023).
- Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs. Available online: http://data.europa.eu/eli/reg/2004/852/oj (accessed on 5 February 2023).
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin. Available online: http://data.europa.eu/eli/reg/2004/853/oj (accessed on 5 February 2023).
- Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: http://data.europa.eu/eli/reg/2005/2073/2020-03-08 (accessed on 5 February 2023).
- Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products, Amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and Repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC. Available online: http://data.europa.eu/eli/reg/2017/625/oj (accessed on 5 February 2023).
- Vial, F. Slaughterhouses as Sources of Data for Animal Health Intelligence. Front. Vet. Sci. 2019, 5, 332. [Google Scholar] [CrossRef]
- Lahti, P.; Soini, J. Ante-mortem inspection. In Meat Inspection and Control in the Slaughterhouse; Ninios, T., Lunden, J., Korkeala, H., Fredriksson-Ahomaa, M., Eds.; Wiley: West Sussex, UK, 2014; pp. 19–28. [Google Scholar]
- Berardinelli, P.; Ianniciello, R.; Russoand, V.; Ninios, T. Post-mortem inspection and related anatomy. In Meat Inspection and Control in the Slaughterhouse; Ninios, T., Lunden, J., Korkeala, H., Fredriksson-Ahomaa, M., Eds.; Wiley: West Sussex, UK, 2014; pp. 73–156. [Google Scholar]
- EFSA Scientific Committee. Scientific Opinion on risk assessment terminology. EFSA J. 2012, 10, 2664. [Google Scholar] [CrossRef] [Green Version]
- Alban, L.; Petersen, J.V.; Bækbo, A.K.; Pedersen, T.Ø.; Kruse, A.B.; Pacheco, G.; Larsen, M.H. Modernising meat inspection of pigs–A review of the Danish process from 2006-2020. Food Control 2020, 119, 107450. [Google Scholar] [CrossRef]
- Ghidini, S.; Zanardi, E.; Di Ciccio, P.A.; Borrello, S.; Belluzi, G.; Guizzardi, S.; Ianieri, A. Development and test of a visual-only meat inspection system for heavy pigs in Northern Italy. BMC Vet. Res. 2018, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Allain, V.; Salines, M.; Le Bouquin, S.; Magras, C. Designing an innovative warning system to support risk-based meat inspection in poultry slaughterhouses. Food Control 2018, 89, 177–186. [Google Scholar] [CrossRef]
- Walker, H.L.; Chowdhury, K.A.; Thaler, A.M.; Petersen, K.E.; Ragland, R.D.; James, W.O. Relevance of carcass palpation in lambs to protecting public health. J. Food Protec. 2000, 63, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- McLaws, M.; Ribble, C.; Martin, W.; Wilesmith, J. Factors associated with the early detection of foot-and-mouth disease during the 2001 epidemic in the United Kingdom. Can. Vet. J. 2009, 50, 53. [Google Scholar] [PubMed]
- Garcia-Diez, J.; Coelho, A.C. Causes and factors related to pig carcass condemnation. Veterinarni Med. 2014, 59, 194. [Google Scholar] [CrossRef] [Green Version]
- Stärk, K.D.C.; Alonso, S.; Dadios, N.; Dupuy, C.; Ellerbroek, L.; Georgiev, M.; Hardstaff, J.; Huneau-Salaun, A.; Laugier, C.; Mateus, A.; et al. Strengths and weaknesses of meat inspection as a contribution to animal health and welfare surveillance. Food Control 2014, 39, 154–162. [Google Scholar] [CrossRef]
- Blagojevic, B.; Antic, D. Assessment of potential contribution of official meat inspection and abattoir process hygiene to biological safety assurance of final beef and pork carcasses. Food Control 2014, 36, 174–182. [Google Scholar] [CrossRef]
- Burnier, P.C.; Spers, E.E.; de Barcellos, M.D. Role of sustainability attributes and occasion matters in determining consumers’ beef choice. Food Qual. Pref. 2021, 88, 104075. [Google Scholar] [CrossRef]
- Pinto da Rosa, P.; Pio Ávila, B.; Damé Veber Angelo, I.; Garavaglia Chesini, R.; Albandes Fernandes, T.; da Silva Camacho, J.; Roll, V.F.B.; Gularte, M.A. Impact of different chicken meat production systems on consumers’ purchase perception. British Poul. Sci. 2021, 62, 387–395. [Google Scholar] [CrossRef]
- Almqvist, V.; Berg, C.; Hultgren, J. Reliability of remote post-mortem veterinary meat inspections in pigs using augmented-reality live-stream video software. Food Control 2021, 125, 107940. [Google Scholar] [CrossRef]
- Felin, E.; Jukola, E.; Raulo, S.; Heinonen, J.; Fredriksson-Ahomaa, M. Current food chain information provides insufficient information for modern meat inspection of pigs. Prev. Vet. Med. 2016, 127, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riess, L.E.; Hoelzer, K. Implementation of visual-only swine inspection in the European Union: Challenges, opportunities, and lessons learned. J. Food Protec. 2020, 83, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Neves, E.; Mueller, A.; Correia, A.; Capas-Peneda, S.; Carvalho, M.; Vieira, S.; Cardoso, M.F. Food chain information: Data quality and usefulness in meat inspection in Portugal. J. Food Protec. 2018, 81, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the public health hazards to be covered by inspection of meat (swine). EFSA J. 2011, 9, 2351. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32009R1069 (accessed on 15 February 2023).
- Limeneh, D.Y.; Tesfaye, T.; Ayele, M.; Husien, N.M.; Ferede, E.; Haile, A.; Mengie, W.; Abuhay, A.; Gelebo, G.G.; Gibril, M.; et al. Comprehensive review on utilization of slaughterhouse by-product: Current status and prospect. Sustainability 2022, 14, 6469. [Google Scholar] [CrossRef]
- Blanco, G.; Cortés-Avizanda, A.; Frías, Ó.; Arrondo, E.; Donázar, J.A. Livestock farming practices modulate vulture diet-disease interactions. Global Ecol. Conserv. 2019, 17, e00518. [Google Scholar] [CrossRef]
- Mozhiarasi, V.; Natarajan, T.S. Slaughterhouse and poultry wastes: Management practices, feedstocks for renewable energy production, and recovery of value-added products. Biomass Conver. Bioref. 2022, 1–24. [Google Scholar] [CrossRef]
- Przybylski, R.; Bazinet, L.; Firdaous, L.; Kouach, M.; Goossens, J.F.; Dhulster, P.; Nedjar, N. Harnessing slaughterhouse by-products: From wastes to high-added value natural food preservative. Food Chem. 2020, 304, 125448. [Google Scholar] [CrossRef]
- Otero, A.; Mendoza, M.; Carreras, R.; Fernandez, B. Biogas production from slaughterhouse waste: Effect of blood content and fat saponification. Waste Man. 2021, 133, 119–126. [Google Scholar] [CrossRef]
- Guardone, L.; Vitali, A.; Fratini, F.; Pardini, S.; Cenci Goga, B.T.; Nucera, D.; Armani, A. A retrospective study after 10 years (2010–2019) of meat inspection activity in a domestic swine abattoir in tuscany: The slaughterhouse as an epidemiological observatory. Animals 2020, 10, 1907. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, C.; Demont, P.; Ducrot, C.; Calavas, D.; Gay, E. Factors associated with offal, partial and whole carcass condemnation in ten French cattle slaughterhouses. Meat Sci. 2014, 97, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Salines, M.; Andraud, M.; Rose, N. Pig movements in France: Designing network models fitting the transmission route of pathogens. PLoS ONE 2017, 12, e0185858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vial, F.; Reist, M. Evaluation of Swiss slaughterhouse data for integration in a syndromic surveillance system. BMC Vet. Res. 2014, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yibar, A.; Selcuk, O.; Senlik, B. Major causes of organ/carcass condemnation and financial loss estimation in animals slaughtered at two abattoirs in Bursa Province, Turkey. Prev. Vet. Med. 2015, 118, 28–35. [Google Scholar] [CrossRef]
- Hanley, J.; Garcia-Ara, A.; Wapenaar, W. Cattle and sheep farmers’ opinions on the provision and use of abattoir rejection data in the United Kingdom. Vet. Rec. 2020, 186, 217. [Google Scholar] [CrossRef]
- Vecerek, V.; Voslarova, E.; Semerad, Z.; Passantino, A. The health and welfare of pigs from the perspective of post mortem findings in slaughterhouses. Animals 2020, 10, 825. [Google Scholar] [CrossRef]
- Dupuy, C.; Morlot, C.; Gilot-Fromont, E.; Mas, M.; Grandmontagne, C.; Gilli-Dunoyer, P.; Gay, E.; Callait-Cardinal, M.P. Prevalence of Taenia saginata cysticercosis in French cattle in 2010. Vet. Parasitol. 2014, 203, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Amirpour Haredasht, S.; Vidal, G.; Edmondson, A.; Moore, D.; Silva-del-Río, N.; Martínez-López, B. Characterization of the temporal trends in the rate of cattle carcass condemnations in the US and dynamic modeling of the condemnation reasons in California with a seasonal component. Front. Vet. Sci. 2018, 5, 87. [Google Scholar] [CrossRef]
- Deschamps, J.B.; Calavas, D.; Mialet, S.; Gay, E.; Dupuy, C. A preliminary investigation of farm-level risk factors for cattle condemnation at the slaughterhouse: A case–control study on French farms. Prev. Vet. Med. 2013, 112, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, C.; Morignat, E.; Maugey, X.; Vinard, J.L.; Hendrikx, P.; Ducrot, C.; Calavas, D.; Gay, E. Defining syndromes using cattle meat inspection data for syndromic surveillance purposes: A statistical approach with the 2005–2010 data from ten French slaughterhouses. BMC Vet. Res. 2013, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phiri, A.M. Common conditions leading to cattle carcass and offal condemnations at 3 abattoirs in the Western Province of Zambia and their zoonotic implications to consumers. J. S. Afr. Vet. Ass. 2006, 77, 28–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbiri, P.; Mushonga, B.; Madzinga, C.; Madzingira, O.; Samkange, A.; Hikufe, E.; Kandiwa, E.; Kamwi, J.A. Causes, Patterns, and Economic Implications of Carcass Condemnation of Cattle Slaughtered at Oshana Region, North of Namibia Based on Post-Mortem Inspection. J. Food Qual. Haz. Control 2020, 7, 163–169. [Google Scholar] [CrossRef]
- Abuseir, S. Major causes and associated economic losses of carcass and organ condemnation in cattle and sheep in the northern part of Palestine. World 2019, 9, 317–323. [Google Scholar] [CrossRef]
- Alton, G.D.; Pearl, D.L.; Bateman, K.G.; McNab, W.B.; Berke, O. Factors associated with whole carcass condemnation rates in provincially-inspected abattoirs in Ontario 2001-2007: Implications for food animal syndromic surveillance. BMC Vet. Res. 2010, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, M.; Leprini, E.; Sechi, P.; Lulietto, M.F.; Grispoldi, L.; Goretti, E.; Cenci-Goga, B.T. Analysis of the causes of the seizure and destruction of carcasses and organs in a slaughterhouse in central Italy in the 2010-2016 period. Ital. J. Food Safety 2018, 7, 40–44. [Google Scholar] [CrossRef]
- Evans, D.G.; Pratt, J.H. A critical analysis of condemnation data for cattle, pigs and sheep 1969 to 1975. British Vet. J. 1978, 134, 476–492. [Google Scholar] [CrossRef]
- Hajimohammadi, B.; Oryan, A.; Zohourtabar, A.; Ardian, M.; Shokuhifar, M. Rate of carcass and offal condemnation in animals slaughtered at Yazd Slaughterhouse, central Iran. As. Pac. J. Trop. Biomed. 2014, 4, 736–739. [Google Scholar] [CrossRef] [Green Version]
- Kambarage, D.M.; Kimera, S.I.; Kazwala, R.R.; Mafwere, B.M. Disease conditions responsible for condemnation of carcasses and organs in short-horn Zebu cattle slaughtered in Tanzania. Prev. Vet. Med. 1995, 22, 249–255. [Google Scholar] [CrossRef]
- Mellau, B.L.; Nonga, H.E.; Karimuribo, E.D. Slaughter stock abattoir survey of carcasses and organ/offal condemnations in Arusha region, northern Tanzania. Trop. An. Health Prod. 2011, 43, 857–864. [Google Scholar] [CrossRef]
- Sheferaw, D.; Abdu, K. Major causes of organ and carcass condemnation and associated financial losses in cattle slaughtered at Kombolcha Elfora Abattoir from 2008-2012, Ethiopia. Ethiop. Vet. J. 2017, 21, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Tembo, W.; Nonga, H.E. A survey of the causes of cattle organs and/or carcass condemnation, financial losses and magnitude of foetal wastage at an abattoir in Dodoma, Tanzania. Onderst. J. Vet. Res. 2015, 82, 855. [Google Scholar] [CrossRef] [Green Version]
- Vecerek, V.; Kozak, A.; Malena, M.; Tremlova, B.; Chloupek, P. Veterinary meat inspection of bovine carcasses in the Czech Republic during the period of 1995–2002. Vet. Med. 2003, 48, 183. [Google Scholar] [CrossRef] [Green Version]
- White, T.L.; Moore, D.A. Reasons for whole carcass condemnations of cattle in the United States and implications for producer education and veterinary intervention. J. Am. Vet. Med. Ass. 2009, 235, 937–941. [Google Scholar] [CrossRef]
- Teiga-Teixeira, P.; Moura, D.; García-Díez, J.; Esteves, A. Characterization of carcass bruises in cattle in Northern Portugal, a preliminary study. Ital. J. An. Sci. 2021, 20, 1168–1174. [Google Scholar] [CrossRef]
- Gill, C.O.; Penney, N. Microbiology of bruised tissue. Appl. Environ. Microbiol. 1979, 38, 1184–1185. [Google Scholar] [CrossRef] [Green Version]
- Huertas, S.M.; van Eerdenburg, F.; Gil, A.; Piaggio, J. Prevalence of carcass bruises as an indicator of welfare in beef cattle and the relation to the economic impact. Vet. Med. Sci. 2015, 1, 9–15. [Google Scholar] [CrossRef]
- Gallo, C.; Schwartzkopf-Genswein, K.; Gibson, T. Cattle in Preslaughter Handling and Slaughter of Meat Animals; Faucitano, L., Ed.; Wageningen Academic Publishers: Amsterdam, The Netherlands, 2022; pp. 63–116. [Google Scholar] [CrossRef]
- Padalino, B.; Cirone, F.; Zappaterra, M.; Tullio, D.; Ficco, G.; Giustino, A.; Ndiana, L.A.; Pratelli, A. Factors affecting the development of bovine respiratory disease: A cross-sectional study in beef steers shipped from France to Italy. Front. Vet. Sci. 2021, 8, 627894. [Google Scholar] [CrossRef]
- Vial, F.; Schaerrer, S.; Reist, M. Risk factors for whole carcass condemnations in the Swiss slaughter cattle population. PLoS ONE 2015, 10, e0122717. [Google Scholar] [CrossRef] [Green Version]
- Assefa, A.; Tesfay, H. Major causes of organ condemnation and economic loss in cattle slaughtered at Adigrat municipal abattoir, northern Ethiopia. Vet. World 2013, 6, 734–738. [Google Scholar] [CrossRef] [Green Version]
- Mesele, G.; Guadu, T.; Bogale, B.; Chanie, M. Pathological conditions causing organ and carcass condemnation and their financial losses in cattle slaughtered in Gondar, Northwest Ethiopia. Afr. J. Bas. Appl. Sci. 2012, 4, 200–208. [Google Scholar] [CrossRef]
- Moje, N.; Abdeta, D.; Kebede, S.; Terfa, T.; Desissa, F.; Regassa, A. Major causes of organs and carcass condemnation in cattle slaughtered at Nekemte municipality abattoir, East Wollega, Ethiopia. Global Vet. 2014, 13, 278–284. [Google Scholar] [CrossRef]
- Disassa, H.; Ahmednur, M.; Jaleta, H.; Zenebe, T.; Kebede, G. Major causes of organ condemnation and its financial losses in cattle slaughtered at Dir e Dawa municipal abattoir, Eastern Ethiopia. Ac. J. An. Dis. 2015, 4, 118–123. [Google Scholar] [CrossRef]
- Kheder, D.; Mohamed, A. A study on causes of cattle liver condemnation at an abattoir in Omdurman area, Khartoum State, Sudan. BMC Vet. Res. 2021, 17, 1–6. [Google Scholar] [CrossRef]
- Edo, J.J.; Pal, M.; Rahjman, M.T. Investigation into major causes of organs condemnation in bovine slaughtered at Adama municipal abattoir and their economic importance. Haryana Vet. 2014, 2, 139–143. [Google Scholar]
- Ahmed, S.; Fentahun, S.; Bihonegn, T.; Tintagu, T.; Alemu, B.; Yilak, N. Study on major causes of organs condemnation and financial loss in cattle slaughtered at Hayik Municipal Abattoir. J. An. Res. 2019, 9, 201–207. [Google Scholar] [CrossRef]
- Kumbe, A. Financial loss caused by organ condemnation in cattle slaughtered at Asella municipal abattoir. J. Vet. Med. Res. 2019, 6, 1172. [Google Scholar]
- Berbersa, S.M.; Mengistu, T.S.; Woldemariyam, F.T. Major causes of organ condemnation and associated financial loss in cattle slaughtered at Hawassa municipal abattoir, Ethiopia. J. Vet. Med. An. Health 2016, 8, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Amuamuta, A.; Akalu, B.; Chanie, M. Major causes of lung and liver condemnation and financial impact in cattle slaughter at Bahir Dar Municpial abattior. Afr. J. Basic Appl. Sci. 2012, 4, 165–171. [Google Scholar] [CrossRef]
- Efrem, L.; Serda, B.; Sibhat, B.; Hirpa, E. Causes of organ condemnation, its public health and financial significance in Nekemte municipal abattoir, Wollega, Western Ethiopia. J. Vet. Med. An. Health 2015, 7, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Abbate, J.M.; Arfuso, F.; Iaria, C.; Arestia, G.; Lanteri, G. Prevalence of bovine tuberculosis in slaughtered cattle in sicily, Southern Italy. Animals 2020, 10, 1473. [Google Scholar] [CrossRef]
- Michaux, H.; Buczinski, S.; Fecteau, G.; Benoit, J.M. Hydronephrosis in a dairy calf: A diagnosis delayed by a clinician’s Bayesian brain reasoning. Canadian Vet. J. 2018, 59, 1062. [Google Scholar]
- Floeck, M. Ultrasonography of bovine urinary tract disorders. Vet. Clin. N. Am. Food. Anim. Pract. 2009, 25, 651–667. [Google Scholar] [CrossRef]
- Lopes, W.D.; Santos, T.R.; Soares, V.E.; Nunes, J.L.; Mendonça, R.P.; de Lima, R.C.; Sakamoto, C.A.M.; Costa, G.H.N.; Thomaz-Soccol, V.; Oliveira, G.P.; et al. Preferential infection sites of Cysticercus bovis in cattle experimentally infected with Taenia saginata eggs. Res. Vet. Sci. 2011, 90, 84–88. [Google Scholar] [CrossRef]
- Buczinski, S.; Francoz, D.; Fecteau, G.; DiFruscia, R. A study of heart diseases without clinical signs of heart failure in 47 cattle. Can. Vet. J. 2010, 51, 1239. [Google Scholar]
- Jemal, D.; Kebede, B. The study of major parasitic causes of organ condemnation and financial losses in cattle slaughtered at Hawassa Municipal Abattoir, Ethiopia. Cogent Food Agricul. 2016, 2, 1201183. [Google Scholar] [CrossRef]
- Hervas, J.; Carrasco, L.; Gómez-Villamandos, J.C.; de Lara, F.C.M.; Sierra, M.A. Myocarditis associated with Theileria spp. in calves. J. Vet. Med. B. 1998, 45, 401–405. [Google Scholar] [CrossRef]
- Otter, A.; Jeffrey, M.; Griffiths, I.B.; Dubey, J.P. A survey of the incidence of Neospora caninum infection in aborted and stillborn bovine fetuses in England and Wales. Vet. Rec. 1995, 136, 602–606. [Google Scholar] [CrossRef]
- Panziera, W.; Bianchi, M.V.; Vielmo, A.; Bianchi, R.M.; Pavarini, S.P.; Sonne, L.; Soares, J.F.; Driemeier, D. Atypical parasitic lesions in slaughtered cattle in Southern Brazil. Rev. Bras. Parasitol. 2020, 29, 1–8. [Google Scholar] [CrossRef]
- Martínez-Navalón, B.; Anastasio-Giner, B.; Cano-Fructuoso, M.; Sanchez-Martínez, P.; Llopis-Morant, A.; Perez-Castarlenas, B.; Goyena, E.; de Larrea, E.B.F. Sarcocystis infection: A major cause of carcass condemnation in adult sheep in Spain. Spanish J. Agricul. Res. 2012, 10, 388–392. [Google Scholar] [CrossRef]
- Arsenault, J.; Girard, C.; Dubreuil, P.; Daignault, D.; Galarneau, J.R.; Boisclair, J.; Simard, C.; Bélanger, D. Prevalence of and carcass condemnation from maedi–visna, paratuberculosis and caseous lymphadenitis in culled sheep from Quebec, Canada. Prev. Vet. Med. 2003, 59, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Lacasta, D.; Ferrer, L.M.; Sanz, S.; Labanda, R.; González, J.M.; Benito, A.Á.; Ruiz, H.; Rodriguez-Largo, A.; Ramos, J.J. Anaplasmosis outbreak in lambs: First report causing carcass condemnation. Animals 2020, 10, 1851. [Google Scholar] [CrossRef] [PubMed]
- Lacasta, D.; González, J.M.; Navarro, T.; Saura, F.; Acín, C.; Vasileiou, N.G.C. Significance of respiratory diseases in the health management of sheep. Small Rum. Res. 2019, 181, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Negero, J.; Ferede, G. A retrospective study on the causes of carcass and organ condemnation and financial loss in Debrezeit Helmex Abattoir. J. Vet. Sci. Technol. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- O’Hara, K.C.; Pires, A.F.; Martínez-López, B. Evaluating the association between climatic factors and sheep condemnations in the United States using cluster analysis and spatio-temporal modeling. Prev. Vet. Med. 2021, 191, 105342. [Google Scholar] [CrossRef] [PubMed]
- Jibat, T.; Ejeta, G.; Asfaw, Y.; Wudie, A. Causes of abattoir condemnation in apparently healthy slaughtered sheep and goats at helmex abattoir, Debre Zeit, Ethiopia. Rev. Med. Vet. 2008, 159, 305. [Google Scholar]
- Ayele, M.; Abdella, A.; Ayele, B. Prevalence of Gross Pathologies Causing Organs and Carcass Condemnation at Hashim Nur’s Ethiopian Livestock and Meat Export Abattoir, Debre Zeit Ethiopia. Global Vet. 2016, 16, 371–377. [Google Scholar] [CrossRef]
- Sánchez, P.; Pallarés, F.J.; Gómez, M.A.; Bernabé, A.; Gómez, S.; Seva, J. Importance of the knowledge of pathological processes for risk-based inspection in pig slaughterhouses (Study of 2002 to 2016). Asian-Australas. J. An. Sci. 2018, 31, 1818. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Jaro, P.J.; Aduriz, G.; Gómez, E.A.; Peris, B.; Corpa, J.M. Carcass condemnation causes of growth retarded pigs at slaughter. Vet. J. 2007, 174, 160–164. [Google Scholar] [CrossRef]
- Coldebella, A.; Kich, J.D.; Albuquerque, E.R.; Buosi, R.J. Reports of Brazilian federal meat inspection system in swine slaughterhouses. In International Symposium on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pig and Pork, 12., Foz do Lguaçu. Proceedings Book; Concórdia: Embrapa Suínos e Aves, Brazil, 2017; pp. 251–254. [Google Scholar]
- Decaudin, P.Y.; Raboisson, D.; Waret-Szkuta, A. End-cycle sow carcass condemnation in a French slaughterhouse. Front. Vet. Sci. 2017, 4, 108. [Google Scholar] [CrossRef] [Green Version]
- Alban, L.; Vieira-Pinto, M.; Meemken, D.; Maurer, P.; Ghidini, S.; Santos, S.; Laguna, J.G.; Laukkanen-Ninios, R.; Alvseike, O.; Langkabel, N. Differences in code terminology and frequency of findings in meat inspection of finishing pigs in seven European countries. Food Control 2022, 132, 108394. [Google Scholar] [CrossRef]
- Amezcua, R.; Pearl, D.L.; Martinez, A.; Friendship, R.M. Patterns of condemnation rates in swine from a federally inspected abattoir in relation to disease outbreak information in Ontario (2005–2007). Can. Vet. J. 2011, 52, 35. [Google Scholar]
- Tasse, M.E.; Molento, C.F.M. Injury and condemnation data of pigs at slaughterhouses with federal inspection in the State of Paraná, Brazil, as indicators of welfare during transportation. Ciência Rural 2019, 49, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kozak, A.; Vecerek, V.; Chloupek, P.; Tremlova, B.; Malena, M. Veterinary meat inspection of pig carcasses in the Czech Republic during the period of 1995.2002. Vet. Med. 2003, 48, 207. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Pinto, M.; Azevedo, J.; Poeta, P.; Pires, I.; Ellebroek, L.; Lopes, R.; Veloso, M.; Alban, L. Classification of vertebral osteomyelitis and associated judgment applied during post-mortem inspection of swine carcasses in Portugal. Foods 2020, 9, 1502. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, M.; Bergman, P.; Fredriksson-Ahomaa, M.; Virtala, A.M.; Munsterhjelm, C.; Valros, A.; Oliviero, C.; Peltoniemi, O.; Hälli, O. Sow mortality is associated with meat inspection findings. Livest. Sci. 2018, 208, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K. Bones and joints. In Jubb, Kenedy and Palmer’s Pathology of Domestic Animals, 5th ed.; Grant Maxie, M., Ed.; Saunders: London, UK, 2006; Volume 1, pp. 2–18. [Google Scholar]
- Flesjå, K.I.; Ulvesaeter, H.O. Pathological lesions in swine at slaughter. II. Culled sows. Acta Vet. Scand. 1970, 20, 515–524. [Google Scholar] [CrossRef]
- DGAV. Análise Exploratória Dos Dados De Abate De Ungulados Para Consumo Humano Em Portugal Entre Janiero De 2011 e Dezembro De 2019. Direcção Geral De Alimentação e Veterinária. 2020. Available online: https://www.dgav.pt/wp-content/uploads/2021/04/Dados-de-abates-e-reprovacoes-Ungulados-2011-a-2019.pdf (accessed on 31 October 2022).
- de Souza, L.B.; Manske, G.A.; Dantas Filho, J.V.; Cavali, J.; de Assis Dias, A.; Gasparotto, P.H.G. Condemnation of pork carcasses by cannibalism in slaughterhouse from Northern Mesoregion Mato-rossense, Brazil. Acta Vet. Bras. 2021, 15, 241–246. [Google Scholar] [CrossRef]
- Walker, P.K.; Bilkei, G. Tail-biting in outdoor pig production. Vet. J. 2006, 171, 367–369. [Google Scholar] [CrossRef]
- Brunberg, E.; Wallenbeck, A.; Keeling, L.J. Tail biting in fattening pigs: Associations between frequency of tail biting and other abnormal behaviours. Appl. An. Behav. Sci. 2011, 133, 18–25. [Google Scholar] [CrossRef]
- Schrøder-Petersen, D.L.; Simonsen, H.B. Tail biting in pigs. Vet. J. 2001, 162, 196–210. [Google Scholar] [CrossRef]
- Pavlik, I.; Matlova, L.; Dvorska, L.; Bartl, J.; Docekal, J.; Parmova, I. Tuberculous lesions in pigs in the Czech Republic in the years 1990–1999: Occurrence, causal factors and economic losses. Vet. Med. 2003, 48, 113. [Google Scholar] [CrossRef] [Green Version]
- Domingos, M.; Amado, A.; Botelho, A. IS1245 RFLP analysis of strains of Mycobacterium avium subspecies hominissuis isolated from pigs with tuberculosis lymphadenitis in Portugal. Vet. Rec. 2009, 164, 116–120. [Google Scholar] [CrossRef]
- Miranda, C.; Matos, M.; Pires, I.; Correia-Neves, M.; Ribeiro, P.; Alvares, S.; Vieira-Pinto, M.; Coelho, A.C. Diagnosis of Mycobacterium avium complex in granulomatous lymphadenitis in slaughtered domestic pigs. J. Comp. Pathol. 2012, 147, 401–405. [Google Scholar] [CrossRef]
- Cardoso-Toset, F.; Gómez-Laguna, J.; Gómez-Gascón, L.; Rodríguez-Gómez, I.M.; Galán-Relaño, A.; Carrasco, L.; Tarrdas, C.; Vela, A.I.; Luque, I. Histopathological and microbiological study of porcine lymphadenitis: Contributions to diagnosis and control of the disease. Porc. Health Man. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- 111 Eisenberg, T.; Volmer, R.; Eskens, U.; Moser, I.; Nesseler, A.; Sauerwald, C.; Seeger, H.; Klewer-Fromentin, K.; Möbius, P. Outbreak of reproductive disorders and mycobacteriosis in swine associated with a single strain of Mycobacterium avium subspecies hominissuis. Vet. Microbiol. 2012, 159, 69–76. [Google Scholar] [CrossRef]
- Wilson, W.G. Practical Meat Inspection, 7th ed.; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Kriz, P.; Kaevska, M.; Slana, I.; Bartejsova, I.; Pavlik, I. Mycobacterium avium subsp. avium in lymph nodes and diaphragms of pigs from one infected herd in the Czech Republic. J. Food Protec. 2014, 77, 141–144. [Google Scholar] [CrossRef]
- Agdestein, A.; Olsen, I.; Jørgensen, A.; Djønne, B.; Johansen, T.B. Novel insights into transmission routes of Mycobacterium avium in pigs and possible implications for human health. Vet. Res. 2014, 45, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.; Castellanos, E.; Romero, B.; Aranaz, A.; Bezos, J.; Rodriguez, S.; Mateos, L.; De Juan, L. Epidemiological investigation of a Mycobacterium avium subsp. hominissuis outbreak in swine. Epidemiol. Infect. 2011, 139, 143–148. [Google Scholar] [CrossRef]
- Barandiaran, S.; Pérez, A.M.; Gioffré, A.K.; Vivot, M.M.; Cataldi, A.A.; Zumarraga, M.J. Tuberculosis in swine co-infected with Mycobacterium avium subsp. hominissuis and Mycobacterium bovis in a cluster from Argentina. Epidemiol. Infect. 2015, 143, 966–974. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.; Brouwer, A.; Donaldson, N.; Lambton, S.; Buncic, S.; Griffiths, I. A risk and benefit assessment for visual-only meat inspection of indoor and outdoor pigs in the United Kingdom. Food Control 2013, 30, 255–264. [Google Scholar] [CrossRef]
- Stärk, K.D. Epidemiological investigation of the influence of environmental risk factors on respiratory diseases in swine—A literature review. Vet. J. 2000, 159, 37–56. [Google Scholar] [CrossRef]
- Thomas-Bachli, A.L.; Pearl, D.L.; Friendship, R.M.; Berke, O. Exploring relationships between whole carcass condemnation abattoir data, non-disease factors and disease outbreaks in swine herds in Ontario (2001–2007). BMC Vet. Res. Notes 2014, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Stromerova, N.H.; Faldyna, M. Mycobacterium avium complex infection in pigs: A review. Comp. Immunol. Microbiol. Infect. Dis. 2018, 57, 62–68. [Google Scholar] [CrossRef]
- Villá, D.M.; Pérez, N.A.I.; Parga, E.P.; Escobar, Y.T. Causes of Liver, Kidney and Heart Condemnation at Swine Slaughterhouse in Ciego de Avila, Cuba. Rev. Prod. An. 2017, 29, 37–40. [Google Scholar]
- Galdeano, J.V.B.; Baraldi, T.G.; Ferraz, M.E.S.; de Souza Almeida, H.M.; Mechler-Dreibi, M.L.; Costa, W.M.T.; de Oliveira, L.G. Cross-sectional study of seropositivity, lung lesions and associated risk factors of the main pathogens of Porcine Respiratory Diseases Complex (PRDC) in Goiás, Brazil. Porc. Health Man. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ concerns and perceptions of farm animal welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- EC—European Commission. Study to Support the Evaluation of the European Union Strategy for the Protection and Welfare of Animals 2012-2015. 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/1e912399-3905-11eb-b27b-01aa75ed71a1 (accessed on 20 November 2021).
- EC—European Commission. Preparation of Best Practices on the Protection of Animals at the Time of Killing. 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/ea4ef3e9-cda5-11e7-a5d5-01aa75ed71a1 (accessed on 20 November 2021).
- EC—European Commission. Pilot Project on Best Practices for Animal Transport. 2019. Available online: https://ec.europa.eu/food/document/download/2a3a94e7-943f-480d-bb34-467bd8b95917_en (accessed on 20 November 2021).
- Heath, C.A.E.; Browne, W.J.; Mullan, S.; Main, D.C.J. Navigating the iceberg: Reducing the number of parameters within the Welfare Quality® assessment protocol for dairy cows. Animal 2014, 8, 1978–1986. [Google Scholar] [CrossRef] [Green Version]
- Van Staaveren, N.; Doyle, B.; Manzanilla, E.G.; Calderón Díaz, J.A.; Hanlon, A.; Boyle, L.A. Validation of carcass lesions as indicators for on-farm health and welfare of pigs. J. An. Sci. 2017, 95, 1528–1536. [Google Scholar] [CrossRef]
- Llonch, P.; King, E.M.; Clarke, K.A.; Downes, J.M.; Green, L.E. A systematic review of animal based indicators of sheep welfare on farm, at market and during transport, and qualitative appraisal of their validity and feasibility for use in UK abattoirs. Vet. J. 2015, 206, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losada-Espinosa, N.; Villarroel, M.; María, G.A.; Miranda-de la Lama, G.C. Pre-slaughter cattle welfare indicators for use in commercial abattoirs with voluntary monitoring systems: A systematic review. Meat Sci. 2018, 138, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Bethancourt-Garcia, J.A.; Vaz, R.Z.; Vaz, F.N.; Silva, W.B.; Pascoal, L.L.; Mendonça, F.S.; Vara, C.C.; Nuñez, A.J.C.; Restle, J. Pre-slaughter factors affecting the incidence of severe bruising in cattle carcasses. Livest. Sci. 2019, 222, 41–48. [Google Scholar] [CrossRef]
- Huertas, S.M.; Kempener, R.E.; Van Eerdenburg, F.J. Relationship between methods of loading and unloading, carcass bruising, and animal welfare in the transportation of extensively reared beef cattle. Animals 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.L.; Reinhardt, C.D.; Bartle, S.J.; Vahl, C.I.; Siemens, M.; Thomson, D.U. Assessment of risk factors contributing to carcass bruising in fed cattle at commercial slaughter facilities. Trans. An. Sci. 2017, 1, 489–497. [Google Scholar] [CrossRef]
- Mendonça, F.S.; Vaz, R.Z.; Vaz, F.N.; Leal, W.S.; Silveira, I.D.; Restle, J.; Boligon, A.A.; Cardoso, F.F. Causes of bruising in carcasses of beef cattle during farm, transport, and slaughterhouse handling in Brazil. An. Sci. J. 2019, 90, 288–296. [Google Scholar] [CrossRef]
- Strappini, A.C.; Frankena, K.; Metz, J.H.M.; Gallo, B.; Kemp, B. Prevalence and risk factors for bruises in Chilean bovine carcasses. Meat Sci. 2010, 86, 859–864. [Google Scholar] [CrossRef]
- Mendonça, F.S.; Vaz, R.Z.; Cardoso, F.F.; Restle, J.; Vaz, F.N.; Pascoal, L.L.; Reimann, F.A.; Boligon, A.A. Pre-slaughtering factors related to bruises on cattle carcasses. An. Prod. Sci. 2016, 58, 385–392. [Google Scholar] [CrossRef]
- Strappini, A.C.; Frankena, K.; Metz, J.H.M.; Gallo, C.; Kemp, B. Characteristics of bruises in carcasses of cows sourced from farms or from livestock markets. Animal 2012, 6, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Grandin, T. On-farm conditions that compromise animal welfare that can be monitored at the slaughter plant. Meat Sci. 2017, 132, 52–58. [Google Scholar] [CrossRef]
- Roy, R.C.; Riley, C.B.; Stryhn, H.; Dohoo, I.; Cockram, M.S. Infrared thermography for the ante mortem detection of bruising in horses following transport to a slaughter plant. Front. Vet. Sci. 2019, 5, 344. [Google Scholar] [CrossRef] [Green Version]
- Losada-Espinosa, N.; Estévez-Moreno, L.X.; Bautista-Fernández, M.; Losada, H.; María, G.A.; Miranda-de la Lama, G.G. Integrative surveillance of cattle welfare at the abattoir level: Risk factors associated with liver condemnation, severe hoof disorders, carcase bruising and high muscle pH. Anim. Welf. 2021, 30, 393–407. [Google Scholar] [CrossRef]
- Bautista-Fernández, M.; Estévez-Moreno, L.X.; Losada-Espinosa, N.; Villarroel, M.; María, G.A.; De Blas, I.; Miranda-de La Lama, G.C. Claw disorders as iceberg indicators of cattle welfare: Evidence-based on production system, severity, and associations with final muscle pH. Meat Sci. 2021, 177, 108496. [Google Scholar] [CrossRef]
- Cevallos-Almeida, M.; Burgos-Mayorga, A.; Gómez, C.A.; Lema-Hurtado, J.L.; Lema, L.; Calvache, I.; Estupiñán, P. Association between animal welfare indicators and microbiological quality of beef carcasses, including Salmonella spp., from a slaughterhouse in Ecuador. Vet. World 2021, 14, 918. [Google Scholar] [CrossRef]
- Knock, M.; Carroll, G.A. The potential of post-mortem carcass assessments in reflecting the welfare of beef and dairy cattle. Animals 2019, 9, 959. [Google Scholar] [CrossRef] [Green Version]
- Brandt, P.; Rousing, T.; Herskin, M.S.; Aaslyng, M.D. Identification of post-mortem indicators of welfare of finishing pigs on the day of slaughter. Livestock Sci. 2013, 157, 535–544. [Google Scholar] [CrossRef]
- Dalmau, A.; Geverink, N.A.; Van Nuffel, A.; Van Steenbergen, L.; Van Reenen, K.; Hautekiet, V.; Vermuelen, K.; Velarde, A.; Tuyttens, F.A.M. Repeatability of lameness, fear and slipping scores to assess animal welfare upon arrival in pig slaughterhouses. Animal 2010, 4, 804–809. [Google Scholar] [CrossRef]
- Maisano, A.M.; Luini, M.; Vitale, N.; Nodari, S.R.; Scali, F.; Alborali, G.L.; Vezzoli, F. Animal-based measures on fattening heavy pigs at the slaughterhouse and the association with animal welfare at the farm level: A preliminary study. Animal 2020, 14, 108–118. [Google Scholar] [CrossRef]
- Teixeira, D.L.; Salazar, L.C.; Enriquez-Hidalgo, D.; Boyle, L.A. Assessment of animal-based pig welfare outcomes on farm and at the abattoir: A case study. Front. Vet. Sci. 2020, 7, 1–6. [Google Scholar] [CrossRef]
- Richmond, S.E.; Wemelsfelder, F.; de Heredia, I.B.; Ruiz, R.; Canali, E.; Dwyer, C.M. Evaluation of animal-based indicators to be used in a welfare assessment protocol for sheep. Front. Vet. Sci. 2017, 4, 210. [Google Scholar] [CrossRef]
- Llonch, P.; Ingenbleek, P.T.M.; Bokkers, E.; Canali, E.; Van Gosliga, S.P.; Baxter, A.; Manteca, X. The ClearFarm project: Developing a platform to assess animal welfare using sensor technology in pigs and dairy cattle. In Proceedings of the 8th International Conference on the Assessment of Animal Welfare at Farm and Group Level, Cork, Ireland, 16–19 August 2021; p. 170. [Google Scholar]
- FAWC. Report on the Welfare of Farmed Animals at Slaughter or Killing. Part 1: Red Meat Animals. Farm Animal Welfare Council. London. 2003. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/325241/FAWC_report_on_the_welfare_of_farmed_animals_at_slaughter_or_killing_part_one_red_meat_animals.pdf (accessed on 3 November 2022).
- Goddard, P. Welfare assessment in sheep. Practice 2011, 33, 508–516. [Google Scholar] [CrossRef]
- Gallo, C.; Tarumán, J.; Larrondo, C. Main factors affecting animal welfare and meat quality in lambs for slaughter in Chile. Animals 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Petersen, G.V. Factors associated with wounds and bruises in lambs. N. Z. Vet. J. 1978, 26, 6–9. [Google Scholar] [CrossRef]
- Carter, L.M.; Gallo, C.B. Efectos del transporte prolongado por vía terrestre y cruce marítimo en transbordador sobre pérdidas de peso vivo y características de la canal en corderos. Arch. Med. Vet. 2008, 40, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Miranda-De La Lama, G.C.; Villarroel, M.; Olleta, J.L.; Alierta, S.; Sañudo, C.; Maria, G.A. Effect of the pre-slaughter logistic chain on meat quality of lambs. Meat Sci. 2009, 83, 604–609. [Google Scholar] [CrossRef]
- Tarumán, J.A.; Smulders, J.P.; Gallo, C.B. Risk factors for bruises and high muscle Ph in lamb carcasses of Tierra del Fuego, Chilean Patagonia. Open Acc. Lib. J. 2018, 5, 1–11. [Google Scholar] [CrossRef]
- Jarvis, A.M.; Cockram, M.S.; McGilp, I.M. Bruising and biochemical measures of stress, dehydration and injury determined at slaughter in sheep transported from farms or markets. British Vet. J. 1996, 152, 719–722. [Google Scholar] [CrossRef]
- König, U.; Nyman, A.K.J.; de Verdier, K. Prevalence of footrot in Swedish slaughter lambs. Acta Vet. Scand. 2011, 53, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wild, R.; McFadden, A.M.J.; O’Connor, C.; O’Grady, K.; Wada, M. Prevalence of lameness in sheep transported to meat processing plants in New Zealand and associated risk factors. N. Z. Vet. J. 2019, 67, 188–193. [Google Scholar] [CrossRef]
- Zufferey, R.; Minnig, A.; Thomann, B.; Zwygart, S.; Keil, N.; Schüpbach, G.; Miserez, R.; Zanolari, P.; Stucki, D. Animal-Based Indicators for On-Farm Welfare Assessment in Sheep. Animals 2021, 11, 2973. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; Sánchez, A.; Delfa, R.; Teixeira, A. Carcass and meat quality in light lambs from different fat classes in the EU carcass classification system. Meat Sci. 2000, 56, 89–94. [Google Scholar] [CrossRef]
- Nikbin, S.; Panandam, J.M.; Sazili, A.Q. Influence of pre-slaughter transportation and stocking density on carcass and meat quality characteristics of Boer goats. Ital. J. An. Sci. 2016, 15, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Directive 2003/99/EC of the European Parliament and of the Council of 17 November 2003 on the Monitoring of Zoonoses and Zoonotic Agents, Amending Council Decision 90/424/EEC and Repealing Council Directive 92/117/EEC. Available online: http://data.europa.eu/eli/dir/2003/99/oj (accessed on 5 November 2022).
- Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria and Repealing Implementing Decision 2013/652/EU. Available online: http://data.europa.eu/eli/dec_impl/2020/1729/oj (accessed on 5 November 2022).
- Abreu, R.; Rodríguez-Álvarez, C.; Castro-Hernandez, B.; Lecuona-Fernández, M.; González, J.C.; Rodríguez-Novo, Y.; Arias Rodríguez, M.D.L.A. Prevalence and Characterisation of Multiresistant Bacterial Strains Isolated in Pigs from the Island of Tenerife. Vet. Sci. 2022, 9, 269. [Google Scholar] [CrossRef]
- Marin, C.; Lorenzo-Rebenaque, L.; Moreno-Moliner, J.; Sevilla-Navarro, S.; Montero, E.; Chinillac, M.; Jorda, J.; Vega, S. Multidrug-Resistant Campylobacer jejuni on swine processing at a slaughterhouse in Eastern Spain. Animals 2021, 11, 1339. [Google Scholar] [CrossRef]
- Sadek, M.; de la Rosa, J.M.O.; Ramadan, M.; Nordmann, P.; Poirel, L. Molecular Characterization of Extended-Spectrum ß-lactamase Producers, Carbapenemase Producers, Polymyxin-Resistant, and Fosfomycin-Resistant Enterobacterales Among Pigs from Egypt. J. Global Ant. Resist. 2022, 30, 81–87. [Google Scholar] [CrossRef]
- Oswalldi, V.; Lüth, S.; Dzierzon, J.; Meemken, D.; Schwarz, S.; Feßler, A.T.; Felix, B.; Langforth, S. Distribution and Characteristics of Listeria spp. in Pigs and Pork Production Chains in Germany. Microorganisms 2022, 10, 512. [Google Scholar] [CrossRef]
- Adel, W.A.; Ahmed, A.M.; Hegazy, Y.; Torky, H.A.; Shimamoto, T. High prevalence of ESBL and plasmid-mediated quinolone resistance genes in Salmonella enterica isolated from retail meats and slaughterhouses in Egypt. Antibiotics 2021, 10, 881. [Google Scholar] [CrossRef]
- Lavilla Lerma, L.; Benomar, N.; Knapp, C.W.; Correa Galeote, D.; Gálvez, A.; Abriouel, H. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products. PLoS ONE 2014, 9, e114252. [Google Scholar] [CrossRef]
- 169 Li, Y.; Li, K.; Peng, K.; Wang, Z.; Song, H.; Li, R. Distribution, antimicrobial resistance and genomic characterization of Salmonella along the pork production chain in Jiangsu, China. LWT 2022, 163, 113516. [Google Scholar] [CrossRef]
- Cantas, L.; Suer, K. The important bacterial zoonoses in “one health” concept. Front. Pub. Health 2014, 2, 144. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.N.; Elliott, W.; Kroner, R.G.; Kinnaird, M.F.; Prist, P.R.; Valdujo, P.; Vale, M.M. Drivers and causes of zoonotic diseases: An overview. Parks 2021, 27, 15–24. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union one health 2020 zoonoses report. EFSA J. 2021, 19, e06971. [Google Scholar] [CrossRef]
- Regulation (EU) 2016/429 of the European Parliament and of the Council of 9 March 2016 on Transmissible Animal Diseases and Amending and Repealing Certain Acts in the Area of Animal Health (‘Animal Health Law’). Available online: http://data.europa.eu/eli/reg/2016/429/oj (accessed on 18 March 2022).
- Awah-Ndukum, J.; Mouiche, M.M.M.; Kouonmo-Ngnoyum, L.; Bayang, H.N.; Manchang, T.K.; Poueme, R.S.N.; Kouamo, J.; Ngu-Ngwa, E.A.; Feussom, K.J.M.; Zoli, A.P. Seroprevalence and risk factors of brucellosis among slaughtered indigenous cattle, abattoir personnel and pregnant women in Ngaoundéré, Cameroon. BMC Infect. Dis. 2018, 18, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayoola, M.C.; Akinseye, V.O.; Cadmus, E.; Awosanya, E.; Popoola, O.A.; Akinyemi, O.O.; Perrett, L.; Taylor, A.; Stack, J.; Moriyon, I.; et al. Prevalence of bovine brucellosis in slaughtered cattle and barriers to better protection of abattoir workers in Ibadan, South-Western Nigeria. Pan Afr. Med. J. 2017, 28, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kolo, F.B.; Adesiyun, A.A.; Fasina, F.O.; Katsande, C.T.; Dogonyaro, B.B.; Potts, A.; Matle, I.; Gelaw, A.K.; Van Heerden, H. Seroprevalence and characterization of Brucella species in cattle slaughtered at Gauteng abattoirs, South Africa. Vet. Med. Sci. 2019, 5, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Swai, E.S.; Schoonman, L. A survey of zoonotic diseases in trade cattle slaughtered at Tanga city abattoir: A cause of public health concern. As. Pac. J. Trop. Biomed. 2012, 2, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Ukwueze, K.O.; Ishola, O.O.; Dairo, M.D.; Awosanya, E.J.; Cadmus, S.I. Seroprevalence of brucellosis and associated factors among livestock slaughtered in Oko-Oba abattoir, Lagos State, southwestern Nigeria. Pan Afr. Med. J. 2020, 36, 1–11. [Google Scholar] [CrossRef]
- Berhanu, L.; Bedru, H.; Gume, B.; Tolosa, T.; Kassa, T.; Getaneh, A.; Mereta, S.T. Occurrence, risk factors, and antimicrobial susceptibility test of thermophilic campylobacter species of bovine carcass at municipal abattoir and butcher shops of Jimma Town, Southwest Ethiopia. Infect. Drug Resist. 2021, 14, 3753. [Google Scholar] [CrossRef]
- Khoshbakht, R.; Tabatabaei, M.; Hoseinzadeh, S.; Raeisi, M.; Aski, H.S.; Berizi, E. Prevalence and antibiotic resistance profile of thermophilic Campylobacter spp. of slaughtered cattle and sheep in Shiraz, Iran. Vet. Res. Forum 2016, 7, 241. [Google Scholar]
- Nonga, E.H.; Sells, P.; Karimuribo, E.D. Occurrences of thermophilic Campylobacter in cattle slaughtered at Morogoro municipal abattoir, Tanzania. Trop. An. Health Prod. 2010, 42, 73–78. [Google Scholar] [CrossRef]
- Thépault, A.; Poezevara, T.; Quesne, S.; Rose, V.; Chemaly, M.; Rivoal, K. Prevalence of thermophilic Campylobacter in cattle production at slaughterhouse level in France and link between C. jejuni bovine strains and campylobacteriosis. Front. Microbiol. 2018, 9, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweifel, C.; Zychowska, M.A.; Stephan, R. Prevalence and characteristics of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. isolated from slaughtered sheep in Switzerland. Int. J. Food. Microbiol. 2004, 92, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Denis, E.; Lynch, O.; Osek, J. Molecular characterization and antibiotic resistance profiling of Campylobacter isolated from cattle in Polish slaughterhouses. Food Microbiol. 2013, 34, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Kempf, I.; Kerouanton, A.; Bougeard, S.; Nagard, B.; Rose, V.; Mourand, G.; Osterberg, J.; Denis, M.; Bengtsson, B.O. Campylobacter coli in organic and conventional pig production in France and Sweden: Prevalence and antimicrobial resistance. Front. Microbiol. 2017, 8, 955. [Google Scholar] [CrossRef]
- Di Donato, G.; Marotta, F.; Nuvoloni, R.; Zilli, K.; Neri, D.; Di Sabatino, D.; Calistri, P.; Di Giannatale, E. Prevalence, population diversity and antimicrobial resistance of Campylobacter coli isolated in Italian swine at slaughterhouse. Microorganisms 2020, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, S.; Bahadori, M.; Poormontaseri, M.; Dehghani, M.; Fazeli, M.; Nazifi, S. Molecular characterization of Clostridium perfringens isolated from cattle and sheep carcasses and its antibiotic resistance patterns in Shiraz slaughterhouse, southern Iran. Vet. Arhiv. 2018, 88, 581–591. [Google Scholar] [CrossRef]
- Aski, H.S.; Tabatabaei, M.; Khoshbakht, R.; Raeisi, M. Occurrence and antimicrobial resistance of emergent Arcobacter spp. isolated from cattle and sheep in Iran. Comp. Immunol. Microbiol. Infec. Dis. 2016, 44, 37–40. [Google Scholar] [CrossRef]
- Sudarwanto, M.B.; Lukman, D.W.; Latif, H.; Pisestyani, H.; Sukmawinata, E.; Akineden, Ö.; Usleber, E. CTX-M producing Escherichia coli isolated from cattle feces in Bogor slaughterhouse, Indonesia. As. Pac. J. Trop. Biomed. 2016, 6, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.C.C.D.; Castro, V.S.; Cunha-Neto, A.; Santos, L.F.D.; Vallim, D.C.; Lisbôa, R.D.C.; Carvalho, R.C.T.; Junior, C.A.C.; Figueiredo, E.E.D.S. Escherichia coli O26 and O113: H21 on carcasses and beef from a slaughterhouse located in Mato Grosso, Brazil. Foodborne Pathog. Dis. 2018, 15, 653–659. [Google Scholar] [CrossRef]
- Costa, M.; Cardo, M.; Cara d’Anjo, M.; Leite, A. Assessing antimicrobial resistance occurrence in the Portuguese food system: Poultry, pigs and derived food, 2014–2018. Zoo. Pub. Health 2022, 69, 312–324. [Google Scholar] [CrossRef]
- Babolhavaeji, K.; Shokoohizadeh, L.; Yavari, M.; Moradi, A.; Alikhani, M.Y. Prevalence of shiga toxin-producing Escherichia coli O157 and Non-O157 serogroups isolated from fresh raw beef meat samples in an industrial slaughterhouse. Int. J. Microbiol. 2021, 2021, 1978952. [Google Scholar] [CrossRef] [PubMed]
- Loiko, M.R.; de Paula, C.M.; Langone, A.C.; Rodrigues, R.Q.; Cibulski, S.; Rodrigues, R.D.O.; Camargo, A.C.; Nero, L.A.; Mayer, F.Q.; Tondo, E.C. Genotypic and antimicrobial characterization of pathogenic bacteria at different stages of cattle slaughtering in southern Brazil. Meat Sci. 2016, 116, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Sala, C.; Morar, A.; Tîrziu, E.; Nichita, I.; Imre, M.; Imre, K. Environmental occurrence and antibiotic susceptibility profile of Listeria monocytogenes at a slaughterhouse raw processing plant in Romania. J. Food Protec. 2016, 79, 1794–1797. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Bao, H.; Yang, Z.; He, T.; Tian, Y.; Zhou, Y.; Pang, M.; Wang, R.; Zhang, H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiol. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Li, Q.; Yin, J.; Li, Z.; Li, Z.; Du, Y.; Guo, W.; Bellefleur, M.; Wang, S.; Shi, H. Serotype distribution, antimicrobial susceptibility, antimicrobial resistance genes and virulence genes of Salmonella isolated from a pig slaughterhouse in Yangzhou, China. AMB Express 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Ye, C.; Chang, W.; Sun, S. Serotype distribution, antimicrobial resistance, and class 1 integrons profiles of Salmonella from animals in slaughterhouses in Shandong province, China. Front. Microbiol. 2017, 8, 1049. [Google Scholar] [CrossRef]
- Feng, Q.; Frana, T.; Logue, C.M.; McKean, J.D.; Hurd, S.H.; O’Connor, A.M.; Dickson, J.S.; Zhu, S.; Li, G. Comparison of Antimicrobial Resistance Profiles in Salmonella spp. from Swine Upon Arrival and Postslaughter at the Abattoir. Microbial. Drug Res. 2021, 27, 1144–1154. [Google Scholar] [CrossRef]
- Yang, Y.J.; Lee, G.Y.; Do Kim, S.; Park, J.H.; Lee, S.I.; Kim, G.B.; Yang, S.J. Profiles of Non-aureus Staphylococci in Retail Pork and Slaughterhouse Carcasses: Prevalence, Antimicrobial Resistance, and Genetic Determinant of Fusidic Acid Resistance. Food Sci. An. Resour. 2022, 42, 225. [Google Scholar] [CrossRef]
- Pexara, A.; Solomakos, N.; Govaris, A. Occurrence, antibiotic resistance and enteroxigenicity of Staphylococcus spp. in tonsils of slaughtered pigs in Greece. Lett. Appl. Microbiol. 2020, 71, 394–399. [Google Scholar] [CrossRef]
- Garcia, A.B.; Steele, W.B.; Taylor, D.J. Prevalence and carcass contamination with Campylobacter in sheep sent for slaughter in Scotland. J. Food Saf. 2010, 30, 237–250. [Google Scholar] [CrossRef]
- Tomlinson, L.; Barker, I.K.; Foster, R.A.; McEwen, S.A.; Menzies, P.I.; Shewen, P.E. Naturally occurring lesions of the uterine tube in sheep and serologic evidence of exposure to Chlamydophila abortus. Can. J. Vet. Res. 2000, 64, 229. [Google Scholar] [PubMed]
- Michalopolou, E.; Leigh, A.J.; Cordoba, L.G. Detection of the genome of Chlamydophila abortus in samples taken from the uteri of 304 sheep at an abattoir. Vet. Rec. 2007, 161, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Fayez, M.; Elmoslemany, A.; Alorabi, M.; Alkafafy, M.; Qasim, I.; Al-Marri, T.; Elsohaby, I. Seroprevalence and risk factors associated with Chlamydia abortus infection in sheep and goats in Eastern Saudi Arabia. Pathogens 2021, 10, 489. [Google Scholar] [CrossRef]
- De Puysseleyr, K.; De Puysseleyr, L.; Dhondt, H.; Geens, T.; Braeckman, L.; Morré, S.A.; Cox, E.; Vanrompay, D. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse. BMC Infect. Dis. 2014, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.; Schott, F.; Donati, M.; Di Francesco, A.; Hässig, M.; Wanninger, S.; Sidler, X.; Borel, N. Prevalence of chlamydial infections in fattening pigs and their influencing factors. PLoS ONE 2015, 10, e0143576. [Google Scholar] [CrossRef] [Green Version]
- 207 Dean, D.; Rothschild, J.; Ruettger, A.; Kandel, R.P.; Sachse, K. Zoonotic Chlamydiaceae species associated with trachoma, Nepal. Emerg. Infect. Dis. 2013, 19, 1948. [Google Scholar] [CrossRef]
- Atnafie, B.; Paulos, D.; Abera, M.; Tefera, G.; Hailu, D.; Kasaye, S.; Amenu, K. Occurrence of Escherichia coli O157: H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of Hawassa, Ethiopia. BMC Microbiol. 2017, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, N.D.; Gencay, Y.E.; Erol, I. Prevalence and molecular characterization of sorbitol fermenting and non-fermenting Escherichia coli O157: H7+/H7–isolated from cattle at slaughterhouse and slaughterhouse wastewater. Int. J. Food Microbiol. 2014, 174, 31–38. [Google Scholar] [CrossRef]
- Bekele, T.; Zewde, G.; Tefera, G.; Feleke, A.; Zerom, K. Escherichia coli O157: H7 in raw meat in Addis Ababa, Ethiopia: Prevalence at an abattoir and retailers and antimicrobial susceptibility. Int. J. Food. Com. 2014, 1, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Essendoubi, S.; Stashko, N.; So, I.; Gensler, G.; Rolheiser, D.; Mainali, C. Prevalence of Shiga toxin-producing Escherichia coli (STEC) O157: H7, six non-O157 STECs, and Salmonella on beef carcasses in provincially licensed abattoirs in Alberta, Canada. Food Control 2019, 105, 226–232. [Google Scholar] [CrossRef]
- Osaili, T.M.; Alaboudi, A.R.; Rahahlah, M. Prevalence and antimicrobial susceptibility of Escherichia coli O157:H7 on beef cattle slaughtered in Amman abattoir. Meat Sci. 2013, 93, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Akanbi, B.O.; Mbah, I.P.; Kerry, P.C. Prevalence of Escherichia coli O157: H7 on hides and faeces of ruminants at slaughter in two major abattoirs in Nigeria. Lett. Appl. Microbiol. 2011, 53, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Elabbasy, M.T.; Hussein, M.A.; Algahtani, F.D.; Abd El-Rahman, G.I.; Morshdy, A.E.; Elkafrawy, I.A.; Adeboye, A.A. MALDI-TOF MS based typing for rapid screening of multiple antibiotic resistance E. coli and virulent non-O157 shiga toxin-producing E. coli isolated from the slaughterhouse settings and beef carcasses. Foods 2021, 10, 820. [Google Scholar] [CrossRef] [PubMed]
- Mazzette, R.; Mureddu, A.; Busia, G.; Mazza, R.; Lamon, S.; Meloni, D. Prevalence of Verocytotoxin-Producing E. coli in Sheep Meat at a Slaughterhouse. Vet. Sci. 2012, 1, 161–165. [Google Scholar] [CrossRef]
- Tarawneh, K.A.; Al-Tawarah, N.M.; Abdel-Ghani, A.H.; Al-Majali, A.M.; Khleifat, K.M. Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. J. Basic Microbiol. 2009, 49, 310–317. [Google Scholar] [CrossRef]
- Heo, E.J.; Ko, E.K.; Kang, H.J.; Kim, Y.J.; Park, H.J.; Wee, S.H.; Moon, J.S. Prevalence and antimicrobial characteristics of Shiga toxin-producing Escherichia coli isolates from pork in Korea. Foodborne Path. Dis. 2020, 17, 602–607. [Google Scholar] [CrossRef]
- Essendoubi, S.; Yang, X.; King, R.; Keenliside, J.; Bahamon, J.; Diegel, J.; Lu, P.; Cassis, R.; Gensler, G.; Rolheiser, D. Prevalence and characterization of Escherichia coli O157: H7 on pork carcasses and in swine colon contents from provincially licensed abattoirs in Alberta, Canada. J. Food Protec. 2020, 83, 1909–1917. [Google Scholar] [CrossRef]
- Nastasijevic, I.; Schmidt, J.W.; Boskovic, M.; Glisic, M.; Kalchayanand, N.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M.; Bosilevac, J.M. Seasonal prevalence of Shiga toxin-producing Escherichia coli on pork carcasses for three steps of the harvest process at two commercial processing plants in the United States. Appl. Environ. Microbiol. 2020, 87, e01711–e01720. [Google Scholar] [CrossRef]
- Moxley, R.A.; Acuff, G.R. Peri-and postharvest factors in the control of shiga toxin-producing Escherichia coli in beef. In Enterohemorrhagic Escherichia Coli and Other Shiga Toxin-Producing E. Coli; Wiley: London, UK, 2015; pp. 437–456. [Google Scholar] [CrossRef]
- Deksne, G.; Mateusa, M.; Cvetkova, S.; Derbakova, A.; Keidāne, D.; Troell, K.; Schares, G. Prevalence, risk factor and diversity of Cryptosporidium in cattle in Latvia. Vet. Parasitol. Reg. Stu. Rep. 2022, 28, 100677. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Jian, Y.; Li, X.; Wang, G.; Hu, Y.; Karanis, P. Detection of Cryptosporidium and Giardia in the slaughterhouse, sewage and river waters of the Qinghai Tibetan plateau area (QTPA), China. Parasitol. Res. 2019, 118, 2041–2051. [Google Scholar] [CrossRef]
- Kváč, M.; Sak, B.; Hanzlíková, D.; Kotilová, J.; Květoňová, D. Molecular characterization of Cryptosporidium isolates from pigs at slaughterhouses in South Bohemia, Czech Republic. Parasitol. Res. 2009, 104, 425–428. [Google Scholar] [CrossRef]
- Pinto, P.; Ribeiro, C.A.; Hoque, S.; Hammouma, O.; Leruste, H.; Détriché, S.; Canniere, E.; Daandels, Y.; Dellevoet, M.; Roemen, J.; et al. Cross-border investigations on the prevalence and transmission dynamics of Cryptosporidium species in dairy cattle farms in western mainland Europe. Microorganisms 2021, 9, 2394. [Google Scholar] [CrossRef]
- Ullah, Q.; Jamil, T.; Saqib, M.; Iqbal, M.; Neubauer, H. Q Fever—A Neglected Zoonosis. Microorganisms 2022, 10, 1530. [Google Scholar] [CrossRef]
- Mioni, M.D.S.R.; Costa, F.B.; Ribeiro, B.L.D.; Teixeira, W.S.R.; Pelicia, V.C.; Labruna, M.B.; Rousset, E.; Sidi-Boumedine, K.; Thiery, R.; Megid, J. Coxiella burnetii in slaughterhouses in Brazil: A public health concern. PLoS ONE 2020, 15, e0241246. [Google Scholar] [CrossRef] [PubMed]
- Mangena, M.; Gcebe, N.; Pierneef, R.; Thompson, P.N.; Adesiyun, A.A. Q Fever: Seroprevalence, risk factors in slaughter livestock and genotypes of Coxiella burnetii in South Africa. Pathogens 2021, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Siengsanan-Lamont, J.; Theppangna, W.; Phommachanh, P.; Khounsy, S.; Selleck, P.W.; Matsumoto, N.; Gleeson, L.J.; Blacksell, S.D. Abattoir-based serological surveillance and spatial risk analysis of foot-and-mouth disease, brucellosis, and Q fever in Lao PDR large ruminants. Trop. Med. Infect. Dis. 2022, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Folitse, R.D.; Opoku-Agyemang, T.; Amemor, E.; Opoku, E.D.; Bentum, K.E.; Emikpe, B.O. Serological evidence of Coxiella burnetii infection in slaughtered sheep and goats at Kumasi Abattoir, Ghana. J. Immuno. Immunochem. 2020, 41, 152–157. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Kim, K.; Kim, B.; Chang, B.; Choe, N.H. Prevalence of bovine tuberculosis, brucellosis and Q fever in Korean black goats. Kor. J. Vet. Res. 2017, 56, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Alinaitwe, L.; Kankya, C.; Namanya, D.; Pithua, P.; Dreyfus, A. Leptospira seroprevalence among Ugandan slaughter cattle: Comparison of sero-status with renal Leptospira infection. Front. Vet. Sci. 2020, 7, 106. [Google Scholar] [CrossRef]
- Martins, G.; Loureiro, A.P.; Hamond, C.; Pinna, M.H.; Bremont, S.; Bourhy, P.; Lilenbaum, W. First isolation of Leptospira noguchii serogroups Panama and Autumnalis from cattle. Epidemiol. Infect. 2015, 143, 1538–1541. [Google Scholar] [CrossRef]
- Ngbede, E.O.; Raji, M.A.; Kwanashie, C.N.; Okolocha, E.C.; Gugong, V.T.; Hambolu, S.E. Serological prevalence of leptospirosis in cattle slaughtered in the Zango abattoir in Zaria, Kaduna State, Nigeria. Vet. Ital. 2012, 48, 179–184. [Google Scholar]
- Rahelinirina, S.; Moseley, M.H.; Allan, K.J.; Ramanohizakandrainy, E.; Ravaoarinoro, S.; Rajerison, M.; Rakotoharinome, V.; Telfer, S. Leptospira in livestock in Madagascar: Uncultured strains, mixed infections and small mammal-livestock transmission highlight challenges in controlling and diagnosing leptospirosis in the developing world. Parasitol 2019, 146, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Shiokawa, K.; Welcome, S.; Kenig, M.; Lim, B.; Rajeev, S. Epidemiology of Leptospira infection in livestock species in Saint Kitts. Trop. An. Health Prod. 2019, 51, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Taghadosi, V.; Hosseinzadeh, S.; Shekarforoush, S.S.; Samiei, A. Prevalence of renal lesions in slaughtered cattle in Shiraz, Iran, and detection of Leptospira in them by nested PCR-RFLP. Trop. An. Health Prod. 2016, 48, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Collins-Emerson, J.M.; Cullum, A.; Heuer, C.; Wilson, P.R.; Benschop, J. Shedding and seroprevalence of pathogenic Leptospira spp. in sheep and cattle at a New Zealand abattoir. Zoo. Public Health 2015, 62, 258–268. [Google Scholar] [CrossRef]
- Rajeev, S.; Ilha, M.; Woldemeskel, M.; Berghaus, R.D.; Pence, M.E. Detection of asymptomatic renal Leptospira infection in abattoir slaughtered cattle in southeastern Georgia, United States. SAGE Open Med. 2014, 2, 2050312114544696. [Google Scholar] [CrossRef] [Green Version]
- da Costa, D.F.; da Silva, A.F.; de Farias, A.E.M.; de Lima Brasil, A.W.; dos Santos, F.A.; de Figueiredo Guilherme, R.; Azevedo, S.S.; Alves, C.J. Serological study of the Leptospira spp. infection in sheep and goats slaughtered in the State of Paraíba, semiarid of Northeastern Brazil. Semin. Ciências Agrárias 2016, 37, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.C.D.; Costa, V.M.D.; Shimabukuro, F.H.; Richini-Pereira, V.B.; Menozzi, B.D.; Langoni, H. Frequency of Leptospira spp. in sheep from Brazilian slaughterhouses and its association with epidemiological variables. Pes. Vet. Brasil. 2012, 32, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Ngugi, J.N.; Fèvre, E.M.; Mgode, G.F.; Obonyo, M.; Mhamphi, G.G.; Otieno, C.A.; Cook, E.A.J. Seroprevalence and associated risk factors of leptospirosis in slaughter pigs; a neglected public health risk, western Kenya. BMC Vet. Res. 2019, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mendlovic, F.; Fleury, A.; Flisser, A. Zoonotic Taenia infections with focus on cysticercosis due to Taenia solium in swine and humans. Res. Vet. Sci. 2021, 134, 69–77. [Google Scholar] [CrossRef]
- Rubiola, S.; Moroni, B.; Carisio, L.; Rossi, L.; Chiesa, F.; Martano, G.; Cavallo, E.; Rambozzi, L. Risk factors for bovine cysticercosis in North-West Italy: A multi-year case-control study. Animals 2021, 11, 3049. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.; Dorny, P.; Berkvens, D.; Van Hul, A.; Van den Broeck, N.; Makay, C.; Praet, N.; Eichenberger, R.M.; Deplazes, P.; Gabriël, S. High prevalence of bovine cysticercosis found during evaluation of different post-mortem detection techniques in Belgian slaughterhouses. Vet. Parasitol. 2017, 244, 1–6. [Google Scholar] [CrossRef]
- Dorny, P.; Vercammen, F.; Brandt, J.; Vansteenkiste, W.; Berkvens, D.; Geerts, S. Sero-epidemiological study of Taenia saginata cysticercosis in Belgian cattle. Vet. Parasitol. 2000, 88, 43–49. [Google Scholar] [CrossRef]
- Cueto González, S.A.; Rodríguez Castillo, J.L.; López Valencia, G.; Bermúdez Hurtado, R.M.; Hernández Robles, E.S.; Monge Navarro, F.J. Prevalence of Taenia saginata larvae (Cysticercus bovis) in feedlot cattle slaughtered in a federal inspection type abattoir in northwest Mexico. Foodborne Pathog Dis. 2015, 12, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Jahed Khaniki, G.R.; Raei, M.; Kia, E.B.; Motevalli Haghi, A.; Selseleh, M. Prevalence of bovine cysticercosis in slaughtered cattle in Iran. Trop. An. Health Prod. 2010, 42, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Zdolec, N.; Vujević, I.; Dobranić, V.; Juras, M.; Grgurević, N.; Ardalić, D.; Njari, B. Prevalence of Cysticercus bovis in slaughtered cattle determined by traditional meat inspection in Croatian abattoir from 2005 to 2010. Helminthologia 2012, 49, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Dzoma, B.M.; Setlhodi, E.K.; Molefe, M.M.; Motsei, L.E.; Bakunzi, F.R.; Ndou, R.V.; Nyirenda, M. Prevalence of bovine cysticercosis in the north West Province of South Africa from 2000 to 2010. J. Human Ecol. 2011, 36, 9–12. [Google Scholar] [CrossRef]
- Kebede, N. Cysticercosis of slaughtered cattle in northwestern Ethiopia. Res. Vet. Sci. 2008, 85, 522–526. [Google Scholar] [CrossRef]
- Kebede, N.; Mekonnen, H.; Wossene, A.; Tilahun, G. Hydatidosis of slaughtered cattle in Wolaita Sodo Abattoir, southern Ethiopia. Trop. An. Health Prod. 2009, 41, 629–633. [Google Scholar] [CrossRef]
- Nguyen, T.T.M.; Dermauw, V.; Noh, J.; Chien, N.H.; Dao, T.T.H.; Nguyen, T.G.T.; Van Hul, A.; Dorny, P. Occurrence of Taenia species in pigs in slaughterhouses in Phu Tho Province, northern Vietnam. J. Helminthol. 2020, 1–7. [Google Scholar] [CrossRef]
- Marinho, G.L.D.O.; Schwarz, D.G.G.; Trigo, B.B.; Nunes, C.M.; Romeiro, E.T.; de Azevedo, E.O.; Silva, J.E.M.; Farias, M.P.O.; Oliveira, J.F.; Faustino, M.A.D.G. Swine cysticercosis and associated risk factors in non-technified pig breeding in semi-arid region of Sergipe state, Brazil. Trop. An. Health Prod. 2021, 53, 37. [Google Scholar] [CrossRef] [PubMed]
- Adenuga, A.; Mateus, A.; Ty, C.; Borin, K.; Holl, D.; San, S.; Duggan, V.; Clack, M.; Smith, G.J.D.; Coker, R.; et al. Seroprevalence and awareness of porcine cysticercosis across different pig production systems in south-central Cambodia. Parasite Epidemiol. Control 2018, 3, 1–12. [Google Scholar] [CrossRef]
- Vidal, E.; Tolosa, E.; Espinar, S.; de Val, B.P.; Nofrarías, M.; Alba, A.; Allepuz, A.; Grau-Roma, L.; López-Soria, S.; Martínez, J.; et al. Six-Year Follow-up of Slaughterhouse Surveillance (2008–2013) The Catalan Slaughterhouse Support Network (SESC). Vet. Pathol. 2016, 53, 532–544. [Google Scholar] [CrossRef]
- Chihai, O.; Umhang, G.; Erhan, D.; Boue, F.; Tălămbuţă, N.; Rusu, Ş.; Zamornea, M. Slaughterhouse survey of cystic echinococcosis in cattle and sheep from the Republic of Moldova. J. Helminthol. 2016, 90, 279–283. [Google Scholar] [CrossRef]
- Getaw, A.; Beyene, D.; Ayana, D.; Megersa, B.; Abunna, F. Hydatidosis: Prevalence and its economic importance in ruminants slaughtered at Adama municipal abattoir, Central Oromia, Ethiopia. Acta Trop. 2010, 113, 221–225. [Google Scholar] [CrossRef]
- Abebe, A.; Beyene, D.; Kumsa, B. Cystic echinococcosis in cattle slaughtered at Gondar Elfora export Abattoir, northwest Ethiopia. J. Parasit. Dis. 2014, 38, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Mathewos, M.; Dawa, D.; Yirgalem, M.; Denano, T.; Fesseha, H. Cystic echinococcosis in cattle slaughtered at a slaughterhouse in Gessa, southern Ethiopia. Parasite Epidemiol. Control 2022, 18, e00262. [Google Scholar] [CrossRef] [PubMed]
- Kebede, N.; Gebre-Egziabher, Z.; Tilahun, G.; Wossene, A. Prevalence and Financial Effects of Hydatidosis in Cattle Slaughtered in Birre-Sheleko and Dangila Abattoirs, Northwestern Ethiopia. Zoo. Pub. Health 2011, 58, 41–46. [Google Scholar] [CrossRef]
- Ezatpour, B.; Hasanvand, A.; Azami, M.; Mahmoudvand, H.; Anbari, K. A slaughterhouse study on prevalence of some helminths of cattle in Lorestan provience, west Iran. Asian Pac. J. Trop. Dis. 2014, 4, 416–420. [Google Scholar] [CrossRef]
- Wilson, C.S.; Jenkins, D.J.; Brookes, V.J.; Barnes, T.S. An eight-year retrospective study of hydatid disease (Echinococcus granulosus sensu stricto) in beef cattle slaughtered at an Australian abattoir. Prev. Vet. Med. 2019, 173, 104806. [Google Scholar] [CrossRef]
- Kere, O.J.; Joseph, E.; Jessika, B.L.; Maina, K.J. Prevalence and monetary loss due to cystic Echinococcosis in slaughter house livestock: A case study of Migori County, Kenya. Parasite Epidemiol. Control 2019, 5, e00105. [Google Scholar] [CrossRef]
- Founta, A.; Chliounakis, S.; Sotiriadou, K.A.; Koidou, M.; Bampidis, V. Prevalence of hydatidosis and fertility of hydatid cysts in food animals in Northern Greece. Vet. Ital. 2016, 52, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Miambo, R.D.; Afonso, S.M.S.; Noormahomed, E.V.; Malatji, M.P.; Mukaratirwa, S. Prevalence and molecular characterization of cystic hydatidosis in livestock slaughtered in southern Mozambique. J. Parasit. Dis. 2022, 46, 186–195. [Google Scholar] [CrossRef]
- Dán, Á.; Rónai, Z.; Széll, Z.; Sréter, T. Prevalence and genetic characterization of Echinococcus spp. in cattle, sheep, and swine in Hungary. Parsitology Res. 2018, 117, 3019–3022. [Google Scholar] [CrossRef] [PubMed]
- Bosco, A.; Alves, L.C.; Cociancic, P.; Amadesi, A.; Pepe, P.; Morgoglione, M.E.; Maurelli, M.P.; Ferrer-Miranda, E.; Santoro, K.R.; Ramos, R.A.N.; et al. Epidemiology and spatial distribution of Echinococcus granulosus in sheep and goats slaughtered in a hyperendemic European Mediterranean area. Parasites Vectors 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Joanny, G.; Mehmood, N.; Dessì, G.; Tamponi, C.; Nonnis, F.; Hosri, C.; Saarma, U.; Varcasia, A.; Scala, A. Cystic echinococcosis in sheep and goats of Lebanon. Parasitology 2021, 148, 871–878. [Google Scholar] [CrossRef]
- Brik, K.; Hassouni, T.; Youssir, S.; Baroud, S.; Elkharrim, K.; Belghyti, D. Epidemiological study of Echinococcus granulosus in sheep in the Gharb plain (North-West of Morocco). J. Parasit. Dis. 2018, 42, 505–510. [Google Scholar] [CrossRef]
- El-Dakhly, K.M.; Arafa, W.M.; El-Nahass, E.S.N.; Shokier, K.A.; Noaman, A.F. The current prevalence and diversity of cystic echinococcosis in slaughtered animals in Egypt. J. Parasit. Dis. 2019, 43, 711–717. [Google Scholar] [CrossRef]
- Najjari, M.; Karimazar, M.R.; Rezaeian, S.; Ebrahimipour, M.; Faridi, A. Prevalence and economic impact of cystic echinococcosis and liver fluke infections in slaughtered sheep and goat in north-Central Iran, 2008–2018. J. Parasit. Dis. 2020, 44, 17–24. [Google Scholar] [CrossRef]
- Moudgil, A.D.; Moudgil, P.; Asrani, R.K.; Agnihotri, R.K. Hydatidosis in slaughtered sheep and goats in India: Prevalence, genotypic characterization and pathological studies. J. Helminthol. 2020, 94, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umhang, G.; Richomme, C.; Bastid, V.; Boucher, J.M.; de Garam, C.P.; Itié-Hafez, S.; Danan, C.; Boué, F. National survey and molecular diagnosis of Echinococcus granulosus sensu lato in livestock in France, 2012. Parasitology 2020, 147, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Olias, P.; Schüpbach, G.; Henzi, M.; Barmettler, T.; Hentrich, B.; Gottstein, B.; Frey, C.F. Combined cross-sectional and case-control study on Echinococcus multilocularis infection in pigs in Switzerland. Vet. Parasitol. 2020, 277, 100031. [Google Scholar] [CrossRef] [PubMed]
- Demaître, N.; De Reu, K.; Haegeman, A.; Schaumont, D.; De Zutter, L.; Geeraerd, A.; Rasschaert, G. Study of the transfer of Listeria monocytogenes during the slaughter of cattle using molecular typing. Meat Sci. 2021, 175, 108450. [Google Scholar] [CrossRef] [PubMed]
- Demaître, N.; Van Damme, I.; De Zutter, L.; Geeraerd, A.H.; Rasschaert, G.; De Reu, K. Occurrence, distribution and diversity of Listeria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Sci. 2020, 169, 108177. [Google Scholar] [CrossRef]
- Zhao, Q.; Hu, P.; Li, Q.; Zhang, S.; Li, H.; Chang, J.; Jiang, Q.; Zheng, Y.; Li, Y.; Liu, Z.; et al. Prevalence and transmission characteristics of Listeria species from ruminants in farm and slaughtering environments in China. Emerg. Micro. Infec. 2021, 10, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Khen, B.K.; Lynch, O.A.; Carroll, J.; McDowell, D.A.; Duffy, G. Occurrence, antibiotic resistance and molecular characterization of Listeria monocytogenes in the beef chain in the Republic of Ireland. Zoo. Pub. Health 2015, 62, 11–17. [Google Scholar] [CrossRef]
- Akkaya, L.; Cetinkaya, Z.; Alisarli, M.; Telli, R.; Gok, V. The prevalence of E. coli O157/O157: H7, L. monocytogenes and Salmonella spp. on bovine carcasses in Turkey. J. Muscle Foods 2018, 19, 420–429. [Google Scholar] [CrossRef]
- Iglesias, M.A.; Kroning, I.S.; Decol, L.T.; de Melo Franco, B.D.G.; da Silva, W.P. Occurrence and phenotypic and molecular characterization of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food Res. Int. 2017, 100, 96–101. [Google Scholar] [CrossRef]
- Oh, H.; Kim, S.; Lee, S.; Lee, H.; Ha, J.; Lee, J.; Choi, Y.; Choi, K.-H.; Yoon, Y. Prevalence, serotype diversity, genotype and antibiotic resistance of Listeria monocytogenes isolated from carcasses and human in Korea. Kor. J. Food Sci. An. Res. 2018, 38, 851. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, N.D.; Onaran, B.; Cufaoglu, G.; Goncuoglu, M.; Ormanci, F.S.; Erol, I. Prevalence and characterization of Listeria monocytogenes isolated from beef and sheep carcasses in Turkey with characterization of locally isolated listeriophages as a control measure. J. Food Protec. 2018, 81, 2045–2053. [Google Scholar] [CrossRef]
- Morales-Partera, A.M.; Cardoso-Toset, F.; Luque, I.; Astorga, R.J.; Maldonado, A.; Herrera-León, S.; Hernández, M.; Gómez-Laguna, J.; Tarradas, C. Prevalence and diversity of Salmonella spp., Campylobacter spp., and Listeria monocytogenes in two free-range pig slaughterhouses. Food Control 2018, 92, 208–215. [Google Scholar] [CrossRef]
- Tanih, N.F.; Sekwadi, E.; Ndip, R.N.; Bessong, P.O. Detection of pathogenic Escherichia coli and Staphylococcus aureus from cattle and pigs slaughtered in abattoirs in Vhembe District, South Africa. Sci. World J. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komodromos, D.; Kotzamanidis, C.; Giantzi, V.; Angelidis, A.S.; Zdragas, A.; Sergelidis, D. Prevalence and biofilm-formation ability of Staphylococcus aureus isolated from livestock, carcasses, the environment, and workers of three abattoirs in Greece. J. Hell. Vet. Med. Soc. 2022, 73, 4097–4104. [Google Scholar] [CrossRef]
- Drougka, E.; Foka, A.; Giormezis, N.; Sergelidis, D.; Militsopoulou, M.; Jelastopulu, E.; Komodromos, D.; Sarrou, S.; Anastassiou, E.D.; Petinaki, E.; et al. Multidrug-resistant enterotoxigenic Staphylococcus aureus lineages isolated from animals, their carcasses, the personnel, and the environment of an abattoir in Greece. J. Food Process. Presev. 2019, 43, e13961. [Google Scholar] [CrossRef]
- Okorie-Kanu, O.J.; Anyanwu, M.U.; Ezenduka, E.V.; Mgbeahuruike, A.C.; Thapaliya, D.; Gerbig, G.; Ugwuijem, E.E.; Okorie-Kanu, C.O.; Agbowo, P.; Olorunleke, S.; et al. Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS ONE 2020, 15, e0232913. [Google Scholar] [CrossRef]
- Sergelidis, D.; Papadopoulos, T.; Komodromos, D.; Sergelidou, E.; Lazou, T.; Papagianni, M.; Zdragas, A.; Papa, A. Isolation of methicillin-resistant Staphylococcus aureus from small ruminants and their meat at slaughter and retail level in Greece. Lett. Appl. Microbiol. 2015, 61, 498–503. [Google Scholar] [CrossRef] [Green Version]
Cattle Simple Size | Prev. Cond (%) | Place | Period | Reference |
---|---|---|---|---|
3042 | 0.40 | Palestine | July–December 2018 | [52] |
1,162,410 | 0.59 | Canada | 2001–2007 | [53] |
Not indicated | 0.5–1.00 | US | 2005–2011 | [47] |
58,483 | 0.25 | Italy | 2010–2016 | [54] |
1,439,868 | 0.70 | France | 2006–2010 | [46] |
Not indicated | 0.29 | UK | 1969–1975 | [55] |
2741 | 0.21 | Iran | 2011–2012 | [56] |
42,434 | 0.20 | Tanzania | 1987–1989 | [57] |
115,186 | 0.11 | Tanzania | 2001–2007 | [58] |
37,717 | 0.51 | Zambia | 2000–2003 | [50] |
23,064 | 0.30 | Ethiopia | 2008–2012 | [59] |
85,980 | 0.05 | Tanzania | 2010–2012 | [60] |
4,000,372 | 4.60 | CR | 1995–2002 | [61] |
3,816,119 | 0.31 | Switzerland | 2007–2012 | [42] |
26,694,317 | 0.20 | US | 2003–2007 | [62] |
22,872 | 0.32 | Turkey | June 2012–December 2012 | [43] |
Organ/Part | % | Organ/Part | % | Country | Reference |
---|---|---|---|---|---|
Head | 2.51 | Lungs | 31.53 | Brazil | [99] |
Heart | 8.49 | Spleen | 3.82 | ||
Intestine | 6.00 | Stomach | 1.11 | ||
Kidneys | 14.44 | Tongue | 2.90 | ||
Liver | 15.24 |
Specie | Prev. (%) | Country | Reference |
---|---|---|---|
Cattle | 59.30 | Moldova | [266] |
46.90 | Ethiopia | [267] | |
20.50 | Ethiopia | [268] | |
17.90 | Ethiopia | [269] | |
16.00 | Ethiopia | [260] | |
15.20 | Ethiopia | [270] | |
9.40 | Iran | [271] | |
8.80 | Australia | [272] | |
5.30 | Kenya | [273] | |
4.80 | Greece | [274] | |
3.90 | Mozambique | [275] | |
0.07 | Hungary | [276] | |
Sheep | 62.90 | Italy | [277] |
62.90 | Lebanon | [278] | |
61.90 | Moldova | [266] | |
31.30 | Greece | [274] | |
29.30 | Ethiopia | [267] | |
12.12 | Iran | [277] | |
7.63 | Morocco | [279] | |
0.77 | Egypt | [280] | |
0.10 | Kenya | [273] | |
0.01 | Hungary | [276] | |
Goat | 28.00 | Italy | [277] |
20.90 | Lebanon | [278] | |
19.07 | Iran | [281] | |
10.70 | India | [282] | |
8.70 | Greece | [274] | |
6.70 | Ethiopia | [267] | |
2.00 | Kenya | [273] | |
Pig | 2.90 | Mozambique | [275] |
1.70 | Greece | [274] | |
1.00 | France 1 | [283] | |
0.24 | Egypt | [280] | |
0.01 | Hungary | [276] |
Microorganism | Prev. (%) | Specie | Country | Reference |
---|---|---|---|---|
L. monocytogenes | 43.00 | Cattle | Belgium | [285] |
46.00 | Cattle | Belgium | [286] | |
15.50 | Cattle | China | [287] | |
14.00 | Cattle | Ireland | [288] | |
6.80 | Cattle | Turkey | [289] | |
6.00 | Cattle | Brazil | [290] | |
5.17 | Cattle | Korea | [291] | |
3.40 | Cattle | Turkey | [292] | |
2.50 | Sheep | Turkey | [292] | |
22.00 | Pig | Belgium | [286] | |
1.33 | Pig | Spain | [293] | |
S. aureus | 32.50 | Cattle | South Africa | [294] |
5.70 | Cattle | Greek | [295] | |
4.50 | Cattle | Greek | [296] | |
12.50 | Goat | Greek | [296] | |
15.50 | Pig | Greek | [295] | |
8.00 | Pig | Greek | [296] | |
2.33 | Pig | Nigeria | [297] | |
7.00 | Sheep | Greek | [298] | |
5.00 | Srum | Greek | [298] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Díez, J.; Saraiva, S.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.T.; Saraiva, C. The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Vet. Sci. 2023, 10, 167. https://doi.org/10.3390/vetsci10020167
García-Díez J, Saraiva S, Moura D, Grispoldi L, Cenci-Goga BT, Saraiva C. The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Veterinary Sciences. 2023; 10(2):167. https://doi.org/10.3390/vetsci10020167
Chicago/Turabian StyleGarcía-Díez, Juan, Sónia Saraiva, Dina Moura, Luca Grispoldi, Beniamino Terzo Cenci-Goga, and Cristina Saraiva. 2023. "The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review" Veterinary Sciences 10, no. 2: 167. https://doi.org/10.3390/vetsci10020167
APA StyleGarcía-Díez, J., Saraiva, S., Moura, D., Grispoldi, L., Cenci-Goga, B. T., & Saraiva, C. (2023). The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Veterinary Sciences, 10(2), 167. https://doi.org/10.3390/vetsci10020167