Integration of Network Pharmacology and Molecular Docking to Analyse the Mechanism of Action of Oregano Essential Oil in the Treatment of Bovine Mastitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening of Active Components Targets of Origanum Vulgare Essential Oil
2.2. Target Gene Screening for Disease
2.3. Protein–Protein Interaction (PPI) Network Analysis and Construct
2.4. GO (Gene Ontology) Function and KEGG (Kyoto Encyclopedia of Genes and Genomes) Enrichment Analysis
2.5. Molecular Docking Verification
3. Results
3.1. Screening of Oregano Essential Oil Component Targets and Bovine Mastitis Disease Targets
3.2. Construction of PPI Network of Key Target Proteins in the Treatment of Bovine Mastitis with Origanum Essential Oil
3.3. GO Function and KEGG Enrichment Analysis and Construction of the Component–Target–Pathway Network
3.4. Molecular Docking Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demontier, E.; Dubé-Duquette, A.; Brouillette, E.; Larose, A.; Ster, C.; Lucier, J.-F.; Rodrigue, S.; Park, S.; Jung, D.; Ruffini, J.; et al. Relative virulence of Staphylococcus aureus bovine mastitis strains representing the main Canadian spa types and clonal complexes as determined using in vitro and in vivo mastitis models. J. Dairy Sci. 2021, 104, 11904–11921. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Imran, M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. 2020, 21, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Fujikawa, T.; Maemura, T.; Ando, T.; Kitahara, G.; Endo, Y.; Yamato, O.; Koiwa, M.; Kubota, C.; Miura, N. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis. PLoS ONE 2017, 12, e177182. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, C.; Basang, W.; Zhu, Y.; Wang, X.; Li, C.; Chen, L.; Zhou, X. Mechanisms by which mastitis affects reproduction in dairy cow: A review. Reprod. Domest. Anim. 2021, 56, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Li, X.N.; Peng, X.B.; Feng, Y.; Zang, H.; Zhu, L.Q. Research progress on diagnostic methods of bovine mastitis. Anim. Med. Prog. 2022, 43, 90–93. [Google Scholar]
- Sugiyama, M.; Watanabe, M.; Sonobe, T.; Kibe, R.; Koyama, S.; Kataoka, Y. Efficacy of antimicrobial therapy for bovine acute Klebsiella pneumoniae mastitis. J. Vet. Med. Sci. 2022, 84, 1023–1028. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Yatoo, M.I.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R.; et al. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; Aragão, B.B.; de Melo, R.P.B.; da Silva, D.M.S.; de Carvalho, R.G.; Juliano, M.A.; Farias, M.P.O.; de Lira, N.S.C.; Mota, R.A. Bovine mastitis in northeastern Brazil: Occurrence of emergent bacteria and their phenotypic and genotypic profile of antimicrobial resistance. Comp. Immunol. Microbiol. Infect Dis. 2022, 85, 101802. [Google Scholar] [CrossRef]
- Goulart, D.B.; Mellata, M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front. Microbiol. 2022, 13, 928346. [Google Scholar] [CrossRef]
- Tomanić, D.; Samardžija, M.; Kovačević, Z. Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. Antibiotics 2023, 12, 683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Bao, Y.X.; Wang, H.L. Research progress of dairy cow mastitis. China Dairy 2021, 8, 84–87. [Google Scholar]
- Sarengaowa; Hu, W.; Feng, K.; Xiu, Z.; Jiang, A.; Lao, Y.; Li, Y.; Long, Y.; Guan, Y.; Ji, Y.; et al. Antimicrobial Mechanisms of Essential Oils and Their Components on Pathogenic Bacteria: A Review. Food Sci. 2020, 41, 285–294. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Evangelista, A.G.; Correa, J.; Pinto, A.; Bittencourt Luciano, F. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5267–5283. [Google Scholar] [CrossRef]
- Tomanić, D.; Kladar, N.; Radinović, M.; Stančić, I.; Erdeljan, M.; Stanojević, J.; Galić, I.; Bijelić, K.; Kovačević, Z. Intramammary Ethno-Veterinary Formulation in Bovine Mastitis Treatment for Optimization of Antibiotic Use. Pathogens 2023, 12, 259. [Google Scholar] [CrossRef]
- Niu, B.; Liang, J.P.; Liu, Y. Progress of origanum essential oil in basic research of veterinary drugs. Adv. Anim. Med. 2018, 39, 92–96. [Google Scholar]
- El Abdali, Y.; Mahraz, A.M.; Beniaich, G.; Mssillou, I.; Chebaibi, M.; Bin Jardan, Y.A.; Lahkimi, A.; Nafidi, H.-A.; Aboul-Soud, M.A.M.; Bourhia, M.; et al. Essential oils of Origanum compactum Benth: Chemical characterization, in vitro, in silico, antioxidant, and antibacterial activities. Open Chem. 2023, 21, 5107–5168. [Google Scholar] [CrossRef]
- Drinić, Z.; Pljevljakušić, D.; Živković, J.; Bigović, D.; Šavikin, K. Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: Comparison with conventional hydro-distillation. Food Bioprod. Process. 2020, 120, 158–165. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.H.; Wang, K.B.; Fan, L.M.; Su, F.W.; Ye, M. Chemical constituents and allelopathy of volatile oil from oregano. Acta Appl. Ecol. 2020, 31, 2257–2263. [Google Scholar]
- Alagawany, M.; El-Hack, M.E.A.; Farag, M.R.; Shaheen, H.M.; Abdel-Latif, M.A.; Noreldin, A.E.; Khafaga, A.F. The Applications of Origanum Vulgare and Its Derivatives in Human, Ruminant and Fish Nutrition—A Review. Ann. Anim. Sci. 2020, 20, 389–407. [Google Scholar] [CrossRef]
- Bautista-Hernández, I.; Aguilar, C.N.; Martínez-Ávila, G.C.G.; Torres-León, C.; Ilina, A.; Flores-Gallegos, A.C.; Verma, D.K.; Chávez-González, M.L. Mexican Oregano (Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules 2021, 26, 5156. [Google Scholar] [CrossRef]
- Kovačević, Z.; Tomanić, D.; Čabarkapa, I.; Šarić, L.; Stanojević, J.; Bijelić, K.; Galić, I.; Ružić, Z.; Erdeljan, M.; Kladar, N. Chemical Composition, Antimicrobial Activity, and Withdrawal Period of Essential Oil-Based Pharmaceutical Formulation in Bovine Mastitis Treatment. Int. J. Environ. Res. Public Health 2022, 19, 16643. [Google Scholar] [CrossRef]
- Barbosa, L.N.; Alves, F.C.B.; Andrade, B.F.M.T.; Albano, M.; Rall, V.L.M.; Fernandes, A.A.H.; Buzalaf, M.A.R.; de Lima Leite, A.; de Pontes, L.G.; Santos, L.D.D.; et al. Proteomic analysis and antibacterial resistance mechanisms of Salmonella Enteritidis submitted to the inhibitory effect of Origanum vulgare essential oil, thymol and carvacrol. J. Proteom. 2020, 214, 103625. [Google Scholar] [CrossRef]
- Jung, K.-W.; Chung, M.-S.; Bai, H.-W.; Chung, B.-Y.; Lee, S. Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans. Molecules 2021, 26, 3476. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Zou, Y.; Peng, J. Oregano Essential Oil Attenuates RAW264.7 Cells from Lipopoly-saccharide-Induced Inflammatory Response through Regulating NADPH Oxidase Activation-Driven Oxidative Stress. Molecules 2018, 23, 1857. [Google Scholar] [CrossRef]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Yılmaz, Y.B.; Antika, G.; Salehi, B.; Tumer, T.B.; Venil, C.K.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M.; et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother. Res. 2021, 35, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Varfolomeev, E.; Vucic, D. Intracellular regulation of TNF activity in health and disease. Cytokine 2018, 101, 26–32. [Google Scholar] [CrossRef]
- Yu, L.; Pan, J.D.; Du, B.Y.; Xie, G.C. New roles of TLR2 and TLR4 in antiviral natural immune response. Acta Virol. 2018, 34, 570–578. [Google Scholar]
- Guo, P.; Zhang, H.; Li, C.; Meng, S. Research progress of Toll-like receptor pathway regulating Tregs function. J. Bioeng. 2020, 36, 1701–1712. [Google Scholar]
- Kang, S.; Narazaki, M.; Metwally, H.; Kishimoto, T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 2020, 217, e20190347. [Google Scholar] [CrossRef]
- Jenkins, R.H.; Hughes, S.T.O.; Figueras, A.C.; Jones, S.A. Unravelling the broader complexity of IL-6 involvement in health and disease. Cytokine 2021, 148, 155684. [Google Scholar] [CrossRef] [PubMed]
- Schoenborn, J.R.; Wilson, C.B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 2007, 96, 41–101. [Google Scholar] [PubMed]
- Zhu, T.B. Medical Immunology; Sichuan University Press: Chengdu, China, 2017. [Google Scholar]
- Chen, L.; He, Z. PI3K/Akt-Nrf2 and Anti-Inflammation Effect of Macrolides in Chronic Obstructive Pulmonary Disease. Curr. Drug Metab. 2019, 20, 301–304. [Google Scholar] [CrossRef]
- Manosalva, C.; Quiroga, J.; Teuber, S.; Cárdenas, S.; Carretta, M.D.; Morán G, G.; Alarcón, P.; Hidalgo, M.A.; Burgos, R.A. D-Lactate Increases Cytokine Production in Bovine Fibroblast-Like Synoviocytes via MCT1 Uptake and the MAPK, PI3K/Akt, and NFκB Pathways. Animals 2020, 10, 2105. [Google Scholar] [CrossRef]
- Xue, J.-F.; Shi, Z.-M.; Zou, J.; Li, X.-L. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoar-thritis. Biomed. Pharmacother. 2017, 89, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Ren, S.; Dai, W.B. Research progress of TLRs/NF-κB signaling pathway and the patho-genesis of breast cancer. China Med. Innov. 2021, 18, 179–184. [Google Scholar]
- Liang, D.; Li, F.; Fu, Y.; Cao, Y.; Song, X.; Wang, T.; Wang, W.; Guo, M.; Zhou, E.; Li, D.; et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-kappaB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 2014, 37, 214–222. [Google Scholar] [CrossRef]
- Qu, F.F.; Qian, Y.C. Research reveals the new mechanism of IL-17 signal pathway regulation. J. Shanghai Jiaotong Univ. 2013, 33, 420. [Google Scholar]
- Bechara, R.; McGeachy, M.J.; Gaffen, S.L. The metabolism-modulating activity of IL-17 signaling in health and disease. J. Exp. Med. 2021, 218, e20202191. [Google Scholar] [CrossRef]
- Liu, Y.J.; Yang, S.L. Research progress on rheumatoid arthritis and nitric oxide and its synthase. J. Nanchang Univ. 2020, 60, 66–70. [Google Scholar]
- Avola, R.; Granata, G.; Geraci, C.; Napoli, E.; Graziano, A.C.E.; Cardile, V. Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. Food Chem. Toxicol. 2020, 144, 111586. [Google Scholar] [CrossRef]
- Li, T.; Wu, Y.-N.; Wang, H.; Ma, J.-Y.; Zhai, S.-S.; Duan, J. Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-kappaB signaling pathway. Mol. Immunol. 2020, 120, 13–22. [Google Scholar] [CrossRef]
- Yu, P. Correlation Analysis between the Expression of p38 MAPK Signaling Pathway Related Factors and Mastitis in Dairy Cows. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2015. [Google Scholar]
- Chen, Z.W. Screening of Anti-inflammatory Active Components from Fructus Forsythiae and Their Effects on NF-κB and p38MAPK Signaling Pathways in Mouse Mammary Inflammation Model. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2020. [Google Scholar]
Number | Genes | Degree | UniProt ID | Names |
---|---|---|---|---|
1 | TNF | 27 | Q06599 | Tumor necrosis factor |
2 | TLR4 | 23 | Q9GL65 | Toll-Like Receptor 4 |
3 | ALB | 20 | P02769 | Albumin |
4 | IL-1β | 20 | P09428 | Interleukin-1β |
5 | TLR2 | 20 | Q95LA9 | Toll-like receptors 2 |
6 | IL-6 | 19 | P26892 | Interleukin-6 |
7 | IFNG | 16 | P07353 | Interferon-gamma |
8 | MyD88 | 15 | Q599T9 | Myeloid Differentiation Primary Response 88 |
Components | Targets | Combination of Energy (kcal/mol) |
---|---|---|
Thymol | TNF | −5.88 |
Carvacrol | TNF | −5.61 |
P-Cymene | ALB | −5.01 |
Thymol | TLR4 | −4.87 |
Thymol | IL-1β | −4.61 |
Thymol | TLR2 | −3.65 |
Thymol | IL-6 | −5.11 |
Carvacrol | IL-6 | −4.96 |
Thymol | IFNG | −4.51 |
Thymol | MyD88 | −5.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, G.; Liu, J.; Liu, H.; Chen, X.; Yu, N.; Li, X.; Xu, F. Integration of Network Pharmacology and Molecular Docking to Analyse the Mechanism of Action of Oregano Essential Oil in the Treatment of Bovine Mastitis. Vet. Sci. 2023, 10, 350. https://doi.org/10.3390/vetsci10050350
Cao G, Liu J, Liu H, Chen X, Yu N, Li X, Xu F. Integration of Network Pharmacology and Molecular Docking to Analyse the Mechanism of Action of Oregano Essential Oil in the Treatment of Bovine Mastitis. Veterinary Sciences. 2023; 10(5):350. https://doi.org/10.3390/vetsci10050350
Chicago/Turabian StyleCao, Guangjie, Jing Liu, Huan Liu, Xiaojie Chen, Na Yu, Xiubo Li, and Fei Xu. 2023. "Integration of Network Pharmacology and Molecular Docking to Analyse the Mechanism of Action of Oregano Essential Oil in the Treatment of Bovine Mastitis" Veterinary Sciences 10, no. 5: 350. https://doi.org/10.3390/vetsci10050350
APA StyleCao, G., Liu, J., Liu, H., Chen, X., Yu, N., Li, X., & Xu, F. (2023). Integration of Network Pharmacology and Molecular Docking to Analyse the Mechanism of Action of Oregano Essential Oil in the Treatment of Bovine Mastitis. Veterinary Sciences, 10(5), 350. https://doi.org/10.3390/vetsci10050350